

Lecture Notes in Computer Science 3876
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Shai Halevi Tal Rabin (Eds.)

Theory of
Cryptography

Third Theory of Cryptography Conference, TCC 2006
New York, NY, USA, March 4-7, 2006
Proceedings

13

Volume Editors

Shai Halevi
Tal Rabin
IBM T.J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532, USA
E-mail: shaih@alum.mit.edu; talr@watson.ibm.com

Library of Congress Control Number: 2006921180

CR Subject Classification (1998): E.3, F.2.1-2, C.2.0, G, D.4.6, K.4.1, K.4.3, K.6.5

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-32731-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32731-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© International Association for Cryptologic Research 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11681878 06/3142 5 4 3 2 1 0

Preface

TCC 2006 was the third Theory of Cryptography Conference, which was
held at Columbia University in Manhattan, New York, March 4-7, 2006. TCC
2006 was sponsored by the International Association for Cryptologic Research
(IACR) and organized in cooperation with the Computer Science Department
of Columbia University. The local arrangements chair was Tal Malkin.

The Program Committee, consisting of 13 members, received 91 submissions
and selected for publication 31 of these submissions. The quality of the sub-
missions was very high, and the selection process was a challenging one. The
proceedings consist of the revised versions of these 31 papers. Revisions were
not checked as to their contents, and the authors bear full responsibility for
the contents of their papers. In addition to the 31 accepted papers, the pro-
gram included two tutorials: A tutorial on “Black-Box Separation Results” by
Omer Reingold and a tutorial on “Non-Black-Box Techniques” by Boaz Barak.
The conference featured a rump session for informal short presentations of new
results, chaired by Charlie Rackoff and boosted by Tequilas!

We are in debt to the many people who contributed to the success of TCC 2006,
and we apologize for those whom we have forgotten to mention. First and foremost
we thank the authors who submitted their papers to TCC 2006; a conference is
only as good as the submissions that it receives. The Program Committee members
made a concentrated effort during the short review period contributing their time,
knowledge, expertise and taste, and for that we are extremely grateful. We also
thank the large number of external reviewers who assisted the committee in the
review process.

A heartfelt thanks goes to our local arrangements chair Tal Malkin and her as-
sistant Sophie Majewski for facilitating the communication with Columbia Uni-
versity. Their hard work made the local arrangements an effortless process for us.
We also thank Angelos D. Keromytis, Michael Locasto, and Angelos Stavrou for
giving us a web server at Columbia University on which to host the TCC work and
helping us manage it. We also want to thank IBM for their generous donation of
our time and the financial support for students attending TCC.

This was the first year that TCC was sponsored by the IACR. Several people
at the IACR helped us navigate this new terrain, in particular Andy Clark, He-
lena Handschuh and Kevin McCurley. We also benefited from advice from mem-
bers of theTCCSteeringCommittee, includingMihirBellare, IvanDamg̊ard,Oded
Goldreich and Moni Naor. Additional help came from the organizers of last year’s
TCC: Shafi Goldwasser, Joe Kilian and Joanne Talbot-Hanley, and the people at
Springer, in particular Alfred Hofmann, Ingrid Beyer and Anna Kramer.

And last but not least, thanks to our group members Ran Canetti, Rosario
Gennaro, Hugo Krawczyk and Masa Abe for all their support (emotional and
otherwise).

December 2005 Shai Halevi and Tal Rabin
TCC 2006 Program Co-chairs

VI Preface

External Reviewers

Michel Abdalla
Masayuki Abe
Jesús F. Almansa
Benny Applebaum
Boaz Barak
Mihir Bellare
Alexandra Boldyreva
Dan Boneh
Xavier Boyen
Jan Camenisch
Ran Canetti
Melissa Chase
Richard Cleve
Ivan Damg̊ard
Anupam Datta
Ante Derek
Yevgeniy Dodis
Cynthia Dwork
Ariel Elbaz
Marc Fischlin
Matthias Fitzi
Ariel Gabizon
Rosario Gennaro
Craig Gentry
Kristian Gjøsteen
Mikael Goldmann
Venkat Guruswami

Danny Harnik
Alejandro Hevia
Nick Howgrave-Graham
Yuval Ishai
Oleg Izmerly
Stanis�law Jarecki
Yael Tauman Kalai
Joe Kilian
Eike Kiltz
Tadayoshi Kohno
Chiu-Yuen Koo
Hugo Krawczyk
Gunnar Kreitz
Homin Lee
Arjen Lenstra
Anna Lysyanskaya
Phillip MacKenzie
Stephen Miller
Sara Miner
Anton Mityagin
Tal Mor
Ruggero Morselli
Steven Myers
Gregory Neven
Damian Niwiński
Shien Jin Ong
Saurabh Panjwani

Thomas Brochmann
Pedersen

Krzysztof Pietrzak
Benny Pinkas
Bartosz Przydatek
Oded Regev
Omer Reingold
Leonid Reyzin
Tom Ristenpart
Ron Rivest
Louis Salvail
Hovav Shacham
Tom Shrimpton
Alice Silverberg
Jessica Staddon
Tamir Tassa
Mårten Trolin
Wim van Dam
Salil Vadhan
Vinod Vaikuntanathan
Emanuele Viola
Andrew Wan
Bogdan Warinschi
Hoeteck Wee
Douglas Wikström

TCC 2006

The Third Theory of Cryptography Conference

Columbia University, New York, NY, USA
March 4-7, 2006

Sponsored by the International Association for Cryptologic Research

Organized in cooperation with the Computer Science Department,
Columbia University

General and Program Co-chairs
Shai Halevi and Tal Rabin, IBM T.J. Watson Research Center

Program Committee
Stefan Dziembowski Warsaw University
Johan H̊astad Royal Institute of Technology
Jonathan Katz University of Maryland, College Park
Eyal Kushilevitz Technion Israel Institute of Technology
Yehuda Lindell Bar-Ilan University
Tal Malkin Columbia University
Daniele Micciancio University of California, San Diego
John C. Mitchell Stanford University
Chanathip Namprempre Thammasat University
Jesper Buus Nielsen University of Århus
Manoj Prabhakaran University of Illinois, Urbana-Champaign
Adam Smith Weizmann Institute of Science
Luca Trevisan University of California, Berkeley

TCC Steering Committee
Mihir Bellare University of California, San Diego
Ivan Damg̊ard University of Århus
Oded Goldreich Weizmann Institute of Science
Shafi Goldwasser MIT
Johan H̊astad Royal Institute of Technology
Russell Impagliazzo University of California, San Diego
Ueli Maurer ETH Zurich
Silvio Micali MIT
Moni Naor Weizmann Institute of Science
Tatsuaki Okamoto NTT Labs

Table of Contents

Zero-Knowledge

Concurrent Zero Knowledge Without Complexity Assumptions
Daniele Micciancio, Shien Jin Ong, Amit Sahai, Salil Vadhan 1

Interactive Zero-Knowledge with Restricted Random Oracles
Moti Yung, Yunlei Zhao . 21

Non-interactive Zero-Knowledge from Homomorphic Encryption
Ivan Damg̊ard, Nelly Fazio, Antonio Nicolosi . 41

Primitives

Ring Signatures: Stronger Definitions, and Constructions Without
Random Oracles

Adam Bender, Jonathan Katz, Ruggero Morselli 60

Efficient Blind and Partially Blind Signatures Without Random Oracles
Tatsuaki Okamoto . 80

Key Exchange Using Passwords and Long Keys
Vladimir Kolesnikov, Charles Rackoff . 100

Mercurial Commitments: Minimal Assumptions and Efficient
Constructions

Dario Catalano, Yevgeniy Dodis, Ivan Visconti . 120

Assumptions and Models

Efficient Collision-Resistant Hashing from Worst-Case Assumptions on
Cyclic Lattices

Chris Peikert, Alon Rosen . 145

On Error Correction in the Exponent
Chris Peikert . 167

On the Relation Between the Ideal Cipher and the Random Oracle
Models

Yevgeniy Dodis, Prashant Puniya . 184

X Table of Contents

The Bounded-Retrieval Model

Intrusion-Resilience Via the Bounded-Storage Model
Stefan Dziembowski . 207

Perfectly Secure Password Protocols in the Bounded Retrieval Model
Giovanni Di Crescenzo, Richard Lipton, Shabsi Walfish 225

Privacy

Polylogarithmic Private Approximations and Efficient Matching
Piotr Indyk, David Woodruff . 245

Calibrating Noise to Sensitivity in Private Data Analysis
Cynthia Dwork, Frank McSherry, Kobbi Nissim, Adam Smith 265

Secret Sharing and Multi-party Computation (I)

Unconditionally Secure Constant-Rounds Multi-party Computation for
Equality, Comparison, Bits and Exponentiation

Ivan Damg̊ard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen,
Tomas Toft . 285

Efficient Multi-party Computation with Dispute Control
Zuzana Beerliová-Trub́ıniová, Martin Hirt . 305

Round-Optimal and Efficient Verifiable Secret Sharing
Matthias Fitzi, Juan Garay, Shyamnath Gollakota,
C. Pandu Rangan, Kannan Srinathan . 329

Universally-Composible Security

Generalized Environmental Security from Number Theoretic
Assumptions

Tal Malkin, Ryan Moriarty, Nikolai Yakovenko . 343

Games and the Impossibility of Realizable Ideal Functionality
Anupam Datta, Ante Derek, John C. Mitchell, Ajith Ramanathan,
Andre Scedrov . 360

Universally Composable Symbolic Analysis of Mutual Authentication
and Key-Exchange Protocols

Ran Canetti, Jonathan Herzog . 380

Table of Contents XI

Resource Fairness and Composability of Cryptographic Protocols
Juan Garay, Philip MacKenzie, Manoj Prabhakaran, Ke Yang 404

One-Way Functions and Friends

Finding Pessiland
Hoeteck Wee . 429

Pseudorandom Generators from One-Way Functions: A Simple
Construction for Any Hardness

Thomas Holenstein . 443

On the Complexity of Parallel Hardness Amplification for One-Way
Functions

Chi-Jen Lu . 462

Secret Sharing and Multi-party Computation (II)

On Matroids and Non-ideal Secret Sharing
Amos Beimel, Noam Livne . 482

Secure Computation with Partial Message Loss
Chiu-Yuen Koo . 502

Communication Efficient Secure Linear Algebra
Kobbi Nissim, Enav Weinreb . 522

Threshold and Proactive Pseudo-Random Permutations
Yevgeniy Dodis, Aleksandr Yampolskiy, Moti Yung 542

Pseudo-Random Functions and Encryption

PRF Domain Extension Using DAGs
Charanjit S. Jutla . 561

Chosen-Ciphertext Security from Tag-Based Encryption
Eike Kiltz . 581

Separating Sources for Encryption and Secret Sharing
Yevgeniy Dodis, Krzysztof Pietrzak, Bartosz Przydatek 601

Author Index . 617

Concurrent Zero Knowledge
Without Complexity Assumptions�

Daniele Micciancio1,��, Shien Jin Ong2,� � �, Amit Sahai3,†, and Salil Vadhan2,‡

1 University of California, San Diego, La Jolla CA 92093, USA
daniele@cs.ucsd.edu

2 Harvard University, Cambridge MA 02138, USA
{shienjin, salil}@eecs.harvard.edu

3 University of California, Los Angeles, Los Angeles CA 90095, USA
sahai@cs.ucla.edu

Abstract. We provide unconditional constructions of concurrent sta-
tistical zero-knowledge proofs for a variety of non-trivial problems (not
known to have probabilistic polynomial-time algorithms). The problems
include Graph Isomorphism, Graph Nonisomorphism, Quadratic Resid-
uosity, Quadratic Nonresiduosity, a restricted version of Statistical Dif-
ference, and approximate versions of the (coNP forms of the) Shortest
Vector Problem and Closest Vector Problem in lattices.

For some of the problems, such as Graph Isomorphism and Quadratic
Residuosity, the proof systems have provers that can be implemented in
polynomial time (given an NP witness) and have Õ(log n) rounds, which
is known to be essentially optimal for black-box simulation.

To the best of our knowledge, these are the first constructions of con-
current zero-knowledge proofs in the plain, asynchronous model (i.e.,
without setup or timing assumptions) that do not require complexity
assumptions (such as the existence of one-way functions).

1 Introduction

In the two decades since their introduction [2], zero-knowledge proofs have taken
on a central role in the study of cryptographic protocols, both as a basic building
block for more complex protocols and as a testbed for understanding important
new issues such as composability (e.g., [3]) and concurrency (e.g., [4]). The “clas-
sic” constructions of zero-knowledge proofs came primarily in two flavors. First,
there were direct constructions of zero-knowledge proofs for specific problems,
such as Quadratic Residuosity [2] and Graph Isomorphism [5]. Second,
there were general constructions of zero-knowledge proofs for entire classes of

� A full version of this paper is available [1].
�� Supported by NSF grant 0313241 and an Alfred P. Sloan Research Fellowship.

� � � Supported by ONR grant N00014-04-1-0478.
† Supported by NSF ITR and Cybertrust programs, an equipment grant from Intel,

and an Alfred P. Sloan Foundation Fellowship.
‡ Supported by NSF grants CNS-0430336 and CCR-0205423.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 1–20, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 D. Micciancio et al.

problems, such as all of NP [5].1 Both types of results have played an important
role in the development of the field.

The general results of the second type show the wide applicability of zero
knowledge, and are often crucial in establishing general feasibility results for
other cryptographic problems, such as secure multiparty computation [8,5] and
CCA-secure public-key encryption [9, 10, 11]. However, they typically are too
inefficient to be used in practice. The specific results of the first type are often
much more efficient, and are therefore used in (or inspire) the construction of
other efficient cryptographic protocols, e.g., identification schemes [12] and again
CCA-secure public-key encryption [13, 14, 15]. Moreover, the specific construc-
tions typically do not require any unproven complexity assumptions (such as the
existence of one-way functions), and yield a higher security guarantee (such as
statistical zero-knowledge proofs).2 The fact that the proof systems are uncon-
ditional is also of conceptual interest, because they illustrate the nontriviality of
the notion of zero knowledge even to those who are unfamiliar with (or who do
not believe in the existence of) one-way functions.3

Concurrent zero knowledge. In recent years, a substantial effort has been de-
voted to understanding the security of cryptographic protocols when many exe-
cutions are occurring concurrently (with adversarial scheduling). As usual, zero-
knowledge proofs led the way in this effort, with early investigations of concur-
rency for relaxations of zero knowledge dating back to Feige’s thesis [22], and
the recent interest being sparked by the work of Dwork, Naor, and Sahai [4],
which first defined the notion of concurrent zero knowledge. Research on con-
current zero knowledge has been very fruitful, with a sequence of works leading
to essentially tight upper and lower bounds on round complexity for black-box
simulation [23, 24, 25, 26, 27, 28], and partly motivating the first non-black-
box-simulation zero-knowledge proof [29]. However, these works are primarily
of the second flavor mentioned in the first paragraph. That is, they are general
feasibility results, giving protocols for all of NP. As a result, these protocols
are fairly inefficient (in terms of computation and communication), rely on un-
proven complexity assumptions, and only yield computational zero knowledge
(or, alternatively, computational soundness).

There have been a couple of works attempting to overcome these deficiencies.
Di Crescenzo [30] gave unconditional constructions of concurrent zero-knowledge
1 See the textbook [6] and survey [7] by Oded Goldreich for a thorough introduction

to zero-knowledge proofs.
2 Of course, this partition into two types of zero-knowledge protocols is not a precise

one. For example, there are some efficient zero-knowledge proofs for specific problems
that use complexity assumptions (e.g., [16] and there are some general results that
are unconditional (e.g., [17, 18, 19]).

3 It should be noted that the results of [20,21] show that the existence of a zero-
knowledge proof for a problem outside BPP implies some weak form of one-way
function. Still, appreciating something like the perfect zero-knowledge proof sys-
tem for Graph Isomorphism [5] only requires believing that there is no worst-case
polynomial-time algorithm for Graph Isomorphism, as opposed to appreciating
notions of average-case complexity as needed for standard one-way functions.

Concurrent Zero Knowledge Without Complexity Assumptions 3

proofs in various timing models. That is, his protocols assume that the honest
parties have some synchronization and may employ delays in the protocol, and
thus do not work in the standard, asynchronous model (and indeed he states
such a strengthening as an open problem). Micciancio and Petrank [31] gave
an efficient (in terms of computation and communication) transformation from
honest-verifier zero-knowledge proofs to concurrent zero-knowledge proofs. How-
ever, their transformation relies on the Decisional Diffie–Hellman assumption,
and yields only computational zero knowledge.

Our Results. We give the first unconditional constructions of concurrent zero-
knowledge proofs in the standard, asynchronous model. Our proof systems are
statistical zero knowledge and statistically sound (i.e. they are interactive proofs,
not arguments [32]). Specifically, our constructions fall into two categories:

1. Efficient proof systems for certain problems in NP, including Quadratic
Residuosity, Graph Isomorphism and a restricted form of quadratic non-
residuosity for Blum integers, which we call Blum Quadratic Nonresid-
uosity. These proof systems all have prover strategies that can be imple-
mented in polynomial time given an NP witness and have Õ(log n) rounds,
which is essentially optimal for black-box simulation [27].

2. Inefficient proof systems for other problems, some of which are not known
to be in NP. These include Quadratic Nonresiduosity, Graph Non-
isomorphism, the approximate versions of the complements of the Clos-
est Vector Problem and Shortest Vector Problem in lattices, and
a restricted version of Statistical Difference (the unrestricted version
is complete for statistical zero knowledge [33]). These proof systems have
a polynomial number of rounds, and do not have polynomial-time prover
strategies. These deficiencies arise from the fact that our construction be-
gins with a public-coin, honest-verifier zero-knowledge proof for the problem
at hand, and the only such proofs known for the problems listed here have
a polynomial number of rounds and an inefficient prover strategy.

Techniques. One of the main tools for constructing zero-knowledge proofs are
commitment schemes, and indeed the only use of complexity assumptions in the
construction of zero-knowledge proofs for all of NP [5] is to obtain a commitment
scheme (used by the prover to commit to the NP witness, encoded as, e.g., a
3-coloring of a graph). Our results rely on a relaxed notion of commitment,
called an instance-dependent commitment scheme,4 which is implicit in [35] and
formally defined in [36,34,19]. Roughly speaking, for a language L (or, more
generally, a promise problem), a instance-dependent commitment scheme for L
is a commitment protocol where the sender and receiver algorithms also depend
on the instance x. The security requirements of the protocol are relaxed so that
the hiding property is only required when x ∈ L, and the binding property is
only required when x /∈ L (or vice-versa).

4 Previous works [34,19] have referred to this as “problem-dependent” commitment
scheme, but this new terminology of “instance-dependent” seems more accurate.

4 D. Micciancio et al.

As observed in [36], many natural problems, such as Graph Isomorphism
and Quadratic Residuosity, have simple, unconditional instance-dependent
commitment schemes. This is useful because in many constructions of zero-
knowledge proofs (such as that of [5]), the hiding property of the commitment
scheme is only used to establish the zero-knowledge property and the bind-
ing property of the commitment scheme is only used to establish soundness.
Since, by definition, the zero-knowledge property is only required when the in-
put x is in the language, and the soundness condition is only required when
x is not in the language, it suffices to use a instance-dependent commitment
scheme. Specifically, if a language L ∈ NP (or even L ∈ IP) has a instance-
dependent commitment scheme, then L has a zero-knowledge proof [36] (see
also [34,19]).

Existing constructions of concurrent zero-knowledge proofs [24,27,28] also rely
on commitment schemes (and this is the only complexity assumption used). Thus it
is natural to try to use instance-dependent commitments to construct them. How-
ever, these protocols use commitments not only from the prover to the verifier,
but also from the verifier to the prover. Naturally, for the latter type of commit-
ments, the roles of the hiding and binding property are reversed from the above —
the hiding property is used to prove soundness and the binding property is used to
prove (concurrent) zero knowledge.Thus, it seems thatweneednot only a instance-
dependent commitment as above, but also one where the security properties are
reversed (i.e. binding when x ∈ L, and hiding when x /∈ L).

Our first observation is that actually we only need to implement the com-
mitment schemes from the verifier to the prover. This is because the concurrent
zero-knowledge proof system of Prabhakaran, Rosen and Sahai [28] is constructed
by a general compiler that converts any public-coin zero-knowledge proof into a
concurrent zero-knowledge proof, and this compiler only uses commitments from
the verifier to the prover. (Intuitively, the verifier commits to its messages in an
initial “preamble” stage, which is designed so as to allow concurrent simulation.)
Since all the problems we study are unconditionally known to have public-coin
zero-knowledge proofs, we only need to implement the compiler. So we are left
with the task finding instance-dependent commitments that are binding when
x ∈ L and hiding when x /∈ L. Thus, for the rest of the paper, we use this as our
definition of instance-dependent commitment.

This idea works directly for some problems, such as Graph Nonisomorphism
and Quadratic Nonresiduosity. For these problems, we have instance-
dependent commitments with the desired security properties, and thus we can
directly use these commitments in the compiler of [28]. Unfortunately, for the com-
plement problems, such as Graph Isomorphism and Quadratic Residuosity,
we only know of instance-dependent commitments that are hiding when x ∈ L,
and binding when x /∈ L.

Thus, for some of our results, we utilize a more sophisticated variant of
instance-dependent commitments, due to Bellare, Micali, and Ostrovsky [35].
Specifically, they construct something like a instance-dependent commitment
scheme for the Graph Isomorphism problem, but both the hiding and binding

Concurrent Zero Knowledge Without Complexity Assumptions 5

properties are non-standard. For example, the binding property is as follows:
they show that if x ∈ L and the sender can open a commitment in two different
ways, then it is possible for the sender to extract an NP witness for x ∈ L. Thus
we call these witness-binding commitments. Intuitively, when we use such com-
mitments, we prove concurrent zero knowledge by the following case analysis:
either the verifier is bound to its commitments, in which case we can simulate
our proof system as in [28], or the simulator can extract a witness, in which case
it can be simulated by running the honest prover strategy. In reality, however,
the analysis does not break into such a simple case analysis, because the veri-
fier may break the commitment scheme in the middle of the protocol. Thus we
require that, in such a case, an already-begun simulation can be “continued”
once we are given an NP witness. Fortunately, the classic (stand-alone) proof
systems for Graph Isomorphism and Quadratic Residuosity turn out to
have the needed “witness-completable simulation” property.

An additional contribution of our paper is to provide abstractions and gen-
eralizations of all of the above tools that allow them to be combined in a mod-
ular way, and may facilitate their use in other settings. First, we show how the
“preamble” of the Prabhakaran–Rosen–Sahai concurrent zero-knowledge proof
system [28] can be viewed as a way to transform any commitment scheme into
one that is “concurrently extractable,” in the sense that we are able to simulate
the concurrent execution of many sessions between an adversarial sender and
the honest receiver in a way that allows us to extract the commitments of the
sender in every session. This may be useful in constructing other concurrently
secure protocols (not just proof systems). Second, we provide general defini-
tions of witness-binding commitment schemes as well as witness-completable
zero-knowledge proofs as possessed by Graph Isomorphism and Quadratic
Residuosity and as discussed above.

Perspective. The recent works of Micciancio and Vadhan [34] and Vadhan [19]
hypothesized that every problem that has a statistical (resp., computational)
zero-knowledge proof has a instance-dependent commitment scheme.5 There are
several pieces of evidence pointing to this possibility:

1. A restricted form of a complete problem for statistical zero knowledge has a
instance-dependent commitment scheme [34].

2. If instance-dependent commitments exist for all problems with statistical
zero-knowledge proofs, then instance-dependent commitments exist for all
of problems with (general, computational) zero-knowledge proofs [19].

3. Every problem that has (general, computational) zero-knowledge proofs also
has inefficient instance-dependent commitments. These commitments are in-

5 Actually, the works of [34] and [19] refer to instance-dependent commitments where
the hiding property holds on yes instances and the binding property on no instances,
which is opposite of what we use. For statistical zero knowledge, this does not mat-
ter because the class of problems having statistical zero-knowledge proofs is closed
under complement [17]. But for computational zero knowledge, it means that out-
line presented here might yield a concurrent zero-knowledge argument system rather
than a proof system.

6 D. Micciancio et al.

efficient in the sense that the sender algorithm is not polynomial-time com-
putable [19]. Unfortunately we cannot use these commitments in our proto-
cols in this paper, because our verifier plays the role of the sender.

If the above hypothesis turns out to be true, then our work suggests that
we should be able prove that any problem that has a zero-knowledge proof has
a concurrent zero-knowledge protocol: simply plug the hypothesized instance-
dependent commitment scheme into our constructions. (We do not claim this as
a theorem because in this paper, we restrict our attention to instance-dependent
commitment schemes that are noninteractive and perfectly binding for simplicity,
but the hypothesis mentioned above make no such restriction.)

Outline. Section 2 details some nonstandard notations that are used in this pa-
per. In Sect. 3, we abstract the preamble stage in the Prabhakaran-Rosen-Sahai
concurrent zero-knowledge protocol [28, Sect. 3.1], showing how it transforms
any noninteractive commitment scheme into one satisfying a desirable extraction
property. In Sect. 4, we apply this transformation to instance-dependent commit-
ments, and thereby obtaining some of our concurrent zero-knowledge proofs. In
Sect. 5, we extend this transformation to problems with witness-binding commit-
ments, and thereby obtaining concurrent zero-knowledge proofs for Quadratic
Residuosity and Graph Isomorphism. Many details and proofs are contained
in the full version of this paper [1].

2 Preliminaries

For the most part, we use standard notations found in the theoretical cryptogra-
phy and complexity theory literature. In the next few paragraphs, we highlight
several nonstandard notations used.

Transcript and output of interactive protocols. For an interactive protocol (A,B),
let 〈A,B〉(x) denote the random variable representing the output of B after
interaction with A on common input x. In addition, let viewA

B(x) denote the
random variable representing the content of the random tape of B together with
the messages received by B from A during the interaction on common input x.

Committed-verifier zero knowledge. Prabhakaran, Rosen and Sahai [28], in their
works on concurrent zero knowledge, showed that adding a Õ(log n)-round pream-
ble to a specific form of zero-knowledge protocol (the Hamiltonicity protocol)
results in a concurrent zero-knowledge proof system, assuming the existence of
a collection of claw-free functions. Alon Rosen, in his PhD thesis, noted that the
preamble can be added to a more general form of zero-knowledge protocol, which
he informally defines as challenge-response zero knowledge [37, Sect. 4.8.1]. We
formalize this notion and call it committed-verifier zero knowledge.

Definition 1 (committed-verifier zero knowledge). A committed-verifier
Vm, where m = (m1,m2, . . . ,mk), is a deterministic verifier that always sends
mi as its i-th round message.

Concurrent Zero Knowledge Without Complexity Assumptions 7

An interactive proof (P, V) for (promise) problem Π is perfect (resp., statis-
tical, computational) committed-verifier zero knowledge (CVZK) if there exists
a probabilistic polynomial-time simulator S such that for all committed verifier
Vm, the ensembles {viewP

Vm
(x)}x∈ΠY and {S(x,m)}x∈ΠY are perfectly (resp.,

statistically, computationally) indistinguishable.

This CVZK property is closely related to notion of honest-verifier zero knowledge
(HVZK) in that any CVZK protocol is also trivially HVZK. Conversely, any
public-coin HVZK protocol can be converted into a public-coin CVZK protocol
by allowing the prover to send random coins m′ before the verifier’s public-coin
message m, and making the prover respond to m′ ⊕m (instead of just m).

Lemma 2. Promise problem Π has public-coin (perfect/statistical/computa-
tional) CVZK proofs if and only if it has public-coin (perfect/statistical/computa-
tional) HVZK proofs.

3 Concurrently-Extractable Commitment Scheme

3.1 Overview

A key component in our concurrent zero-knowledge protocols is a commit-
ment scheme with a concurrent extractability property. We call this scheme
concurrently-extractable commitment (CEC) scheme. The notion of concurrent
extractability informally means that we are able to simulate the concurrent ex-
ecution of many sessions between an adversarial sender and the honest receiver
in a way that allows us to extract the commitments of the sender in every
session.

This notion of concurrent extractability is inspired by the rewinding and sim-
ulation strategy of the Prabhakaran-Rosen-Sahai (PRS) [28] concurrent zero-
knowledge protocol. The PRS protocol essentially consists of two stages, the
preamble (first) stage and the main (second) stage [28, Sect. 3.1]. The concur-
rent zero knowledge feature of the protocol comes from the preamble stage, in
which the verifier is required to commit to the messages that it will use in the
main stage. Our goal in this section is to modularize the PRS protocol by ab-
stracting this key feature (preamble stage) that allows for concurrent security.

3.2 Definitions

Standard commitment schemes. A standard (interactive) commitment scheme
typically consists of a sender S, a receiver R and a verification algorithm Verify.
A message bit m ∈ {0, 1} is given as private input to S, and the common
input to both is 1n, where n is the security parameter. After the interaction
(S(m), R)(1n), R outputs a commitment string c and S outputs a decommitment
pair (m, d). (Without loss of generality, we can assume that c is R’s view of the
interaction and d is S’s coin tosses.) The verification algorithm Verify checks that
(m, d) is a valid decommitment of c by accepting if it is, and rejecting otherwise.

8 D. Micciancio et al.

Commitment schemes with partial verification. To extend standard commit-
ments to concurrently extractable ones, we require an additional verification
procedure denoted as Partial-Verify, which is needed for the special binding prop-
erty (see Definition 6).

Definition 3. A commitment scheme with partial verification consists of prob-
abilistic polynomial-time algorithms (S,R,Verify,Partial-Verify) such that the fol-
lowing conditions hold.

1. After the interaction (S(m), R)(1n), R outputs a commitment string c and
S outputs a decommitment pair (m, d).

2. For all (c, (m, d)) ← (S(m), R)(1n), we have that Verify(c,m, d) = 1.
3. For all c, m and d, Verify(c,m, d) = 1 implies Partial-Verify(c,m, d) = 1.

A decommitment (m, d) to c with Verify(c,m, d) = 1 is called a full decommit-
ment, whereas if we have only that Partial-Verify(c,m, d) = 1, it is called a partial
decommitment. Note that a standard commitment scheme is a special case of the
above definition by imposing Partial-Verify = Verify.

Remark 4. Our above notion of a commitment scheme with partial verification
shares some similarities with mercurial commitments, a notion recently defined
in [38]. For our notion, we have a single kind of commit phase that has two
kinds of decommitments, a full decommitment and a partial decommitment. For
mercurial commitments, the hard commitments correspond to our single com-
mit phase, and thus has two kinds of decommitments; standard decommitments
and tease. Standard decommitments and tease correspond to full decommit-
ments and partial decommitments, respectively. Mercurial commitments also
have a notion of soft commitments (that cannot be opened with standard de-
commitments, but can be teased to any value), which we do not require. Mer-
curial commitments were defined as a primitive for constructing zero-knowledge
sets [39].

Statistical hiding and perfect binding. Definition 3 only refers to the syntax of
a commitment scheme, and does not impose any security requirements (e.g.,
hiding and binding). For that, we have the following two definitions.

Definition 5 (hiding). A commitment scheme with partial verification
(S,R,Verify,Partial-Verify) is statistically hiding if for every adversarial receiver
R∗, the ensembles {〈S(0), R∗〉(1n)}n∈N and {〈S(1), R∗〉(1n)}n∈N are statistically
indistinguishable.

The above definition is restricted to statistically hiding since for the purposes of
our paper, we will only need to consider statistically hiding commitments. It is
straightforward to extend Definition 5 to encompass perfect and computational
hiding. Next, we define the perfectly binding property for commitment schemes
with partial verification. This perfectly binding notion will be used throughout
Sect. 4.

Concurrent Zero Knowledge Without Complexity Assumptions 9

Definition 6 (binding). A commitment scheme with partial verification
(S,R,Verify,Partial-Verify) is perfectly binding if for every commitment c, there
do not exist decommitments (m, d) and (m′, d′) such that m �= m′ and
Verify(c,m, d) = Partial-Verify(c,m′, d′) = 1.

Intuitively the above definition says that a partial decommitment of c to a mes-
sage m is a proof that c can only be full decommitted to m. Also, observe
that Definition 6 implies that the scheme is binding with respect to Verify
alone. That is, there do not exist c, (m, d) and (m′, d′) with m �= m′ and
Verify(c,m, d) = Verify(c,m′, d′) = 1. But the scheme need not be binding with
respect to Partial-Verify alone. Hence, the binding property specified in Defini-
tion 6 is a natural extension of the binding property of standard commitments
(where Partial-Verify = Verify).

Concurrent simulatability with extractability. The commitment scheme with
partial verification (as in Definition 3) will be used as a building block for our
concurrent zero-knowledge protocols in Sects. 4 and 5. For these concurrent zero-
knowledge protocols, the prover P and adversarial verifier V ∗ will play the role
of the receiver R and concurrent adversarial sender Ŝ, respectively. Therefore, we
will need to simulate the concurrent interaction between R and Ŝ, but it turns
out this alone is not sufficient. We will also need the simulator to determine
partial decommitments of Ŝ in every completed session that it has simulated.
This property is called concurrent extractability, a notion we formalize next.

Definition 7. A commitment scheme with partial verification (S,R,Verify,
Partial-Verify) is concurrently extractable if there exists a probabilistic polynomial-
time simulator Sim such that for every Q ≤ poly(n), and for every concurrent
adversary Ŝ that executes at most Q concurrent sessions, we have:

1. (Statistical simulation) The output of SimŜ(1n, 1Q) is statistically indistin-
guishable to the output of Ŝ in the concurrent interaction 〈R, Ŝ〉(1n).

2. (Concurrent extractability) Whenever Sim queries Ŝ on a transcript T , for
every completed session s in T with a commitment c[s], it provides partial
decommitment (m[s], d[s]) such that Partial-Verify(m[s], c[s], d[s]) = 1.

For short, we call this a concurrently-extractable commitment scheme. Also,
Sim is called the concurrently-extracting simulator.

Note that we require that the concurrent extractability property hold for all
adversaries Ŝ, even computationally unbounded ones. The only limitation on
Ŝ is that it executes at most polynomial sessions, which is a natural restric-
tion since it is infeasible to simulate a superpolynomial number of sessions in
polynomial time. In addition, the simulator is only required to provide partial
decommitments for every completed session. This suffices because a valid partial
decommitment (m, d) of a commitment c effectively binds it to the message m
if we insist on a full decommitment later on (see Definition 6).

10 D. Micciancio et al.

3.3 Construction of Concurrently-Extractable Commitments

A circuit Com : {0, 1} × {0, 1}n → {0, 1}n can be viewed as a generic (nonin-
teractive) commitment scheme, with n being the security parameter. The com-
mitment to a message bit m is Com(m; r), where r ← {0, 1}n is a uniformly
chosen random key. Likewise, the decommitment of c to a bit m is a pair (m, r)
such that c = Com(m; r). Note that this definition only refers to the syntax of a
commitment scheme and does not impose any security requirements (i.e., hiding
and binding).

The next lemma states that we can transform any generic commitment scheme
Com : {0, 1} × {0, 1}n → {0, 1}n into a new scheme with the concurrent ex-
tractability property. This new scheme is essentially the preamble stage of the
PRS concurrent ZK protocol [28], with the sender (verifier) using Com to com-
mit in the Õ(log n) rounds of interaction, and the receiver (prover) just sending
random coins.

Lemma 8. For any generic noninteractive commitment scheme Com : {0, 1} ×
{0, 1}n → {0, 1}n, there is a concurrently-extractable commitment scheme CCom

= (SCom, RCom,VerifyCom,Partial-VerifyCom) (taking the circuit Com as auxiliary
input), such that:

1. If Com is perfectly binding, then CCom is perfectly binding.
2. If Com is statistically hiding, then CCom is statistically hiding.
3. (SCom, RCom) has Õ(log n) rounds of interaction.

We denote CEC-SimCom as the concurrently-extracting simulator for CCom.

Committing to multi-bit messages. The concurrently-extractable commitment
scheme obtained from Lemma 8 is for a single-bit message; to commit to a �-bit
message, we independently repeat the scheme � times in parallel. It is important
to note that even if we do so, all the properties required in Definition 7 still hold.
(Concurrent extractability follows because parallel repetition is a special case of
concurrent interaction.) Later in Sect. 4, it will be more convenient to think of Ŝ
as committing to an �-bit message per session, rather than � senders committing
to a single-bit message each.

Finally, when S commits to multi-bit messages, it can full-decommit in mul-
tiple steps, one for each committed bit. This is because the full decommitment
for each bit of the message is independent of the others.

4 Unconditional Concurrent Zero-Knowledge Proofs for
Problems with Instance-Dependent Commitments

In this section, we demonstrate a generic technique for transforming certain stand-
alone public-coin zero-knowledge protocols into concurrent zero-knowledge proto-
cols. In doing so, we construct unconditional concurrent zero-knowledge proofs for

Concurrent Zero Knowledge Without Complexity Assumptions 11

non-trivial problems like Quadratic Nonresiduosity, Graph NonIsomor-
phism, a variant of Statistical Difference and approximate lattice problems.

The main tool used in the transformation is a instance-dependent commitment
scheme, formally defined in Definition 9. Later in Sect. 5, we demonstrated
a modified transformation that works for certain problems possessing witness-
binding commitments.

4.1 Instance-Dependent Commitments

In order to prevent the adversarial verifier from deviating widely from the original
protocol specification, the previous constructions of concurrent zero-knowledge
protocols require the verifier to commit to certain messages in advance [23,25,28].
While these commitments can be constructed from one-way functions [40,41],
proving the existence of one-way functions remains a major open problem in
complexity theory.

To achieve concurrent security without relying on unproven assumptions, we
observe that the standard verifier’s commitments used in [28] can be replaced
by instance-dependent commitments [36] (cf., [34]). A instance-dependent com-
mitment, roughly speaking, is a commitment protocol that takes the problem
instance x as an additional input, is binding on the yes instances (x ∈ ΠY), and
is hiding on the no instances (x ∈ ΠN). Standard commitments, by contrast,
are required to always be both hiding and binding regardless of the problem
instance.

Because the hiding and binding properties of instance-dependent commit-
ments depend on the problem instance, we can construct instance-dependent
commitments that are both perfectly binding (on the yes instances) and sta-
tistically hiding (on the no instances).6 We give a simplified, noninteractive
definition of instance-dependent commitments that suffices for our applications
in this section.

Definition 9. (noninteractive instance-dependentcommitment)Promise
problem Π = (ΠY,ΠN) has a instance-dependent commitment if there exists a
polynomial-time algorithm PD-Com such that the following holds.

1. Algorithm PD-Com takes as input the problem instance x, a bit b, and a
random key r, and produces a commitment c = PD-Comx(b; r). The running
time of PD-Com is bounded by a polynomial in |x|, hence without loss of
generality we can assume that |c| = |r| = poly(|x|).

2. (perfectly binding on yes instances) For all x ∈ ΠY, the distributions
PD-Comx(0) and PD-Comx(1) have disjoint supports. That is, there does
not exist strings r and r′ such that PD-Comx(0; r) = PD-Comx(1; r′).

3. (statistically hiding on no instances) For all x ∈ ΠN, the commitments to
0 and 1 are statistically indistinguishable. In other words, the distributions
PD-Comx(0) and PD-Comx(1) are statistically indistinguishable (w.r.t. |x|,
the length of the instance).

6 By contrast, standard commitments cannot be both statistically binding and statis-
tically hiding.

12 D. Micciancio et al.

The commitment c can be decommitted to by sending the committed bit b and
random key r. Since both parties have access to the problem instance x, this
decommitment can be verified by checking that c = PD-Comx(b; r).

4.2 Main Results

Before presenting the our unconditional concurrent zero-knowledge protocol, we
state our main results for this section.

Theorem 10. If promise problem Π has a public-coin CVZK proof system
(P0, V0) (in the sense of Definition 1) and also a instance-dependent commit-
ment, then Π has a proof system (P, V) with the following properties:

1. If (P0, V0) is statistical (resp., computational) zero knowledge, then (P, V) is
concurrent statistical (resp., computational) zero knowledge.

2. Prover P is black-box simulatable in strict polynomial time.
3. The round complexity of (P, V) increases only by an additive factor of

Õ(log n), with n being the security parameter, compared to the original pro-
tocol (P0, V0).

4. The completeness of (P, V) is exactly the same as that of (P0, V0), while the
soundness error increases by only a negligible additive term (as a function
of n).

5. The prover strategy P can be implemented in probabilistic polynomial-time
with oracle access to P0. In particular, if P0 is efficient, so is P .

We provide an outline of the proof of Theorem 10 in Sects. 4.3 and 4.4. Several
natural problems that Theorem 10 applies to are listed below.

Corollary 11. The following problems have concurrent statistical zero-knowledge
proofs:

– The statistical difference problem SD1
1/2.

– The languages Quadratic Nonresiduosity and Graph NonIsomor-
phism.

– The lattice problems co-GapCVPγ and co-GapSVPγ , for γ = Ω(√
(n/ log n)).

Proof. All the problems listed—SD1
1/2, Quadratic Nonresiduosity, Graph

NonIsomorphism, co-GapCVPγ and co-GapSVPγ , for γ = Ω(
√

(n/ log n))
—have honest-verifier statistical zero-knowledge proofs [2,5,42,33], which can be
made public-coin by [17]. In addition, they all have instance-dependent commit-
ments [36,34].

The above corollary does not guarantee a polynomial-time prover strategy (with
auxiliary input) nor round efficiency. The reason is that the public-coin honest-
verifier zero-knowledge proof systems known for these problems do not have
a polynomial-time prover nor a subpolynomial number of rounds. For Blum

Concurrent Zero Knowledge Without Complexity Assumptions 13

Quadratic Nonresiduosity,7 however, we can start with the noninteractive
statistical zero-knowledge proof8 of [43], whose prover is polynomial time (given
the factorization of the modulus), and obtain the following:

Corollary 12. The language BlumQuadraticNonresiduosity has a concur-
rent statistical zero-knowledge proof systems with Õ(log n) rounds and a prover that
can be implemented in polynomial time given the factorization of the input modulus.

We note that we do not expect to obtain efficient provers for Graph NonI-
somorphism or SD1

1/2, since these problems are not known to be in NP (or
MA), which is a prerequisite for an efficient-prover proof system. However,
Quadratic Nonresiduosity is in NP (the factorization of the input is a wit-
ness), as are co-GapCVPγ and co-GapSVPγ for larger approximation factors
γ = Ω(

√
n) [44], so we could hope to obtain an efficient prover. The bottleneck is

finding public-coin honest-verifier zero-knowledge proofs with a polynomial-time
prover for these problems.

4.3 Our Concurrent Zero-Knowledge Protocol

A high-level description of our unconditional concurrent zero-knowledge protocol
is as follows: We begin with a public-coin CVZK protocol. We make it concurrent
zero knowledge by forcing the verifier to commit in advance to its (public-coin)
messages in the CVZK protocol using concurrently-extractable commitments
CCom provided for by Lemma 8. However, CCom still requires a generic nonin-
teractive commitment scheme Com; for this, we plug-in the instance-dependent
commitment scheme PD-Comx.

Now, let us formally describe our concurrent zero-knowledge protocol. Let
(P0, V0) be a public-coin CVZK proof system for Π with q(|x|) rounds on
common input x. Denote the messages sent by V0 in the protocol as m =
(m1, . . . ,mq), and let �

def= |m| be the verifier-to-prover communication com-
plexity. Let PD-Comx : {0, 1} × {0, 1}n → {0, 1}n, where n = poly(|x|), be a
instance-dependent commitment for Π.

From Protocol 13 and Lemma 8, we can easily derive the prover efficiency, round
complexity and completeness claims of Theorem 10. For soundness, observe that
since PD-Comx is statistically hiding, CPD-Comx is also statistically hiding (by
Lemma 8). Hence, the soundness of Protocol 13 only decreases by a negligible
amount because a cheating prover will not know the committed messages of the
verifier until the verifier decommits to mt (in round t of the main stage).

We show that Protocol 13 is concurrent zero-knowledge by highlighting the
main ideas behind its simulation in the next subsection. The full description of
our concurrent zero-knowledge protocol (P, V) is next.
7 The problem Blum Quadratic Nonresiduosity is a variant of quadratic residu-

osity restricted to Blum integers.
8 Noninteractive zero knowledge implies (in fact is equivalent to) 2-round public-coin

honest-verifier zero knowledge since the honest verifier just sends the common ran-
dom string in the first round, and the prover sends the single-message proof in the
second round.

14 D. Micciancio et al.

Protocol 13 Our unconditional concurrent zero-knowledge protocol
(P, V) for problem Π with instance-dependent commitments.

Input: Instance x of Π.

Preamble stage (using instance-dependent commitments)

Let CPD-Comx
= (Sx, Rx,Verifyx,Partial-Verifyx) be the

concurrently-extractable commitment scheme provided for by
Lemma 8 by substituting Com = PD-Comx.

V : Select a random message m = (m1, . . . ,mq) ← {0, 1}�.
V → P : Send the message "start session".
V ↔ P : Run the following instance-dependent CEC schemes

(Sx(m1), Rx)(1n), · · · , (Sx(mq), Rx)(1n) in parallel, with the
verifier V acting as Sx and the prover P as Rx.

Let the output of Rx be the commitments (c1, . . . , cq), and be
the output of Sx be the decommitments ((m1, d1), . . . , (mq, dq)).
Note that neither P nor V sends the outputs of Rx or Sx to the
other party at this stage.

Main stage (stand-alone zero-knowledge protocol)

V → P : Send the message "start main stage".
P : Select randomness rP0 ← {0, 1}∗ for the original prover P0.

For t = 1, . . . , q, do the following:

V → P : Decommit to mt by sending full decommitment (mt, dt) of
ct.

P → V : Verify the decommitment received is valid by checking if
Verify(ct,mt, dt) = 1. If so, answer as the original prover P0
would, that is, send πt = P0(x,m1, . . . ,mt; rP0). Otherwise,
halt and abort.

Verifier V accepts if the original verifier V0 accepts on
(m1, π1, . . . ,mq, πq).

4.4 Our Simulator

Observe that the prover’s strategy can be broken into two parts, Ppre and Pmain,
denoting the preamble stage and main stage, respectively. Both Ppre and Pmain
use independent randomness. The simulation procedure for our concurrent zero-
knowledge protocol (Protocol 13) is broken into three main steps.

1. First, we analyze the concurrent interaction of P and V ∗ in the context of
concurrently-extractable commitment schemes (provided for by Lemma 8,
substituting Com = PD-Comx). To do so, we define a new adversarial sender

Concurrent Zero Knowledge Without Complexity Assumptions 15

Ŝ that takes V ∗ and Pmain as oracles and only returns the preamble messages
of V ∗. The preamble stage prover Ppre acts as the honest receiver Rx. By
Definition 7 and Lemma 8, we can simulate the output of Ŝ (after interaction
with Ppre), while having the additional property of being able to extract the
commitments.
By virtue of the way we defined Ŝ, its output after concurrently interacting
with Ppre is equivalent to the output of V ∗ after concurrently interacting
with P . Nevertheless, this simulation is inefficient because Ŝ uses an oracle
for Pmain.

2. Since we can extract partial decommitments, we are able to determine the
verifier’s main stage messages in advance.9 Hence, we can replace the adap-
tive queries to Pmain by a single query made to a new oracle, called OP , at
the start of each main stage.

3. However, OP is still not an efficiently implementable oracle. In the final step,
we replace oracle OP with a committed-verifier zero knowledge (CVZK)
simulator SCVZK to obtain an efficient simulation strategy.

5 Unconditional Concurrent Zero-Knowledge Proofs for
Problems with Witness-Binding Commitments

Here we extend the techniques in Sect. 4 to obtain unconditional concurrent
statistical zero-knowledge proofs for certain problems like Quadratic Resid-
uosity and Graph Isomorphism. These problems are not known to have
instance-dependent commitments (in the sense of Definition 9), but have a
variant of instance-dependent commitments called witness-binding commitments
(see Sect. 5.1). Informally, these commitments are not guaranteed to be perfectly
binding but breaking the binding property of these commitments is as hard as
finding a witness.

Using these witness-binding commitments, we proceed to transform them into
ones with the concurrently extractability property. (In Sect. 3.3 we did a similar
transformation for standard instance-dependent commitments.) Our concurrent
zero-knowledge protocol combines the witness-binding concurrently-extractable
commitments with an underlying stand-alone ZK protocol.

Recall that in Sect. 4, we required the stand-alone protocol to be committed-
verifier zero knowledge (CVZK), as in Definition 1. However, since we are using
only witness-binding commitments, we require the underlying stand-alone pro-
tocol to have a stronger property that we call witness-completable CVZK (see
Sect. 5.2). The additional witness-completable property, informally stated, gives
our simulator the ability to complete the simulation even when the verifier sends
a message different from its committed one, if we provide our simulator with a
valid witness at that time. This is important because the binding property of
witness-binding commitments can be broken, but if that is the case, the simulator
can obtain a witness that it can use to complete the simulation.
9 The binding property in the sense of Definition 6 allows us to determine the commit-

ted message in any valid full decommitment by just knowing a partial decommitment.

16 D. Micciancio et al.

5.1 Witness-Binding Commitments

Based on the techniques used in Sect. 4, the first natural step towards construct-
ing concurrent zero-knowledgeprotocolswouldbe to construct instance-dependent
commitments. Consider the naive commitment scheme for Graph Isomorphism
specified as follows: Let (G0, G1) be an instance of the problem. To commit to bit b,
send a random isomorphic copy ofGb. This commitment is perfectly hiding on the
yes instances (when G0 ∼= G1) and perfectly binding on the no instances (when
G0 � G1). However, this is exactly the opposite of what we require in a instance-
dependent commitment (see Definition 9). In fact, every problem satisfying Defi-
nition 9 is in coNP, but Graph Isomorphism is not known to be in coNP.

Protocol 14 Witness-binding commitment scheme for Graph
Isomorphism (implicit in [35]).

To commit to bit b using problem instance (G0, G1), proceed as
follows.

Index generation stage
R → S: Let H1 be a random isomorphic copy of G0, and send

H1. That is, H1 = σ(G0) for a random permutation
σ of the vertices of G0. In addition, both parties set
H0 = G0.

Commitment stage
S → R: To commit to bit b, send F , a random isomorphic

copy of Hb.

Decommitment stage
S → R: To decommit, send b together with the isomorphism

between Hb and F .

Verification stage
After the decommitment stage, the receiver Rx proves that H1,
sent in the index generation stage, is isomorphic toG0 by sending
the isomorphism σ between G0 and H1.

To overcome this apparent difficulty, the above commitment scheme (Pro-
tocol 14) makes use of additional index generation and verification stages to
do instance-dependent commitments. It can be shown that this witness-binding
commitment scheme is perfectly hiding on every instance (in particular the no
instances) if H1 is generated correctly, that is if H1 ∼= G0. On the yes instances,
the scheme is “computationally binding” in that breaking the scheme is as hard
as finding an NP-witness (an isomorphism between G0 and G1). More precisely,
we can extract the witness if we use a simulated index generation stage, whereH1
is taken to be a random isomorphic copy of G1 (which is distributed identically
to the actual index generation).

Concurrent Zero Knowledge Without Complexity Assumptions 17

This scheme can be generalized to a number of other NP languages, and a
formal definition capturing the notion of witness-binding commitments is in the
full version of this paper [1]. In addition, we note that Quadratic Residuos-
ity has a similarly structured witness-binding commitment scheme (based on
Protocol 14 and its 3-round perfect zero-knowledge proof system [2]).

5.2 Witness-Completable CVZK

Recall that witness-completable CVZK (wCVZK) is a strengthening of the no-
tion of CVZK (Definition 1) in that our simulator, when given a valid witness,
must have the ability to complete the simulation even when the verifier sends a
message different from its committed one. The formal definition of wCVZK is
the full version of this paper [1].

The 3-round perfect zero-knowledge protocols for both Quadratic Residu-
osity [2] and Graph Isomorphism [5] turns out to have the witness-completable
property, as desired.

5.3 Main Results

Our main result for this section can be summarized in a very similar manner as
Theorem 10 in Sect. 4.2. The main differences are (1) the promise problemΠ needs
to have awitness-binding commitment scheme and a 3-round, public-coin,wCVZK
proof system (instead of instance-dependent commitment scheme andCVZKproof
system), and (2) our new simulation runs in expected polynomial time instead of
strict polynomial time. With that, we obtain the following theorem.

Theorem 15. Both languages Graph Isomorphism and Quadratic Resid-
uosity have concurrent statistical zero-knowledge proof systems with Õ(log n)
rounds and efficient provers. The simulator for both protocols runs in expected
polynomial time.

Note that the round complexity of Õ(log n) for the concurrent zero-knowledge
protocols of both Graph Isomorphism and Quadratic Residuosity is es-
sentially optimal for black-box simulation [27].

5.4 Our Modified Concurrent Zero-Knowledge Protocol

Since we are dealing with witness-binding commitments, we have to modify
Protocol 13 in Sect. 4.3. Our modified concurrent zero-knowledge protocol is
similar in structure with the main difference being that instead of just the
preamble stage and the main stage, it also an index generation stage before
the preamble stage and a verification stage after the main stage (for imple-
menting the corresponding stages of the witness-binding commitment scheme).
The full description of our modified protocol is in the full version of this
paper [1].

18 D. Micciancio et al.

5.5 Our Simulator

Recall the three main steps of the simulation procedure in Sect. 4.4.

1. Analyze the concurrent interaction of P and V ∗ in the context of the con-
currently-extractable commitment schemes. Specifically, define a new adver-
sarial sender Ŝ that takes V ∗ and Pmain as oracles and only returns the
preamble messages of V ∗, and simulate its interaction while extracting its
commitments.

2. Replace the adaptive queries to Pmain by a single query made to a new oracle,
called OP , at the start of each main stage.

3. Replace oracle OP with a CVZK simulator SCVZK to obtain an efficient
simulation strategy.

For the simulation of our modified concurrent zero-knowledge protocol, we
keep Step 1 the same, but in Step 2 observe that the prover responses provided
by OP depends on the witness w given the to prover. Hence, we denote it more
precisely as OP (w). In Step 3, we simulate the answers from OP (w) with our
wCVZK simulator. However, our wCVZK simulator needs a witness w in order
to continue the simulation when the verifier’s V ∗ response does not match the
expectation of our simulator.

This can only happen if V ∗ breaks the binding of the witness-binding com-
mitment. And when that happens, our simulator is able to obtain a witness w,
which it can then feed to the wCVZK simulator to continue the simulation. Ac-
tually, a subtlety is that the witness-binding commitment allows us to extract
a witness only if we simulate the index generation stage, whereas here we need
to run the actual index generation in order to complete the verification stage.
Thus, if needed, we run a separate offline process to extract a witness, and this
is what causes our simulator to run in expected polynomial time. For details,
see the full version of this paper [1].

Acknowledgements. We thank Alexander Healy, Manoj Prabhakaran and
Alon Rosen for helpful discussions.

References

1. Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S.: Concurrent zero knowledge with-
out complexity assumptions. Technical Report 05-093, Electronic Colloquium on
Computational Complexity (2005)
http://eccc.uni-trier.de/eccc-reports/2005/TR05-093/.

2. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1) (1989) 186–208

3. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM Journal on Computing 25(1) (1996) 169–192

4. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: Proc. 30th STOC.
(1998) 409–418

Concurrent Zero Knowledge Without Complexity Assumptions 19

5. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM
38(1) (1991) 691–729

6. Goldreich, O.: Foundations of cryptography. Volume 1. Cambridge University
Press, Cambridge, UK (2001)

7. Goldreich, O.: Zero-knowledge twenty years after its invention.
http://www.wisdom.weizmann.ac.il/∼oded/zk-tut02.html (2002)

8. Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th FOCS. (1986)
162–167

9. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attack. In: Proc. 22nd STOC. (1990) 427–437

10. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on
Computing 30(2) (2001) 391–437

11. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: Proc. 40th FOCS. (1999) 543–553

12. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of
Cryptology 1(2) (1988) 77–94

13. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Proc. CRYPTO ’98. (1998) 13–25

14. Elkind, E., Sahai, A.: A unified methodology for constructing public-key encryp-
tion schemes secure against adaptive chosen-ciphertext attack. Cryptology ePrint
Archive, Report 2002/042 (2002) http://eprint.iacr.org/.

15. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1) (2004) 167–226

16. Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statistical
zero-knowledge proof system for quasi-safe prime products. In: Proc. of the 5th
ACM Conference on Computer and Communications Security. (1998) 67–72

17. Okamoto, T.: On relationships between statistical zero-knowledge proofs. Journal
of Computer and System Sciences 60(1) (2000) 47–108

18. Goldreich, O., Sahai, A., Vadhan, S.: Honest-verifier statistical zero-knowledge
equals general statistical zero-knowledge. In: Proc. 30th STOC. (1998) 399–408

19. Vadhan, S.: An unconditional study of computational zero knowledge. In: Proc.
45th STOC. (2004) 176–185

20. Ostrovsky, R.: One-way functions, hard on average problems, and statistical zero-
knowledge proofs. In: Proceedings of the Sixth Annual Structure in Complexity
Theory Conference. (1991)

21. Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zero-
knowledge. In: Second Israel Symposium on Theory of Computing Systems. (1993)
3–17

22. Feige, U.: Alternative models for zero knowledge interactive proofs. PhD thesis,
Weizmann Institute of Science, Israel (1990)

23. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs.
In: Proc. EUROCRYPT ’99. (1999) 415–431

24. Kilian, J., Petrank, E., Rackoff, C.: Lower bounds for zero knowledge on the
Internet. In: Proc. 39th FOCS. (1998) 484–492

25. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-logarithm
rounds. In: Proc. 33rd STOC. (2001) 560–569

26. Rosen, A.: A note on the round-complexity of concurrent zero-knowledge. In: Proc.
CRYPTO ’00. (2000) 451–468

20 D. Micciancio et al.

27. Canetti, R., Kilian, J., Petrank, E., Rosen, R.: Black-box concurrent zero-
knowledge requires (almost) logarithmically many rounds. SIAM Journal on Com-
puting 32(1) (2003) 1–47

28. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: Proc. 43rd FOCS. (2002) 366–375

29. Barak, B.: How to go beyond the black-box simulation barrier. In: Proc. 42nd
FOCS. (2001) 106–115

30. Di Crescenzo, G.: Removing complexity assumptions from concurrent zero-
knowledge proofs. In: Proc. 6th COCOON. (2000) 426–435

31. Micciancio, D., Petrank, E.: Simulatable commitments and efficient concurrent
zero-knowledge. In: Proc. EUROCRYPT ’03. (2003) 140–159

32. Brassard, G., Chaum, D., Crepeau, C.: Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences 37(2) (1988) 156–189

33. Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge. Journal
of the ACM 50(2) (2003)

34. Micciancio, D., Vadhan, S.: Statistical zero-knowledge proofs with efficient provers:
lattice problems and more. In: Proc. CRYPTO ’03. (2003) 282–298

35. Bellare, M., Micali, S., Ostrovsky, R.: Perfect zero-knowledge in constant rounds.
In: Proc. 22nd STOC. (1990) 482–493

36. Itoh, T., Ohta, Y., Shizuya, H.: A language-dependent cryptographic primitive.
Journal of Cryptology 10(1) (1997) 37–49

37. Rosen, A.: The Round-Complexity of Black-Box Concurrent Zero-Knowledge. PhD
thesis, Weizmann Institute of Science, Israel (2003)

38. Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial com-
mitments with applications to zero-knowledge sets. In: Proc. EUROCRYPT ’05.
(2005) 422–439

39. Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: Proc. 44th FOCS.
(2003) 80–91

40. Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptology 4(2)
(1991) 151–158

41. Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4) (1999) 1364–1396

42. Goldreich, O., Goldwasser, S.: On the limits of nonapproximability of lattice prob-
lems. Journal of Computer and System Sciences 60(3) (2000) 540–563

43. Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM Journal on Computing 20(6) (1991) 1084–1118

44. Aharonov, D., Regev, O.: Lattice problems in NP ∩ coNP. In: Proc. 45th FOCS.
(2004) 362–371

Interactive Zero-Knowledge with Restricted
Random Oracles

Moti Yung1 and Yunlei Zhao2

1 RSA Laboratories and Department of Computer Science,
Columbia University, New York, NY, USA

moti@cs.columbia.edu
2 Software School, School of Information Science and Engineering,

Fudan University, Shanghai 200433, China
ylzhao@fudan.edu.cn

Abstract. We investigate the design and proofs of zero-knowledge (ZK)
interactive systems under what we call the “restricted random oracle
model” which restrains the usage of the oracle in the protocol design to
that of collapsing protocol rounds a la Fiat-Shamir heuristics, and limits
the oracle programmability in the security proofs. We analyze subtleties
resulting from the involvement of random oracles in the interactive set-
ting and derive our methodology. Then we investigate the Feige-Shamir
4-round ZK argument for NP in this model: First we show that a 2-
round protocol is possible for a very interesting set of languages; we then
show that while the original protocol is not concurrently secure in the
public-key model, a modified protocol in our model is, in fact, concur-
rently secure in the bare public-key model. We point at applications and
implications of this fact. Of possible independent interest is a concurrent
attack against the Feige-Shamir ZK in the public-key model (for which
it was not originally designed).

1 Introduction

The basic random oracle (RO) methodology was originally introduced in [2] as an
idealization and abstraction of the Fiat-Shamir heuristics [14] that transformsΣ-
protocols (i.e., 3-round public-coin special honest verifier zero-knowledge SHVZK
protocols) into signature schemes. The methodology was used to achieve non-
interactive schemes (signatures, public-key encryption and non-interactive zero-
knowledge NIZK). However, nowadays more and more complicated interactive
protocols are developed employing random oracle (one example is the recent
direct anonymous attestation (DAA) scheme [3] developed for industrial use).

In this work, we show that the design of interactive schemes with advanced
security notions using the normal random oracle methodology is more subtle
than is typically believed. The subtlety lies in the programmability of the RO
in security proofs. Namely, in security proofs the simulator defines output of
query values and in fact “programs” the RO on any query, in particular any
query it chooses. We further investigate the usages of RO in protocol designs.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 21–40, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

22 M. Yung and Y. Zhao

For a protocol developed in the RO model, we consider the sensitivity of the
security of the protocol when the RO is replaced (realized) by practical (hash)
functions, showing that different usages lead to different sensitivities (say, to
future cryptanalysis of the function).

We attempt to minimize the usage of the ROs both in protocol designs
and in security proofs. This is naturally desired property. In our approach we
impose the following restrictions:

– We limit the usage of ROs in security proofs by letting the honest player
and the simulator (who plays the role of the honest player) use a non-
programmable RO.

– Furthermore, the non-programmable RO could be replaced by any hash
function without compromising the security of the honest player.

– Finally, we limit the usage of ROs in protocol designs to collapsing Σ-
protocols just as in the original Fiat-Shamir methodology.

We note that on one hand, it is desirable to minimize using the truly random
function property of real hash functions in protocol designs (due to its idealized
nature and its unrealization within certain constructions, e.g., [5, 6, 22, 18, 1]).
On the other hand, we justify the original Fiat-Shamir methodology by the sim-
ple (yet, we believe important) observation that even very weak hash functions
(clearly not collision-resistant and not pseudorandom) can be used to collapse
Σ-protocols into non-interactive ones with remarkable security guarantee (not
ZK but nevertheless a useful property that can be employed).

In this work, we refer to protocols, which are developed with limiting ROs
in security proofs and protocols designs according to our approach (which we
motivate herein), as protocols with restricted ROs.

Although our approach of restricted ROs is seemingly very limiting, it turns
out to be still very powerful for achieving practical interactive cryptographic
schemes with a (seemingly) better balance between “(idealized) provable” se-
curity and implementation efficiency. In particular, we show that a ΣOR-based
practical implementation (without NP-reductions) of the Feige-Shamir 4-round
ZK arguments (the version that appears in [13]) can give us generic yet practical
2-round (that is optimal) ZK systems with restricted ROs.

We then investigate the concurrent security of the Feige-Shamir ZK protocol.
We show that (perhaps surprisingly) the Feige-Shamir ZK protocol is, in general,
not concurrently secure in public-key settings (when users possess public keys),
by identifying a concurrent attack. Though it may look quite natural to run
the Feige-Shamir ZK protocol in public-key models when it is used in practice
and perhaps to do it concurrently (even though the protocol was not designed
for concurrency), our attack shows that this intuition is wrong. Fortunately, the
Feige-Shamir ZK protocol is concurrently secure with restricted ROs in the bare
public-key (BPK) model. In this process, we also identify and clarify compli-
cations and subtleties in dealing with concurrent adversaries in the setting of
interactive zero-knowledge with restricted ROs.

We remark that the 2-round ZK systems with restricted ROs (with or without
registered public-keys) can be used to construct more complicated interactive

Interactive Zero-Knowledge with Restricted Random Oracles 23

systems with restricted ROs. It can also be used to transform a large number
of existing interactive schemes, which are developed originally with the normal
random oracle methodology, into schemes with restricted ROs, by adding at most
one additional round but with seemingly stronger security guarantees.

Finally, as part of this work, two constructions are given which are of indepen-
dent interest and may be worthy of further explorations: a one-round witness-
hiding (WH) protocol for DLP, and a concurrent attack against the Feige-Shamir
ZK when it is run in the new setting of public-key models.

2 Preliminaries

In this section we review the major cryptographic tools used, and present a key
observation on non-interactive ΣOR-protocols with ROs.

Definition 1 (Σ-protocol [7]). A 3-round public-coin protocol 〈P, V 〉 is said
to be a Σ-protocol for a relation R if the following hold:

– Completeness. If P , V follow the protocol, the verifier always accepts.
– Special soundness. From any common input x of length n and any pair of

accepting conversations on input x, (a, e, z) and (a, e′, z′) where e �= e′, one
can efficiently computes w such that (x,w) ∈ R. Here a, e, z stand for the
first, the second and the third message respectively and e is assumed to be
a string of length t (that is polynomially related to n) selected uniformly at
random in {0, 1}t.

– Special honest verifier zero-knowledge (SHVZK). There exists a probabilistic
polynomial-time (PPT) simulator S, which on input x and a random chal-
lenge string e, outputs an accepting conversation of the form (a, e, z), with
the same probability distribution as the real conversation between the honest
P , V on input x.

Σ-protocols have been proved to be a very powerful cryptographic tool and are
widely used. Many basic Σ-protocols have been developed, and the following are
Σ-protocol examples for DLP and RSA.

Σ-Protocol for DLP [24]. The following is a Σ-protocol 〈P, V 〉 proposed by
Schnorr [24] for proving the knowledge of discrete logarithm, w, for a common
input of the form (p, q, g, h) such that h = gw mod p, where on a security
parameter n, p is a uniformly selected n-bit prime such that q = (p − 1)/2 is
also a prime, g is an element in Z∗

p of order q. It is also actually the first efficient
Σ-protocol proposed in the literature.

– P chooses r at random in Zq and sends a = gr mod p to V .
– V chooses a challenge e at random in Z2t and sends it to P . Here, t is fixed

such that 2t < q.
– P sends z = r + ew mod q to V , who checks that gz = ahe mod p, that p, q

are prime and that g, h have order q, and accepts iff this is the case.

24 M. Yung and Y. Zhao

Σ-Protocol for RSA [19]. Let n be an RSA modulus and q be a prime. Assume
we are given some element y ∈ Z∗

n, and P knows an element w such that wq = y
mod n. The following protocol is a Σ-protocol for proving the knowledge of q-th
roots modulo n.

– P chooses r at random in Z∗
n and sends a = rq mod n to V .

– V chooses a challenge e at random in Z2t and sends it to P . Here, t is fixed
such that 2t < q.

– P sends z = rwe mod n to V , who checks that zq = aye mod n, that q is
a prime, that gcd(a, n) = gcd(y, n) = 1, and accepts iff this is the case.

The OR-proof of Σ-protocols [8]. One basic construction with Σ-protocols
allows a prover to show that given two inputs x0, x1, it knows a w such that
either (x0, w) ∈ R0 or (x1, w) ∈ R1, but without revealing which is the case.
Specifically, given two Σ-protocols 〈Pb, Vb〉 for Rb, b ∈ {0, 1}, with random chal-
lenges of (without loss of generality) the same length t, consider the following
protocol 〈P, V 〉, which we call ΣOR. The common input of 〈P, V 〉 is (x0, x1) and
P has a private input w such that (xb, w) ∈ Rb.

– P computes the first message ab in 〈Pb, Vb〉, using xb, w as private inputs. P
chooses e1−b at random, runs the SHVZK simulator of 〈P1−b, V1−b〉 on input
(x1−b, e1−b), and let (a1−b, e1−b, z1−b) be the output. P finally sends a0, a1
to V .

– V chooses a random t-bit string s and sends it to P .
– P sets eb = s ⊕ e1−b and computes the answer zb to challenge eb using

(xb, ab, eb, w) as input. He sends (e0, z0, e1, z1) to V .
– V checks that s = e0 ⊕ e1 and that conversations (a0, e0, zo), (a1, e1, z1) are

accepting conversations with respect to inputs x0, x1, respectively.

Theorem 1. [8] The protocol ΣOR above is a Σ-protocol for ROR, where ROR =
{((x0, x1), w)|(x0, w) ∈ R0 or (x1, w) ∈ R1}. Moreover, for any malicious veri-
fier V ∗, the probability distribution of conversations between P and V ∗, where w
is such that (xb, w) ∈ Rb, is independent of b. That is, ΣOR is perfectly witness
indistinguishable (WI).

Given access to a random oracle (RO) O, we can transform a Σ-protocol into a
non-interactive protocol, which in this work we call non-interactive Σ-protocol
in the RO model. On a common input x, an auxiliary input aux and a pri-
vate witness w, the prover then generates the first message a, queries O with
(x, a, aux) to get the challenge e and then computes the answer z. The proof is
then (a, z, aux). To verify such a proof, query O with (x, a, aux) to get e and
then run the verifier of the original Σ-protocol. The transformed non-interactive
protocol is zero-knowledge proof of knowledge in the random oracle model [2, 25].
The key observation here (which is simple yet powerful) is the following claim:

Claim 1. The non-interactive ΣOR-protocol in the RO model remains witness-
indistinguishable even if the random oracle is replaced by any real hash function.

Interactive Zero-Knowledge with Restricted Random Oracles 25

Proof. Note that the WI property of ΣOR is with respect to any malicious ver-
ifier. In particular, the WI property holds for a specific malicious verifier that
uses a real hash function to generate the challenge in Round-2.

3 Restricted ROs: Motivation and Discussions

In this section, we first provide some motivating examples along with discussions
and comments. Then, in light of the motivating examples and discussions, we
give some desirable principles for limiting the uses of ROs in security proofs and
protocol designs that are naturally derived from the motivation.

3.1 Motivating Examples and Discussions

A motivating example for limiting the uses of RO in security proofs.
Consider the following protocol depicted in Figure-1.

We note that the zero-knowledge property of the protocol of Figure-1 can be
easily shown in the normal random oracle model, where the ZK simulator sim-
ulates (programs) the RO (i.e, the simulator defines the outputs of the random
oracle on any queries, in particular any queries it chooses). The proof is omitted
here due to space limitation. But we argue that this protocol (though simulat-
able (in the programmable oracle case, which is what the proof shows) is not

Common input. An element x ∈ L of length n, where L is an NP-language that
admits Σ-protocols.

P ’s private input. A witness w for x ∈ L.
Random oracle. A random oracle denoted O.

Round-1. The verifier V selects a OWF fV that admits Σ-protocols, randomly
selects two elements in the domain of fV , x0

V and x1
V , computes y0

V = fV (x0
V)

and y1
V = fV (x1

V), randomly selects a bit b from {0, 1}, sends to the prover a
non-interactive ΣOR-proof on (y0

V , y1
V), denoted πV = (y0

V , y1
V , aV , eV , zV , auxV),

that it knows either the preimage of y0
V or the preimage of y1

V . The witness used
by V in forming πV is xb

V . The random challenge eV is generated by querying
O with (x, y0

V , y1
V , aV , auxV) where auxV is the auxiliary information of V that

possibly includes a time stamp.
Round-2. The prover P first checks the validity of πV and aborts if it is not valid.

Otherwise, P randomly select a bit b′ from {0, 1}, sends back a non-interactive
ΣOR-proof on (x, y0

V , y1
V , b′), denoted πP = (aP , eP , zP , b′), that it knows either

a witness for x ∈ L or the preimage of yb′
V . The witness used by P is its private

input w. The random challenge eP is generated by querying the random oracle
with (x, aP , b′, πV).

Verifier’s Decision. The verifier checks the validity of πP and accepts if it is valid,
otherwise it rejects.

Fig. 1. An insecure ZK protocol in the normal random oracle model

26 M. Yung and Y. Zhao

really ZK even in the random oracle model. Observe the following attack: On
an input yV ∗ that the adversary V ∗ does not know the preimage of under the
OWF fV ∗ (selected by V ∗ in Round-1), the adversary V ∗ additionally randomly
selects a x′V ∗ from the domain of fV ∗ and computes y′V ∗ = fV ∗(x′V ∗). Then, V ∗

randomly selects a bit b from {0, 1}, sets yb
V ∗ to be y′V ∗ and y1−b

V ∗ to be yV ∗ . Fi-
nally, V ∗ sends to the honest prover a non-interactive ΣOR-proof on (y0

V ∗ , y1
V ∗)

that it knows either the preimage of y0
V ∗ or the preimage y1

V ∗ by using x′V ∗ as the
witness. Then according to the perfect witness indistinguishability of Round-1,
with probability 1/2 the honest prover will select b′ = 1 − b in Round-2. That
is, with probability 1/2 V ∗ will get a non-interactive ΣOR-proof for showing the
knowledge of either the witness for x ∈ L or the preimage of y1−b

V ∗ = yV ∗ , a
knowledge of such a witness cannot be generated by V ∗ alone without interact-
ing with P . In other words, the honest prover divulges (seemingly significantly)
valuable “knowledge” to the above malicious verifier.

Note that the above protocol is a very simple interactive protocol in the
random oracle model, and so we can easily identify the above simple attack.
When we construct much more complicated interactive schemes in the random
oracle model, the security analyses might be much more complicated and subtle.
In light of the above attack, we believe that for interactive protocols in the
random oracle model, letting the ZK simulator define the random outputs of
the random oracle on queries it chooses may be too artificial to reflect the real
power of the malicious verifier even in the random oracle model.

According to the above arguments, for proving the security of interactive pro-
tocols in the random oracle model we should restrict the power of the simulator
in defining the random outputs of the random oracle. Also note that in a much
more complicated interactive scheme in the random oracle model, where both the
prover and the verifier prove using the non-interactive Σ-protocols, the provers
may actually be the verifier of the high-level complicated interactive protocol.

Comment. Note that it is easy to check that the protocol depicted in Figure-1
is not zero-knowledge if the simulator (who plays the role of the honest prover)
uses a non-programmable random oracle.

Motivating examples for limiting the uses of RO in protocol designs
Random oracles have been employed in many ways. Consider, for example, the
following commitment scheme in the random oracle model employed in [23]:
To commit to a message m, the commitment sender randomly picks a random
string r and sends RO(x, r). The security (both binding and hiding) can be
easily checked in the random oracle model. But in practice when the random
oracle RO is replaced by real practical hash functions, the security properties of
this commitment scheme are (critically) sensitive to the realization. The zero-
knowledge protocol with ROs developed in [23] critically uses the above com-
mitment scheme. This means that for a large complicated cryptographic system
built with the ZK protocol of [23] as a building block, the security of the whole
system will also be (critically) dependent on the assumed random-function prop-
erty of the underlying hash functions. This means it will be critically sensitive to

Interactive Zero-Knowledge with Restricted Random Oracles 27

the realizations of the underlying practical hash functions used, which we would
like to avoid in certain critical settings (e.g., if the realization is cryptanalyzed
in the future and the binding property is lost, say).

So, what uses of random oracle are less sensitive to the case that the hash func-
tion realizing it is cryptanalyzed (perhaps in the future)? We justify the original
Fiat-Shamir methodology by showing that even very weak hash functions can
be used to collapse Σ-protocols into non-interactive ones with remarkable secu-
rity guarantee. Consider the following one-round witness hiding (WH) protocol
〈P, V 〉 for DLP.

Common input. (p, q, g, h), where on a security parameter n, p is a uniformly
selected n-bit prime such that q = (p − 1)/2 is also a prime, g and h are
elements in Z∗

p of order q.
P’s private input. w such that h = gw mod p.
The protocol. P chooses r at random in Zq, computes a = gr mod p. If a

is an even number then let e = 1
2a mod p and if a is an odd number then

let e = 1
2 (a − 1) mod p (this guarantees that e ∈ Zq). Then P computes

z = r + ew mod p. Finally P sends (a, z) to V .
V ’s decision. V computes e from a and checks that gz = ahe mod p, that p, q

are prime and that g, h, a have order q, and accepts iff this is the case.

The above protocol can be viewed as the non-interactive version of Schnorr’s
Σ-protocol for DLP [24] when the random oracle is replaced by the following hash
function H : for any strings x, y in {0, 1}∗ and e ∈ Zq, H(xe0) = H(ye1) = e.
Clearly this hash function is not collision-resistant and not pseudorandom. But
this extremely weak hash function still provides remarkable security guarantee
for the above transformed non-interactive protocol.

We first note that under the DLP hardness assumption, the above non-
interactive protocol is witness hiding (WH) for DLP. Specifically, suppose with
non-negligible probability a PPT adversary can produce w from (a, z), then the
adversary can also compute logg(a) for a random a in Z∗

p of order q, which
violates the DLP hardness assumption.

Now, we consider the soundness. We want to argue that if a malicious prover
P ∗ does not know w, then it should not give the correct pair (a, z) such that
gz = ah

1
2 a for even a, or gz = ah

1
2 (a−1) for odd a. Suppose P ∗ does not know

w but can successfully produce (a, z), then it must be the case that a is a
hard instance of DLP and P ∗ does not know logg(a) (since otherwise P ∗ can
compute w from logg a), which seems infeasible. In particular, based on the
following specifically tailored but seemingly hard (and reasonable) assumption
the soundness of the above non-interactive protocol holds. (Note that the WH
property does not rely on the new assumption.)

Hardness assumption. Given (p, q, g, h) of the above form, no PPT algorithm
A can with non-negligible probability produce a pair (a, z) such that gz = ah

1
2 a

for even a or gz = ah
1
2 (a−1) for odd a, where a ∈ Z∗

p of order q and z ∈ Zq. (Note
that this assumption implies that a is a hard instance of Z∗

p and the producer A
itself also does not know logg a.)

28 M. Yung and Y. Zhao

Summary. For the security of cryptographic schemes proved with ROs, what
may be lost in real world when ROs are replaced by real practical hash functions?
The above motivating examples and discussions show that it depends on both,
the uses of ROs in security proofs and the uses of ROs in protocol design.

3.2 Principles for Restricting Uses of ROs in Security Proofs and
Protocol Designs

In light of the above motivating examples and discussions, we introduce restric-
tions on uses of RO in interactive protocols. We describe the principles in the
two-party case, but extensions to the multi-party case are immediate. For a two-
party interactive scheme (with restricted ROs), there are two random oracles:
OP for the prover and OV for the verifier. The uses of the ROs in security proofs
and protocol design are limited in the following way:

1. For proving prover’s security properties (i.e., zero-knowledge), the random
oracle OP used by the simulator (which plays the role of the honest prover) is
non-programmable (and the adversary can access OP for verifying messages).
The random oracle OV∗ used by the adversary V ∗ (malicious verifiers) is pro-
grammable (and the simulator can access OV∗ for verifying messages). Simi-
larly, for proving verifier’s security properties (i.e., soundness), the simulator
(playing the role of the honest verifier) uses the non-programmable random
oracle OV . The adversary P ∗ (malicious provers) uses a programmable RO
OP∗ . Note that this essentially requires that in security proofs the simulator
can only define the outputs of the programmable random oracle on queries
made by the adversary in question.

2. Furthermore, the non-programmable random oracles, OP and OV , can be
replaced by any real (i.e., hash) function without compromising the security
of the honest players P and V respectively. This requirement essentially
says that the restricted random oracle model could be viewed as a “hybrid”
between the normal random oracle model and the standard model with real
(hash) functions, in the sense that the malicious player still lives in the
idealized random oracle world but the honest player could live in real hash
function world. In other words, if you are honest (e.g. a trusted authority)
then you could use any real hash function in generating messages from you
without compromising your security. Note that, in practice many interactive
schemes in the random oracle model (e.g. the DAA protocol of [3]) involve
(possibly quite complicated) interactive setup/join protocols between users
and a trusted authority.

3. As in the original Fiat-Shamir methodology, the random oracles are used only
to collapse Σ-protocols into non-interactive ones. This requirement reduces
the dependency of the security of the protocol upon the idealized random
function property of the realizations of the ROs (e.g., it is not used as a long
term commitment, which is naturally desirable in certain critical settings as
discussed above).

Interactive Zero-Knowledge with Restricted Random Oracles 29

In the rest of this work, we refer to protocols which are developed with limiting
the uses of ROs according to the above principles as protocols with restricted
ROs.

Remark. In the above description, we only give the general principles of lim-
iting the uses of ROs. When it comes to formally and exactly defining certain
cryptographic primitives (e.g., ZK) with restricted ROs, we need to formally
specify (and embed) the above general principles in the specific cryptographic
primitives. In particular, the next section provides the formal definition of ZK
with restricted ROs.

Comparisons with the work of [23]. We have noted recently the related
work of Pass [23] who nicely treats the issue of deniability. [23] observed that
non-interactive zero-knowledge in the random oracle model [2] does not preserve
deniability and presented a new definition of ZK, named deniable ZK, in the RO
model, and constructed a 2-round deniable zero-knowledge protocol from any
Σ-protocol.

The approach taken by Pass in [23] for defining and constructing deniable ZK
with ROs amounts to the following non-programmable random oracle methodol-
ogy: all players (including the ZK simulator) access a unique non-programmable
random oracle. The non-programmable RO methodology is also investigated by
Nielsen in the non-committing encryption setting [22]. Below, we provide detailed
comparisons between our approach and Pass’s non-programmable random ora-
cle methodology. We believe we have some noticeable advantages, though one
should welcome various methodologies in this subtle area.

– In Pass’s approach, all players access a unique non-programmable RO. But in
our approach, there are a pair of ROs: one is non-programmable RO through
which messages from the honest player and the simulator (who plays the
role of the honest prover) are generated; and one is a programmable RO
through which the messages from the adversary in question are generated.
Furthermore, the non-programmable RO could be replaced by any real hash
function without compromising the honest player’s security, a property we
do not know how to achieve with Pass’s approach.

– We attempted to develop efficient protocols for important cryptographic lan-
guages (e.g., DLP and RSA); the efficient protocols are a central reason for
which we employ the random oracle idealization, to start with. Solutions for
ZK protocols with Pass’s approach seems intrinsically inefficient, due to the
cut-and-choose technique used, which leads to blow-ups in both computa-
tional complexity and communication complexity. Specifically, if the 2-round
ZK protocol of [23] is from Schnorr’s Σ-protocol for DLP, then on a secu-
rity parameter n the prover needs to perform 8n modular exponentiations
and the verifier needs to perform 10n exponentiations. For communication
complexity, there are about 12n2 bits exchanged in total. This inefficiency
may violate the spirit of RO protocols as was noted by Pass, who, in fact,
suggested as an urgent open problem to find more efficient constructions
of zero-knowledge with ROs with the approach. In comparison, our schemes

30 M. Yung and Y. Zhao

are generic yet practical solutions with restricted ROs and go through only 9
modular exponentiations at each player’s side in the BPK model (in the plain
model the verifier needs 11 exponentiations), with the DLP as an example.

– In our approach, we further restrict the uses of ROs in protocol designs
by limiting the uses of ROs only to collapsing Σ-protocols, while Pass’s
approach does not. In fact, the ZK protocol with ROs developed in [23] crit-
ically uses the commitment scheme c = RO(m, r). This by itself seems fine,
but there is the concern (since we deal with realized idealized objects) that
a realization can be broken implying weakened commitment which reveals
knowledge. We attempt a design where security properties (WI) for honest
parties remain intact even if the realization turns out to be weak.

4 Generic Yet Practical Round-Optimal Zero-Knowledge
with Restricted ROs

Here, we provide the definition of ZK with restricted ROs, show its round-
complexity lower-bound, and then present a generic yet practical round-optimal
zero-knowledge argument with restricted ROs for any NP-language that ad-
mits Σ-protocols (which includes many important languages most relevant to
cryptography).

Definition 2 (zero-knowledge argument with restricted ROs). A pair
of interactive machines, 〈P, V 〉, is called a zero-knowledge argument with re-
stricted ROs for a language L ∈ NP (with NP-relation RL), if both machines
are polynomial-time and the following conditions hold:

Completeness. For any x ∈ L and its NP-witness w, and any auxiliary input
auxV ∈ {0, 1}∗, it holds that

Pr[〈P (OP ,OV)(w), V (OV ,OP)(auxV)〉(x) = 1] = 1

where OP and OV are two random variables uniformly distributed in
{0, 1}poly(|x|) → {0, 1}poly(|x|). The random oracles OP and OV are used
in the following way: random oracles are used only to collapse Σ-protocols
(namely, deriving the challenges in such protocols and running them non-
interactively), where each player only access its designated random oracle
for generating messages from it (and the second random oracle is only ac-
cessed for verifying messages from its counterpart).

Computational soundness. For any x �∈ L, any PPT interactive machine P ∗,
and any auxiliary input auxP ∗ ∈ {0, 1}∗ and auxV ∈ {0, 1}∗, it holds that:

Pr[〈P ∗(OP∗ ,OV)(auxP ∗), V (OV ,OP∗)(auxV)〉(x) = 1] ≤ ε(|x|)

where ε(·) is a negligible function, and OP ∗ and OV are random variables uni-
formly distributed in {0, 1}poly(|x|) → {0, 1}poly(|x|). Furthermore, the sound-
ness condition holds even if OV is arbitrarily (rather than uniformly) dis-
tributed from {0, 1}poly(|x|) → {0, 1}poly(|x|) (i.e., OV can be any function).

Interactive Zero-Knowledge with Restricted Random Oracles 31

(Black-box) zero-knowledge. There exists an expected polynomial-time sim-
ulator S such that for every PPT verifier V ∗, any auxV ∗ ∈ {0, 1}∗, any
sufficiently long x ∈ L, the following two ensembles are computationally in-
distinguishable (where the distinguishing gap is a function in |x|):

– {(OV ∗ ,OP , view
P (OP ,OV ∗)(w)
V ∗(OV ∗ ,OP)(auxV ∗)

(x))}x∈L,auxV ∗∈{0,1}∗ for arbitrary w

such that (x,w) ∈ RL.
– {(OP , S

OP (x, auxV ∗))}x∈L,auxV ∗∈{0,1}∗

where OP andOV ∗ are random variables uniformly distributed in {0, 1}poly(|x|)

→ {0, 1}poly(|x|), and viewP (OP ,OV ∗)(w)
V ∗(OV ∗ ,OP)(auxV ∗)

(x) is a random variable describ-
ing V ∗’s state and all messages exchanged during a joint computation between
P and V ∗ on common input x when P has w as its auxiliary input and accesses
(OP ,OV ∗), and V has auxV ∗ as its auxiliary input and accesses (OV ∗ ,OP).
Furthermore, the zero-knowledge condition holds even when OP is taken ar-
bitrarily (rather than uniformly) from {0, 1}poly(|x|) → {0, 1}poly(|x|) (i.e., OP

can be any function).

Comment. Note that in the definition of (black-box) ZK with restricted ROs,
the RO OP is given (pre-specified) in the above two probability ensembles, which
means that S cannot “program” OP . But, for the RO OV ∗ , S is allowed to
“program” and output a “simulation” of OV ∗ in its simulation. Note that the
random oracle is actually an infinite object, S thus, for this purpose, has a
special fill out function. We refer the reader to [2] for a more formal treatment
of “programming” ROs.
We next show, by the Goldreich-Krawczyk technique [17], the impossibility of
non-interactive black-box zero-knowledge arguments with restricted ROs for
non-trivial languages. Specifically, we give the following proposition (whose proof
is omitted here due to space limitation):

Proposition 1. Suppose an NP-language L admits a one-round black-box zero-
knowledge argument with restricted ROs, then L ∈ BPP.

Finally, we show that a protocol based on the Feige-Shamir 4-round ZK argument
for NP renders a generic yet practical 2-round (i.e., optimal) ZK argument
with restricted ROs for any language that admits Σ-protocols. The protocol is
depicted in Figure-2.

Comment. At a high level, the protocol depicted in Figure-2 can be viewed
as a ΣOR-based implementation of the Feige-Shamir 4-round ZK arguments for
NP (the version appearing in [13]) in the RO model. The construction of [13] is
a plausible NP-solution and goes through general (inefficient) NP-reductions,
whereas here (for this section) we emphasize the fact that the protocol works
directly for any language that admits Σ-protocols (a large set that includes, in
particular, both DLP and RSA). If the underlying Σ-protocols for the language
are practical, then the transformed protocols are also practical. With Σ-protocol
for DLP as an example, our scheme goes through 9 modular exponentiations at
the prover side and 11 exponentiations at the verifier side.

32 M. Yung and Y. Zhao

Common input. An element x ∈ L of length n, where L is an NP-language that
admits Σ-protocols.

P ’s private input. A witness w for x ∈ L.
Random oracles. There are two random oracles OP and OV : OP is used by the

prover for generating non-interactive Σ-proofs and OV is used by the verifier for
generating non-interactive Σ-proofs.

Round-1. The verifier V selects a OWF fV that admits Σ-protocols, randomly
selects two elements in the domain of fV , x0

V and x1
V , computes y0

V = fV (x0
V)

and y1
V = fV (x1

V), randomly selects a bit b from {0, 1}, sends to the prover a
non-interactive ΣOR-proof on (y0

V , y1
V), denoted πV = (y0

V , y1
V , aV , eV , zV , auxV),

that it knows either the preimage of y0
V or the preimage of y1

V . The witness used
by V in forming πV is xb

V . The random challenge eV is generated by querying
OV with (x, y0

V , y1
V , aV , auxV), where auxV is the auxiliary information of V

that possibly includes a time-stamp.
Round-2. The prover P first checks the validity of πV and aborts if it is not valid.

Otherwise, P sends back a non-interactive ΣOR-proof on (x, y0
V , y1

V), denoted
πP = (aP , eP , zP), that it knows either the witness for x ∈ L or the preimage of
either y0

V or y1
V . The witness used by P is its private input (i.e., the NP-witness

w). The random challenge eP is generated by querying OP with (x, aP , πV).
Verifier’s Decision. The verifier checks the validity of πP and accepts if it is valid,

otherwise it rejects.

Fig. 2. The generic yet practical 2-round ZK arguments with restricted ROs

Theorem 2. Let fV be any one-way function that admits Σ-protocol and L be a
language that admits Σ-protocols, the protocol depicted in Figure-2 is a 2-round
ZK argument with restricted ROs for L.

Proof (sketch). Intuitively, P proves x ∈ L only after it is convinced that the
verifier does know the preimage of either y0

V or y1
V (this means that the verifier

can also generate the second-round message by itself), so the ZK property of the
protocol should hold. In more details, for a malicious verifier V ∗ who accesses the
programmable random oracle OV∗ , the zero-knowledge simulator S first extracts
xb

V ∗ (the witness used by V ∗ in generating the Round-1 message) by redefining the
random oracle OV∗ on queries made by V ∗, then using xb

V ∗ as the witness S gen-
erates a simulated Round-2 message through its fixed random oracle OP . By the
perfect WI property of Round-2, the simulated transcript is indistinguishable from
the real transcript. Furthermore, since in security proof we only need the WI prop-
erty of the non-interactiveΣOR-protocol of Round-2, the fixed random oracle OP
can be replaced by any real function, as the WI property of Round-2 does hold with
respect to any function (see Claim 1). That is, the honest prover’s security (i.e.,
ZK) holds even when the honest prover uses any real function (say cryptographic
hash based one) in generating non-interactive ΣOR-protocols (of Round-2).

For proving soundness, however, one may argue that seeing the ΣOR-proof πV

sent by the honest verifier in Round-1 (which could be generated through any
real function) may help a malicious prover P ∗ to give a false ΣOR-proof πP ∗ in
Round-2. What save us here are the key-pair technique (originally introduced

Interactive Zero-Knowledge with Restricted Random Oracles 33

in the Public-Key Encryption setting by Naor and Yung [21]) and the witness
indistinguishability of the ΣOR-proof even with real functions. In more details,
suppose a malicious prover P ∗ can successfully convince of a false statement
x �∈ L with a non-negligible probability, then we show a PPT algorithm E that
will break the one-wayness of fV . Specifically, on an input yV E runs P ∗ as a
subroutine and works as follows: E randomly selects x′V from the domain of fV ,
computes y′V = fV (x′V). Then, E randomly selects a bit b from {0, 1}, sets yb

V be
y′V and y1−b

V be the input yV . Finally, by using x′V as the witness E sends to P ∗

the Round-1 message (generated through the fixed random oracle OV), claiming
that it knows the preimage of either y0

V or y1
V . After receiving a successful Round-

2 message from P ∗ that is generated through the programmable RO OP ∗ , by
rewinding P ∗ and redefining OP∗ E will extract a preimage of either y0

V or y1
V (as

we assume x �∈ L). Then by the perfect WI property of Round-1, with probability
1/2 (conditioned on P ∗ successfully giving the Round-2 message), the extracted
value will be the preimage of y1−b

V = yV , which violates the one-wayness of fV .
Again, in the above security analysis, we only need the WI property of the non-
interactive ΣOR of Round-1, and so the fixed random oracle OV can be replaced
by any real function. That is, the honest verifier’s security (i.e., soundness) holds
even when the honest verifier uses any function in generating the non-interactive
ΣOR-protocols of Round-1.

5 Concurrent Security of the Feige-Shamir ZK with
Registered Public-Keys and with Restricted ROs

Dealing with concurrent adversaries in the interactive random oracle model turns
out to be much more complicated and subtle. The reason is that for messages
sent by an adversary we need to rewind the adversary and redefine the outputs
of the programmable random oracles to extract the witnesses used by the adver-
sary. But for a concurrent adversary, it can make both concurrent interleaving
interactions with the honest player instances and concurrent interleaving oracle
queries (across multiple existing sessions). We thus risk an exponential blow-
up when tracking back through the interleaving interactions or the interleaving
oracle queries across multiple sessions, in the sense that previous simulation ef-
forts (interaction rewinding-s or random oracle redefining-s) will become void.
This phenomenon is first observed by Dwork, Naor and Sahai [12] for inter-
active protocols in the standard model in dealing with adversaries that make
concurrent interleaving interactions with honest player instances, and observed
also by Shoup and Gennaro [25] for non-interactive schemes in the random or-
acle model in dealing with adversaries that make concurrent interleaving oracle
queries across multiple sessions in the context of threshold decryption.

To avoid the exponential blow-up in dealing with concurrent adversaries, sev-
eral computational models have been proposed: the timing model [12, 16], the
preprocessing model [10], the common reference string model [9], and the bare
public-key model [4].

34 M. Yung and Y. Zhao

The bare public-key (BPK) model was introduced by Canetti, Goldreich,
Goldwasser and Micali [4] to achieve round-efficient resettable zero-knowledge
(rZK) that is a generalization and strengthening of the notion of concurrent
zero-knowledge [12]. A protocol in the BPK model simply assumes that all ver-
ifiers have deposited a public key in a public file before any interaction takes
place among the users1. to all users at all times. Note that an adversary may de-
posit many (possibly invalid or fake) public keys in it, particularly, without even
knowing corresponding secret keys or whether such exist. That is, no trusted
third party is assumed in the BPK model. What is essentially guaranteed by
the BPK model is only a limitation on the number of different identities that
a potential adversary may assume and there are no other assurances. The ad-
versary, in turn, may try to impersonate any user registered in the public-file,
but it cannot act on behalf of a non-registered user. The BPK model is thus
very simple, and it is, in fact, a weaker version of the frequently used public-key
infrastructure (PKI) model (recall that PKI underlies any public-key cryptosys-
tem or any digital signature scheme). Despite its apparent simplicity, the BPK
model turns out to be quite powerful in dealing with concurrent adversaries and
stronger resetting adversaries.

Soundness in public-key models is more subtle than in the standard model
[20]. In public-key models, a verifier V has a secret key SK, corresponding to its
public-key PK. A malicious prover P ∗ could potentially gain some knowledge
about SK from an interaction with the verifier. This gained knowledge may help
him to convince the verifier of a false theorem in another interaction. Micali and
Reyzin [20] showed that under standard intractability assumptions there are
four distinct meaningful notions of soundness, i.e., from weaker to stronger, one-
time, sequential, concurrent and resettable soundness. In this paper we focus on
concurrent soundness which roughly means, for zero-knowledge protocols, that
a malicious prover P ∗ cannot convince the honest verifier V of a false statement
even when P ∗ is allowed multiple interleaving interactions with V .

Due to space limitation, the definitions of concurrent ZK and concurrent
soundness in the BPK model with restricted ROs are omitted here, and will be
presented in the full version of this work.

5.1 The Feige-Shamir ZK Protocol Is Not Secure in the Public-Key
Setting

Next we show that the Feige-Shamir ZK protocol [13] is, in general, not con-
currently secure in the public setting (indeed it was not designed for that more
modern setting). Specifically, we show a concurrent attack against the ΣOR-
based implementation of the Feige-Shamir ZK protocol in the public-key setting
(which may be of independent interest).

Consider the version of the protocol depicted in Figure-2 when the pair
(y0

V , y
1
V) is published as the verifier’s public-key (i.e., fixed once and for all ses-

sions) and ROs are removed (i.e., random challenges eV and eP are not obtained

1 The BPK model does allow dynamic key registrations (see [4]).

Interactive Zero-Knowledge with Restricted Random Oracles 35

any longer by querying the ROs, but sent by the prover and the verifier re-
spectively). We remark that, at a first glance, it is quite natural for the verifier
to publish (y0

V , y
1
V) as its public-key when the Feige-Shamir ZK protocol (es-

pecially its ΣOR-based implementation) is used in practice. But, the following
attack shows that this intuition is wrong.

Let L (wlog, the NP-complete language Directed Hamiltonian Cycle DHC)
be a language that admits Σ-protocols. We show how a malicious prover P ∗

can convince an honest verifier V (with public-key (y0
V , y

1
V)) of a false statement

“x ∈ L” while x �∈ L, by concurrently interacting two sessions with V . The
message schedule of P ∗ in the two sessions is specified as follows.

1. P ∗ interacts with V in the first session and works just as the honest prover
does in Phase-1. When P ∗ moves into Phase-2 of the first session and needs
to send V the first-round message, denoted by aP , of the ΣOR-protocol of
Phase-2 of this session on common input (x, y0

V , y
1
V), P ∗ suspends the first

session and does the following:
– It first runs the SHVZK simulator (of the underlying Σ-protocol for L)

on x to get a simulated conversation, denoted by (ax, ex, zx), for the false
statement “x ∈ L”.

– Then, P ∗ initiates a second session with V ; After receiving the first-
round message, denoted by a′V , of the ΣOR-protocol of Phase-1 of the
second session on common input (y0

V , y
1
V) (i.e., V ’s public-key) , P ∗ sets

aP = (ax, a
′
V) and suspends the second session.

2. Now, P ∗ continues the execution of the first session, and sends aP = (ax, a
′
V)

to V as the first-round message of the ΣOR-protocol of Phase-2 of the first
session.

3. P ∗ Runs V further in the first session. After receiving the second-round
message of Phase-2 of the first session, denoted by eP (i.e., the random
challenge from V), P ∗ sets e′V = eP ⊕ ex and suspends the first session
again.

4. P ∗ continues the execution of the second session, and sends e′V = eP ⊕ ex to
V as its random challenge in the second-round of the ΣOR-protocol of Phase-
1 of the second session. After receiving the third-round message of Phase-1
of the second session, denoted by z′V , P ∗ sets zP = ((ex, zx), (e′V , z

′
V)) and

suspends the second session again.
5. P ∗ continues the execution of the first session again, sending the value zP =

((ex, zx), (e′V , z
′
V)) to V as the last-round message of the first session.

Note that (ax, ex, zx) is an accepting conversation for showing “x ∈ L”,
(a′V , e

′
V , z

′
V) is an accepting conversation for showing the knowledge of the preim-

age of either y0
V or y1

V , and furthermore eP = ex ⊕ e′V . According to the descrip-
tion of ΣOR (presented in Section 2), this means that, from the viewpoint of
V , (aP , eP , zP) is an accepting conversation on common input (x, y0

V , y
1
V) of the

ΣOR-protocol of Phase-2 of the first-session, and thus P ∗ successfully convinced
V of a false statement in the first session. We remark that, in general, the above
attack also enables P ∗ to convince V of a true statement x ∈ L without knowing
any NP-witness for x ∈ L.

36 M. Yung and Y. Zhao

5.2 The Feige-Shamir ZK Is Concurrently Secure in the BPK
Model with Restricted ROs

As shown, the Feige-Shamir ZK is not concurrently secure in public-key model,
but we next show that it is still concurrently secure in the BPK model with
restricted ROs (which may make it useful in certain applications which it was
not originally designed for).

Specifically, consider the following modified version of the protocol depicted in
Figure-2 in the BPK model: there is a key generation phase before any interaction
takes place among the users, in which each verifier Vi registers (y0

Vi
, y1

Vi
) in a

public-key file F , where y0
Vi

= fVi(x0
Vi

), y1
Vi

= fVi(x1
Vi

) and fVi is a OWF that
admits Σ-protocols. For a bit b randomly chosen from {0, 1}, Vi keeps xb

Vi
in

secret as its secret-key while discarding x(1−b)
Vi

. Then in Round-1 of the modified
protocol, by using xb

Vi
as the witness, Vi sends a non-interactive ΣOR-proof that

it knows the preimage of either y0
Vi

or y1
Vi

. Round-2 remains unchanged.

Theorem 3. Under any one-way functions that admit Σ-protocols, the above
modified protocol is a generic yet practical 2-round concurrently sound concurrent
ZK argument with restricted ROs in the BPK model for any language that admits
Σ-protocols.

Below, we present the high-level proof overview of Theorem 3 and identify some
complications and subtleties of dealing with concurrent adversaries for interac-
tive schemes with ROs.

The simulation procedure for concurrent zero-knowledge is similar to the sim-
ulation procedure for resettable zero-knowledge presented in [4]. Specifically, for
any concurrent adversary V ∗ that has as its output a public-key file of the form
F = {(y0

V ∗
1
, y1

V ∗
1
), (y0

V ∗
2
, y1

V ∗
2
), · · · , (y0

V ∗
q
, y1

V ∗
q
)}, the zero-knowledge simulator S

runs V ∗ as a subroutine and works in at most q + 1 phases. In each phase,
S either successfully gets a simulated transcript or “breaks” a new public-key
(y0

V ∗
i
, y1

V ∗
i
), 1 ≤ i ≤ q, in the sense that S can extract the corresponding secret-

key xb
V ∗

i
. In this process, we identify that dealing with concurrent adversaries

for interactive schemes in the random oracle model actually amounts to dealing
with resetting adversaries in the standard model. Specifically, in dealing with
these resetting adversaries for proving resettable zero-knowledge in the standard
model for the sake of extracting the witness used by a malicious resetting verifier
in one session (for facilitating the successful simulation), we normally need to
rewind the adversary and change the random challenge that has been sent with
respect to some message of that session (e.g. the first message of a Σ-protocol),
and give back, in turn, a different random challenge. But, the random challenge
to be changed in that session may have been “defined” in a previous session, we
may thus need to rewind the adversary in a previous session in which the ran-
dom challenge is defined for the first time. Similarly, in dealing with concurrent
adversaries for proving concurrent zero-knowledge in the random oracle model,
to extract the witness used by the adversary in forming the Round-1 message in
one session, we need to redefine the random output of the programmable ran-
dom oracle. But the random output of the programmable random oracle used in

Interactive Zero-Knowledge with Restricted Random Oracles 37

that session may be obtained by the adversary by querying the random oracle
in a previous session, and thus we need to rewind the adversary in the previous
session where it made the oracle query in question for the first time. We remark
that in the proof of concurrent ZK we only need the WI property of the non-
interactive ΣOR-proofs (of Round-2) generated through the non-programmable
RO OP (that does hold even when OP is replaced by any function of a proper
size). This means that the honest prover’s security (i.e., concurrent ZK) holds
even when the honest prover uses any function in generating the non-interactive
ΣOR-protocols of Round-2.

For concurrent soundness, assume a PPT q-concurrent adversary P ∗ can suc-
cessfully convince V with public-key (y0

V , y
1
V) of a false statement with non-

negligible probability p in one of the q concurrent sessions, then we will construct
an algorithm E that on an input y in the range of fV outputs the preimage of y
with non-negligible probability p2

2q in expected polynomial-time, which violates
the one-wayness of fV .

Algorithm E on an input y, first randomly selects an element x′ in the domain
of fV , computes y′ = fV (x′), randomly selects a bit b from {0, 1}, sets yb be y′

and y1−b be y, publishes (y0, y1) as its public-key while keeping x′ privately as
the corresponding secret-key. Then, E randomly chooses i from {1, 2, · · · , q},
and runs P ∗ by playing the role of the honest verifier (with (y0, y1) as its public-
key and x′ as its secret-key) in any session other than the i-th session. In the
i-th session on a common input xi, suppose P ∗ successfully gives a Round-2
message, denoted by (a(i)

P ∗ , e
(i)
P ∗ , z

(i)
P ∗), with respect to a Round-1 message, denoted

by π(i)
V , sent by E in the first-round of the i-th session, where e(i)P ∗ is the random

oracle answer given by E to P ∗ on a query of the form (xi, aP ∗ , π
(i)
V) to the

programmable random oracle OP∗ . Then E rewinds P ∗ to the point that P ∗

just made the oracle query (xi, aP ∗ , π
(i)
V), gives back a new random oracle answer

e
(i)′
P ∗ and runs P ∗ from the above rewinding point and on. We stress that in the

above process all Round-1 messages from E to P ∗ are generated through the
fixed random oracle OV .

Since we assume that P ∗ can, with probability p, convince V of a false state-
ment in one of the q concurrent sessions, then conditioned onE correctly guessing
the value i, it is easy to see that with probability p2 E will extract an NP-witness
for xi ∈ L or a preimage of either y0 or y1, which is guaranteed by the special
soundness of the ΣOR protocol. Since we further assume that xi �∈ L and E

randomly guesses i from {1, · · · , q}, we conclude that with probability p2

q E will
output the preimage of either y0 or y1. Furthermore, according to the perfect
WI property of ΣOR-protocol, we know that with probability p2

2q E will output
a preimage of y = y1−b, which violates the one-wayness of fV . Note that in
the above proof we only need the WI property of the non-interactive Σ-proofs
(of Round-1) generated through the non-programmable RO OV (that does hold
even when OV is replaced by any properly sized function), which means that
the honest verifier’s security (i.e., concurrent soundness) holds even for this type
of OV .

38 M. Yung and Y. Zhao

Comment. At a first glance, it seems that the above proof procedure for con-
current soundness can also be applicable to the Feige-Shamir ZK protocol in
the public-key model without ROs (that is however, as we have shown, not con-
currently secure). This subtle point needs further elaboration: The WI property
is only guaranteed to be concurrently composable when the same protocol is
composed concurrently. But in our case, the concurrent adversary P ∗ actually
also runs WI protocols to V (or E) with the player role reversed with respect to
the WI protocols from V (or E) to P ∗ . In general, in this case the concurrent
WI property of the ΣOR-protocols from V (or E) to P ∗ is not guaranteed. This
is also the very reason why the Feige-Shamir ZK protocol is not concurrently
secure in the public-key model without ROs, as shown by our concurrent attack.
In contrast, in the (ΣOR-based implementation of) Feige-Shamir ZK protocol
in the BPK model with restricted ROs, the important fact is that we are, both,
working in the random oracle model and the WI (i.e., ΣOR) protocols are non-
interactive. In more details, suppose in this case the preimage extracted by E
is dependent on the witness used by E, then we can show a PPT algorithm E′

that violates the WI property of non-interactive ΣOR-protocols as follows. For a
PPT concurrent adversary P ∗ and the honest verifier V with public-key (y0, y1)
who actually is a non-interactive ΣOR-prover on (y0, y1) with random challenges
generated through the fixed random oracle OV , E′ runs P ∗ as a subroutine and
interacts with V . E′ works just as E does but with the following modifications:
Whenever E′ needs to send a non-interactive ΣOR-proof in Round-1 of a ses-
sion, E′ just interacts with V to get such a proof and sends it to P ∗. Note
that E′ never redefines the fixed random oracle OV . Clearly, E′ can violate the
WI property of the non-interactive ΣOR-proofs received from V if the extracted
preimage (from P ∗) is dependent on the witness used by V .

6 A Note on the Applications of the 2-Round ZK with
Restricted ROs

The notion of zero-knowledge plays a central role in modern cryptography and
we are now at the point where more and more complicated interactive schemes
with random oracle methodologies are under development (including ones for
industrial use). Thus, we expect that the generic yet practical 2-round ZK pro-
tocols with restricted ROs (with or without registered public-keys) can be used
as a building block in constructing more complicated interactive schemes prov-
ably secure with restricted ROs.

In particular, we note that the 2-round ZK protocols with restricted ROs
can be used to transform a large number of (but not necessarily all) interactive
schemes (and non-interactive systems with interactive setup/join protocols like
PKI, group signatures or e-cash) developed originally in the normal random ora-
cle model, which use the random oracle only to collapseΣ-protocols, into schemes
with provable security using restricted ROs, paying in efficiency at most one ex-
tra round, but with seemingly more sound provable security guarantees. The
idea is to replace each non-interactive NIZK in the original interactive scheme

Interactive Zero-Knowledge with Restricted Random Oracles 39

(developed in the normal interactive RO model) by our 2-round ZK protocols
with restricted ROs. The key observation here is that all 2-round ZK protocols
with one party playing the role of the prover can share the same Round-1 non-
interactive ΣOR-protocol sent by its counterpart. This way, the non-interactive
nature of the NIZK-protocols in the original interactive systems can be preserved
at the price of at most one additional initiating round on top of the protocol.
This general transformation, along with detailed discussions, will be presented
in the full version of this work.

Acknowledgments. We are grateful to Yehuda Lindell for referring us to [13]
and for valuable discussions and suggestions. We thank the anonymous referees
of TCC’06 for valuable and detailed comments and suggestions.

References

1. M. Bellare, A. Boldyreva and A. Palacio. An Uninstantiable Random-Oracle-Model
Scheme for a Hybrid-Encryption Problem In C. Cachin and J. Camenisch (Ed.):
Advances in Cryptology-Proceedings of EUROCRYPT 2004, LNCS 3027, pages
171-188. Springer-Verlag, 2004.

2. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols. InACM Conference on Computer and Communications
Security, pages 62-73, 1993.

3. E. Brickell, J. Camenisch and L. Chen. Direct Anonymous Attestation. ACM’s
CCS 2004.

4. R. Canetti, O. Goldreich, S. Goldwasser and S. Micali. Resettable Zero-Knowledge.
In ACM Symposium on Theory of Computing, pages 235-244, 2000.

5. R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Revis-
ited. In ACM Symposium on Theory of Computing, pages 209-218, 1998.

6. R. Canetti, O. Goldreich and S. Halevi. On the Random-Oracle Methodology as
Applied to Length-Restricted Signature Schemes. In 1st Theory of Cryptography
Conference (TCC), LNCS 2951 , pages 40-57, Springer-Verlag, 2004.

7. R. Cramer. Modular Design of Secure, yet Practical Cryptographic Protocols, PhD
Thesis, University of Amsterdam, 1996.

8. R. Cramer, I. Damgard and B. Schoenmakers. Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols. In Y. Desmedt (Ed.): Advances
in Cryptology-Proceedings of CRYPTO 1994, LNCS 839, pages 174-187. Springer-
Verlag, 1994.

9. I. Damgard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In B. Preneel (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2000,
LNCS 1807, pages 418-430. Springer-Verlag, 2000.

10. G. Di Crescenzo and R. Ostrovsky. On Concurrent Zero-Knowledge with Pre-
Processing. In M. J. Wiener (Ed.): Advances in Cryptology-Proceedings of
CRYPTO 1999, LNCS 1666, pages 485-502. Springer-Verlag, 1999.

11. D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. SIAM Journal
on Computing, 30(2): 391-437, 2000. Preliminary version appears in STOC’91.

12. C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In ACM Symposium
on Theory of Computing, pages 409-418, 1998. Full version to appear in Journal of
the ACM.

40 M. Yung and Y. Zhao

13. U. Feige. Alternative Models for Zero-Knowledge Interactive Proofs. Ph.D. Thesis,
Department of Computer Science and Applied Mathematics, Weizmann Institute
of Science, Rehovot, Israel, 1990.

14. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In A. Odlyzko (Ed.): Advances in Cryptology-Proceedings
of CRYPTO’86, LNCS 263, pages 186-194. Springer-Verlag, 1986.

15. U. Feige and Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In
G. Brassard (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1989, LNCS
435, pages 526-544. Springer-Verlag, 1989.

16. O. Goldreich. Concurrent Zero-Knowledge with Timing, Revisited. In ACM Sym-
posium on Theory of Computing, pages 332-340, 2002.

17. O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof
Systems. SIAM Journal on Computing, 25(1): 169-192, 1996.

18. S. Goldwasser and Y. Tauman. On the (In)security of the Fiat-Shamir Paradigm.
In IEEE Symposium on Foundations of Computer Science, pages 102-115, 2003.

19. L. Guillou and J. J. Quisquater. A Practical Zero-Knowledge Protocol Fitted to
Security Microprocessor Minimizing both Transmission and Memory. In C. G.
Gnther (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 1988, LNCS
330 , pages 123-128, Springer-Verlag, 1988.

20. S. Micali and L. Reyzin. Soundness in the Public-Key Model. In J. Kilian (Ed.):
Advances in Cryptology-Proceedings of CRYPTO 2001, LNCS 2139, pages 542–565.
Springer-Verlag, 2001.

21. M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure Against Chosen
Ciphertext Attacks. In ACM Symposium on Theory of Computing, pages 427-437,
1990.

22. Jesper Buus Nielsen. Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-Committing Encryption Case. In M. Yung (Ed.): Advances in
Cryptology-Proceedings of CRYPTO 2002, LNCS 2442, pages 111-126, Springer-
Verlag, 2002.

23. R. Pass. On Deniabililty in the Common Reference String and Random Oracle
Models. InD. Boneh (Ed.): Advances in Cryptology-Proceedings of CRYPTO 2003,
LNCS 2729, pages 316-337, Springer-Verlag 2003.

24. C. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology,
4(3): 24, 1991.

25. V. Shoup and R. Gennaro. Securing Threshold Cryptosystems Against Chosen
Ciphertext Attack. Journal of Cryptology, 15(2): 75-96, 2002.

Non-interactive Zero-Knowledge from
Homomorphic Encryption

Ivan Damg̊ard1, Nelly Fazio2,�, and Antonio Nicolosi2,�

1 Aarhus University, Denmark��

ivan@brics.dk
2 Courant Institute of Mathematical Sciences, New York University, NY, USA

{fazio, nicolosi}@cs.nyu.edu

Abstract. We propose a method for compiling a class of Σ-protocols
(3-move public-coin protocols) into non-interactive zero-knowledge ar-
guments. The method is based on homomorphic encryption and does
not use random oracles. It only requires that a private/public key pair
is set up for the verifier. The method applies to all known discrete-log
based Σ-protocols. As applications, we obtain non-interactive threshold
RSA without random oracles, and non-interactive zero-knowledge for NP
more efficiently than by previous methods.

1 Introduction

In a zero-knowledge proof system, a prover convinces a verifier via an interac-
tive protocol that some statement is true i.e., a given word x is in some given
language L. The verifier must learn nothing beyond the fact that the assertion is
valid. Zero-knowledge is an extremely useful notion and has found innumerable
applications.

One efficient variant is known as Σ-protocols, which are three-move protocols
where conversations are tuples of the form (a, e, z) and e is a random challenge
sent by the verifier. A large number of such protocols are known for languages
based on discrete logarithm problems, such as Schnorr’s protocol [16] and many
of its variants, e.g., for proving that two discrete logs are equal [4]. This last
variant is useful, for instance, in threshold RSA protocols [17], where a set of
servers hold shares of a private RSA key, and clients can request them to apply
the private key to a given input. The Σ-protocol is used here by the servers to
prove that they follow the protocol.

One well-known technique for making Σ-protocols non-interactive is the Fiat-
Shamir heuristic [11], where e is computed by the prover himself as a hash of the
statement proved and the first message a. In the random oracle model, where
the hash function is replaced by a random function, this can be shown to work.

� Research conducted while visiting BRICS.
�� Supported by BRICS, Basic Research in Computer Science, Center of the Danish

National Research Foundation, and FICS, Foundations in Cryptography and Secu-
rity, funded by the Danish Research Council.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 41–59, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

42 I. Damg̊ard, N. Fazio, and A. Nicolosi

However, it is not in general possible to instantiate the random oracle with a
concrete function and have the security properties preserved (cf. [12]). In other
words, a proof in the random oracle model does not guarantee security in the
real world.

Cramer and Damg̊ard [7] suggest a different type of proof for equality of
discrete logarithms in the secret-key zero-knowledge model, where prover and
verifier are assumed to be given private, but correlated secret keys initially.
These proofs can be applied to build non-interactive threshold RSA protocols
without random oracles, but unfortunately, it is required that every client using
the system must have keys for the proofs set up with every server. This seems
quite impractical in many cases, due to the large amount of interaction and
secure memory needed to set up and manage these keys. Moreover, [7] does not
include any protocols for more general statements (such as NP-hard problems).

In this paper, we present a technique to compile a class of Σ-protocols into
efficient non-interactive protocols, in the registered public-key model [1]. This
model includes a trusted functionality for setting up a private/public key pair
individually for each player (in fact, we only need this for the verifiers). Hence,
unlike [7], the key setup is not tied to a particular prover/verifier pair: it can
be implemented, for instance, by having the verifier send her public key to a
trusted “certification authority” who will sign the key, once the verifier proves
knowledge of her private key. Now, any prover who trusts the authority to only
certify a key after ensuring that the verifier knows her private key, can safely
(i.e., in zero-knowledge) give non-interactive proofs to the verifier.

Our technique requires homomorphic public-key encryption such as Paillier’s
cryptosystem [15], and it preserves the communication complexity of the original
protocol up to a constant factor. This is in contrast to the NIZK construction of
Barak et al. [1] for the registered public-key model, which provides a much less
efficient transformation from CCA-encryption and ZAP’s [10].

The zero-knowledge property of our protocols is unconditional, whereas the
soundness is based on an assumption akin in spirit to “complexity leveraging” [3].
More precisely, we assume that, by choosing large enough keys for the cryptosys-
tem, the problem of breaking it can be made much harder than the problem
underlying the Σ-protocol (for a particular meaning of “much harder” that we
formalize in the paper).

An immediate consequence of our results is non-interactive threshold RSA
and discrete-log based cryptosystems without random oracles, and assuming
only that each client has a registered key pair. In the context of threshold cryp-
tography where keys must be set up initially anyway, this does not seem like a
demanding assumption. Our protocols are as efficient as the best known previous
solutions (that required random oracles) up to a constant factor.

Another consequence is efficient non-interactive zero-knowledge arguments
for circuit satisfiability, and hence for NP (in the registered public-key model).
Namely, the prover commits to his satisfying assignment using a bit-commitment
scheme for which appropriate efficient Σ-protocols exist. Then, using well-known
techniques, for instance from [6], he could prove via a Σ-protocol that the

Non-interactive Zero-Knowledge from Homomorphic Encryption 43

committed bits satisfy the circuit. Compiling this protocol using our technique
leads to the desired non-interactive protocol, whose communication complexity
is essentially O(ksc) bits, where sc is the size of the circuit, and k is the security
parameter. This compares favorably to the solution of Kilian and Petrank [14] in
the common random string model, which have complexity O(k2sc), even when
using similar algebraic assumptions as we do here. Recently, Groth et al. [13]
proposed non-interactive zero-knowledge proofs for NP in the common reference
string model based on a specific assumption on bilinear groups, and with the
same communication complexity as our protocol. This result is incomparable
to ours: [13] uses a more conventional setup assumption and does not need a
complexity-leveraging type of cryptographic assumption. On the other hand, it
needs to assume that the statement shown by the prover is chosen independently
from the reference string; in our model, the prover may see the verifier’s public
key first and then attempt to prove any theorem of his choice.

2 Preliminaries

We start by introducing some concepts and assumptions that will be useful later.

2.1 Problem Generators and a Complexity Assumption

A problem generator G is a pair G = 〈G, g〉, whereG is a probabilistic polynomial-
time algorithm and g : {0, 1}∗→{0, 1}∗ is an arbitrary (and possibly non-efficiently
computable) function. On input 1k, algorithmG outputs a string u, which we call
an instance; we refer to g(u) as the solution to u, andwe require that g(u) has length
polynomial in k. For instance, u might be the concatenation of a public key and a
ciphertext while g(u) is the corresponding plaintext. We will only be considering
problems with unique solutions, since that is all we need in this paper.

We will say that a probabilistic algorithm A breaks G = 〈G, g〉 on instances
of size k, if setting u

r← G(1k) and y
r← A(1k, u), results in y = g(u) with non-

negligible probability. We will be looking at the running time of A as a function
only of its first argument 1k; notice that A will not always be restricted to time
polynomial in k.

We define that a probabilistic algorithm A completely breaks G = 〈G, g〉 on
instances of size k by considering the same experiment: Set u r← G(1k) and
y

r← A(1k, u); however, this time we demand that there exists a polynomial P
such that, except with negligible probability (over the random choices of G),
and for all large enough k, we have Pr(y = g(u)| u) ≥ 1/P (k), where the last
probability is only over the random choices of A. In other words, A should be
able to solve (almost) any instance u with good probability.

Definition 1. Consider two problem generators G and H and let f be a polyno-
mial. We say that H is f -harder than G if there exists a probabilistic algorithm
A running in time T (k) such that A completely breaks G on instances of size k,
but no algorithm running in time O(T (k) + poly(k)) breaks H on instances of
size f(k)k or larger.

44 I. Damg̊ard, N. Fazio, and A. Nicolosi

In other words, completely breaking G on instances of size k requires time T (k),
but given a similar amount of time, there is no significant chance to break H—
where, however, the H-instances to be solved have size at least f(k)k. Note
that if T (k) is polynomial in k, then O(T (k) + poly(k)) = poly(k) and the
definition amounts to say that H generates instances that are hard in the usual
sense. But if T (k) is superpolynomial, more is required about the hardness of
H-instances—essentially that the complexity of breaking H grows “fast enough”
with the security parameter k.

For problem generators F ,G, we will say that F is as easy as G, if there exists
an algorithm that completely breaks F on instances of size k in time polynomial
in k, plus a constant number of oracle calls to any algorithm that completely
breaks G. The lemma below now follows trivially from the above definitions:

Lemma 1. Let F ,G,H be problem generators. If F is as easy as G and H is
f -harder than G, then H is also f -harder than F .

As an example, consider the following problem generator Gdlog = 〈Gdlog, gdlog〉:
on input 1k, Gdlog outputs an instance u .= (p, p′, g, h), where p, p′ are primes,
p′ is k-bit long, p = 2p′ +1, g is an element of Z∗

p of order p′ and h = gw mod p,
for some w ∈ Zp′ . In this case, the solution is gdlog(u) .= w.

As another example, let HPaillier = 〈HPaillier , hPaillier〉, where HPaillier(1k)
outputs a k-bit RSA modulus n along with c

.= (1 + n)wrn mod n2 (i.e., c is
a Paillier encryption of w), where w is chosen in some given interval. Here,
hPaillier(n, c)

.= w is the solution. We can then make the following:

Assumption 1. HPaillier is 2-harder than Gdlog.

To discuss why this might be a reasonable assumption, note that no method
is known to break one-way security of Paillier encryption other than factoring
the modulus n. Furthermore, state of the art is (and has been for several years)
that discrete log and factoring are of similar complexity for moduli of the same
size. Moreover, with the current best known attacks (based on the number field
sieve), doubling the modulus length has a dramatic effect on the expected time to
solve the problem. Indeed, this is the reason why 1024-bit moduli are currently
considered secure, even though 512-bit moduli can be broken in practice. It
would therefore be very surprising, if it turned out to be possible to factor 2k-
bit numbers using only the time we need to find k-bit discrete logs. Note that if
we had chosen a constant larger than 2 in Assumption 1, the assumption would
be weaker, but all our results would remain essentially the same. We could even
have used a polynomial f of degree ≥ 1, but then our compilation would be less
efficient.

Definition 1 calls for an algorithm that completely breaks G, and we will need
this for technical reasons in the following. This makes Assumption 1 stronger
than if we had only asked for one that breaks G in the ordinary sense. However,
in the concrete case based on discrete logs, this makes no difference, as far as
current state of the art is concerned: The best known attack on the discrete
logarithm problem modulo p is the index calculus algorithm which works for all

Non-interactive Zero-Knowledge from Homomorphic Encryption 45

prime moduli, and has complexity that only depends on the size of the modulus.
Furthermore, the discrete-log problem is random self-reducible and hence an
algorithm solving a random instance modulo p with probability ε can solve any
fixed instance modulo p with the same probability. In other words, the best
known attack on the discrete log problem does in fact break it completely in our
sense (albeit in superpolynomial time, of course).

2.2 Σ-Protocols

Consider the following protocol (adapted from [4]), which we will call Peqdlog:
Prover P and Verifier V get as common input x .= (p, p′, g1, g2, h1, h2), where

p, p′ are prime, p′ is k-bit long, p = 2p′+1, g1 ∈ Z∗
p has order p′, g2, h1, h2 ∈ 〈g1〉

and h1 = gw
1 mod p, h2 = gw

2 mod p, for some w ∈ Zp′ . P gets w as private input.

1. P chooses a random 3k-bit integer r and sends a .= (a1, a2) to V , where
a1

.= gr
1 mod p, a2

.= gr
2 mod p;

2. V chooses e at random in Zp′ and sends it to P ;
3. P sends z .= r+ew to V who checks that gz

1 = a1h
e
1 mod p, gz

2 = a2h
e
2 mod p.

Define the relation Rdlog as the set of pairs (x,w) as specified above, and
LRdlog

.= {x| ∃w : (x,w) ∈ Rdlog}. It is easy to see that the protocol above is
an interactive proof system for membership in LRdlog

, that is, it proves to the
verifier that logg1

(h1) = logg2
(h2).

In general, we define a Σ-protocol [5] for a relation R to be an interactive
proof systems P for LR

.= {x| ∃w : (x,w) ∈ R} with conversations of the form
(a, e, z) and with the following additional properties:

Relaxed Special Soundness. Consider an input x �∈ LR, and any a. We say
that a value of e is good if there exists z such that x, (a, e, z) would be
accepted by the verifier. The requirement now is that for any pair x �∈ LR, a,
at most one good e exists.

Special Honest-Verifier Zero-Knowledge. There exists a probabilistic poly-
nomial time simulator which on input x, e outputs a conversation (a, e, z) with
distribution statistically indistinguishable from conversations between P and
V , for the given statement x ∈ LR and challenge e.

Usually, one considers Σ-protocols for R, which have the standard Special
Soundness property, namely that from x ∈ LR and accepting conversations
(a, e, z), (a, e′, z′) where e �= e′, we can efficiently compute w such that (x,w) ∈
R. This clearly implies Relaxed Special Soundness, which is all we will need here.

The properties are straightforward to verify for the example protocol Peqdlog.
In addition, Peqdlog is an example of what we call aΣ-protocol with linear answer:

Definition 2. AΣ-protocol with linear answer is aΣ-protocol where the prover’s
final message z is a sequence of integers, z = (z1, . . . , zm), where zj = uj + vje,
and where uj , vj are integers that can be computed efficiently from x, P ’s random
coins and his private input w.

46 I. Damg̊ard, N. Fazio, and A. Nicolosi

For a relation R to be useful, it is typically necessary that one can efficiently
generate pairs (x,w) ∈ R from a security parameter 1k. We say that x is a
k-instance, and we will assume that R comes with a polynomial �x such that
k-instances have length �x(k).

Finally, we point out a consequence of Relaxed Special Soundness which will
be important in the following: Let us consider any probabilistic polynomial-time
algorithm GP that, given a security parameter 1k, generates a pair (x, a) where
x has length �x(k). This defines a problem generator GP = 〈GP , gP〉 in the sense
of Section 2.1, where (x, a) is the problem instance and the solution function gP
is defined as follows: If x �∈ LR and there exists a good e for (x, a), this e-value
is the solution (which is unique by relaxed special soundness). These are the
interesting instances. In all other cases (i.e., if x ∈ LR or if there is no good e for
(x, a)), we define the solution to be gP(x, a) .= 0k (just to ensure that there is an
answer for any instance). We call any such problem generator GP a fake-proof
generator for P .

For the example protocol Peqdlog, it is straightforward to verify that we can
find the solution to any instance (x, a) by computing a constant number of
discrete logarithms mod p. Therefore, any fake-proof generator for Peqdlog is as
easy as Gdlog, and so by Lemma 1, we get

Proposition 1. Under Assumption 1, HPaillier is 2-harder than any fake-proof
generator for Peqdlog.

2.3 Homomorphic Encryption

A public-key cryptosystem is as usual defined by algorithms E,D for encryption
and decryption and a key generation algorithm KG. The key generation receives
1k as input and outputs a pair of private and public key (sk, pk). We will consider
systems where plaintexts are integers from some interval [0, n− 1] where n can
be computed from pk. Given plaintext a and random coins r, the ciphertext is
Epk(a; r), and we require, of course, that a = Dsk(Epk(a; r)).

We will be looking at systems that are homomorphic, in the following sense:
the set of ciphertexts is an Abelian group, where the group operation is easy
to compute given the public key. Furthermore, for any a, b, ra, rb it holds that
Epk(a; ra)·Epk(b; rb) = Epk((a+b) mod n; s) for some s. We will assume through-
out that n is a k-bit number. Note that by multiplying Epk(a; r) by a random
encryption of 0, one obtains a random and independently distributed encryption
of a; we denote such operation with randomize(Epk(a; r)).

A typical example of homomorphic encryption is Paillier’s cryptosystem,
where pk is a k-bit RSA modulus n, and sk is the factorization of n. Here,
Epk(a; r) .= (1 + n)arn mod n2, where r is uniformly chosen in Z∗

n.

2.4 The Registered Public-Key Model

Below we briefly review the registered public-key model (introduced in [1]), fo-
cusing on the aspects that we will need in the following. We refer the reader
to [1] for the original description of the model and its relation to other setup
assumptions (e.g., the common random string model).

Non-interactive Zero-Knowledge from Homomorphic Encryption 47

Let KS(1k) (for Key Setup) be a probabilistic polynomial-time algorithm
which, on input a security parameter 1k, outputs a private/public key pair. We
write KS(1k; r) to denote the execution of KS using r as random coins.

The registered public-key model [1] features a trusted functionality FKS
reg ,

which the parties can invoke to register their key pairs and to retrieve other par-
ties’ public keys. Key registration takes place by having the registrant privately
sending FKS

reg the random coins r that she used to create her key pair. FKS
reg will

then run KS(1k; r), store the resulting public key along with the identity of the
registrant, and later give the public key to anyone who asks for it. Note that
this in particular means that to register a public key one needs to know the
corresponding private key. Note also that one need not have registered a public
key of his own to ask FKS

reg for somebody else’s public key.

2.5 Non-interactive Zero-Knowledge with Key Setup

Below we present a stand-alone definition of Non-Interactive Zero-Knowledge in
the registered public-key model.1

Let KS(1k) be the key setup for the key-registration functionality FKS
reg , and

let R be a relation for which one can efficiently generate pairs (x,w) ∈ R from
a security parameter 1k. A non-interactive system for R with key setup KS is a
pair of efficient algorithms (P, V), where:

– P (1k, x, w, pkV) is a probabilistic algorithm run by the prover. It takes as
input a k-instance x and w such that (x,w) ∈ R, along with the verifier’s
public key pkV , which the prover obtains from FKS

reg . It outputs a string π
as a non-interactive zero-knowledge proof that x ∈ LR;

– V (1k, x, π, skV) is a deterministic 0/1-valued algorithm run by the verifier,
satisfying the following correctness property: for all k-instances x and w such
that (x,w) ∈ R, it holds that:

Pr[V (1k, x, π, skV) = 1 | (skV , pkV) r← KS(1k);π r← P (1k, x, w, pkV)] = 1

where the probability is over the random coins of KS and P ;

The system is zero-knowledge if there exists a probabilistic polynomial-time
algorithm M , such that for all k-instances x and w such that (x,w) ∈ R, the
following two ensembles are indistinguishable:

Verifier’s Key Pair, Real Proof:

{(skV , pkV , π) | (skV , pkV) r← KS(1k);π r← P (1k, x, w, pkV)}
Verifier’s Key Pair, Simulated Proof:

{(skV , pkV , π) | (skV , pkV) r← KS(1k);π r←M(1k, x, pkV , skV)}
1 We only consider the setting where the key setup is required just for the verifier, as

that is all we need in this paper. Adapting the definition to the case in which provers
also have private/public key pair is straightforward; we omit the details.

48 I. Damg̊ard, N. Fazio, and A. Nicolosi

As usual, depending on the quality of the indistinguishability of the above en-
sembles, one obtains computational, statistical or perfect zero-knowledge.

To define soundness, we consider a probabilistic polynomial-time adversary
P̃ who plays the following game:

– Execute (skV , pkV) r← KS(1k) and give pkV to P̃ .
– Repeat until P̃ stops: P̃ outputs x, π and receives V (1k, x, π, skV).

We say that P̃ wins if he produces at least one x, π that V accepts, where x �∈ LR.
The protocol is sound if any P̃ wins with probability negligible in k. We say that
the system is sound for a particular number of proofs m(k) if the game always
stops after at most m(k) proofs are generated.

3 A Compilation Technique

In this section, we assume we are given a relation R and a Σ-protocol P for
R with linear answer. When running the protocol on input (x,w), where x is
a k-instance, we let �x(k) be the bit-length of x, �e(k) be the bit-length of the
verifier’s challenge, and �z(k) be the maximal bit-length of a component in the
prover’s answer z i.e., z = (z1, . . . , zm) and �z(k)

.= max(len(z1), . . . , len(zm)).
We also use a homomorphic cryptosystem with key generation algorithm KG.

Our compilation technique works in the registered public-key model of [1] (cf.
also Section 2.4). Specifically, we assume that each player acting as verifier has
initially registered a private/public key pair with the trusted functionality FKS

reg ,
using the following key setup algorithm:

KS(1k) (Key setup for the Verifier):
Set (sk, pk) r← KG(1k′

) where we choose k′ .= max(f(k)k, �z(k) + 1), and where
f(k) is a polynomial specified in Theorem 2 below. Choose a challenge e as V
would do in the given Σ-protocol (that is, e will be a �e(k)-bit string), and set c
to be a random (homomorphic) encryption of e under pk. The public key is now
(pk, c) and the private key is (sk, e).

In Section 6, we discuss how our key setup functionality FKS
reg can be imple-

mented efficiently in a standard PKI setting.
Note that the algorithmKS(1k) for the verifier’s key setup can also be thought

of as defining a problem generator, where (pk, c) is the problem instance, and e
is the solution. We will call this problem generator HKG in the following. It will
be identical to HPaillier if we use Paillier encryption.

To understand the compilation technique itself, note that because the Σ-
protocol is with linear answer, it is possible to execute the prover’s side of the
protocol given only an encryption of the challenge e. Namely, the prover starts
by computing his first message a. Then, if the answer z is supposed to contain
zj = uj + vje, the prover will be able (by linearity) to derive the values of uj , vj

from x, his private input w and the random coins used to create a. At this point,
the prover can compute Epk(zj) as Epk(uj) ·cvj . This can be decrypted and then
checked as usual by V .

Non-interactive Zero-Knowledge from Homomorphic Encryption 49

Now, soundness of any Σ-protocol is based on the fact that a cheating prover
has to generate the first message a without knowing what the challenge is. Since,
in this case, the prover is only given an encryption of the challenge, we might
hope that soundness would still hold. More specifically, if the prover can, for
a false statement x, come up with a first message a, and encrypted responses
that the verifier would accept, then relaxed special soundness implies that x, a
uniquely determines the challenge e that the verifier encrypted. If the complex-
ity of finding e from x, a is much smaller than the complexity of breaking the
verifier’s cryptosystem, this gives a contradiction, as formalized below. On the
other hand, zero-knowledge simulation is easy if the challenge is known to V ,
and the key setup exactly guarantees that V knows the challenge.

A more detailed description of the compiled protocol follows. Our construction
is designed to give proofs for instances x of length up to �x(k). It is in general
understood that the verifier will reject immediately if x is longer than �x(k) or
if the proof is in any other way obviously malformed.

Protocol compile(P)

1. Given a k-instance x,w to prove, P gets V ’s public key (pk, c) from FKS
reg and

computes the first message a in a proof according to P . Let the final message
z be of the form (u1+v1e, . . . , um+vme); then, for i = 1, . . . ,m, P computes
ci

r← randomize(Epk(uj) ·cvj). P sends x, π to V , where π .= (a, (c1, . . . , cm)).
2. On input x and a proof π .= (a, (c1, . . . , cm)), V sets z′i ← Dsk(ci), and

then verifies that x, (a, e, (z′1, . . . , z
′
m)) would be accepted by the verifier of

protocol P , and accepts or rejects accordingly.

Theorem 1. compile(P) is complete and statistical zero-knowledge (in the reg-
istered public-key model).

Proof. Completeness is clear by inspection. In particular, Dsk(ci) equals the
correct value zi

.= ui + vie, since the fact that k′ > �z(k) ensures that zi < n.

As for zero-knowledge, the simulatorM will as usual interact with V and attempt
to emulate the view V would see in real life. In particular, M will receive the
string V sends initially (namely, the random coins r intended for FKS

reg). This
allows M to generate V ’s private key, and in particular the e-value inside c. Now,
to simulate a proof for x ∈ LR, M will use the special honest-verifier simulator
for P on input x, e to generate (a, e, z) = (a, e, (z1, . . . , zm)). It then outputs
x, (a, (Epk(z1), . . . , Epk(zm))). The only difference between this simulation and
real proofs is that the values a, z1, . . . , zm are generated by the prover in P in
real proofs, while in M ’s output they are simulated. The theorem now follows
from special honest-verifier zero-knowledge of P . ��

Theorem 2. Let P be a Σ-protocol with linear answer, and HKG be the problem
generator associated with the key setup for the verifier. Assume that HKG is f -
harder than any fake-proof generator GP for P, and that the verifier’s public key
for the homomorphic encryption scheme is generated with security parameter
1k′

, where k′
.= max(f(k)k, �z(k) + 1). Then compile(P) is sound for provers

generating O(log k) proofs.

50 I. Damg̊ard, N. Fazio, and A. Nicolosi

Proof. Assume we have a probabilistic polynomial-time cheating prover P̃ con-
tradicting the conclusion of the theorem. At a high level, our proof will pro-
ceed as follows: first, we describe how to use P̃ to obtain a fake-proof generator
G̃P = 〈G̃P , gP〉 for P ; then, using P̃ and any algorithm A that completely breaks
G̃P , we will show how to construct an algorithm A′ breaking HKG on instances of
size k′ ≥ f(k)k, in time comparable to A’s. This will contradict the assumption
that HKG is f -harder than any fake-proof generator for P .

Consider the algorithm G̃P which, on input 1k, starts by generating a public
key (pk, c) for the verifier according to the protocol (i.e., (pk, c) was produced
by KS(1k′

)). Then, G̃P runs P̃ on (pk, c), and whenever P̃ outputs a state-
ment/proof pair, G̃P replies with a random bit to represent the verifier’s reaction
to each proof. Once P̃ halts, G̃P chooses uniformly one of the statement/proof
pairs generated by P̃ (it will be of the form x,(a,(c1, . . . , cm))), and outputs
(x, a).

Note that with probability 1/poly(k), all the bits that G̃P sends to P̃ are
identical to what the verifier would have sent. Hence, the fact that P̃ is a suc-
cessful cheating prover implies that, with non-negligible probability, one of the
statement/proof pairs x, (a, (c1, . . . , cm)) generated by P̃ is such that x �∈ LR,
yet the verifier would accept. Given that there is such a proof, there is at least a
1/(log k) probability that G̃P chooses this proof to generate its output. In con-
clusion, with overall non-negligible probability, G̃P outputs x �∈ LR, a for which
exactly one good e exists. This value of e must be identical to the plaintext
inside c since the verifier would accept the corresponding proof.

Algorithm G̃P defines a fake-proof generator G̃P = 〈G̃P , gP〉 for P (where,
as in Section 2.2, gP(x, a) is the good e-value if one exists and x �∈ LR, and 0k

otherwise). Hence, the assumption that HKG is f -harder than any fake-proof
generator for P implies in particular that HKG is f -harder than G̃P .

Let A be a probabilistic algorithm that breaks G̃P completely in time T (k),
and consider the following algorithm A′ to break HKG. On input a k′-instance
(pk, c) for HKG (i.e., (pk, c) was produced by KS(1k′

)) A′ invokes P̃ on (pk, c)
and interacts with it according to the exact same strategy that we described
above for G̃P . At the end of such interaction, A′ will obtain a pair (x, a): at this
point, A′ runs A on (x, a), and outputs the value e returned by A.

By the above analysis of G̃P and the fact that A breaks G̃P completely, we
see that A′ returns the plaintext encrypted inside c with non-negligible proba-
bility. Since A′ runs in time T (k) + poly(k) and k′ ≥ f(k)k, this contradicts the
assumption that HKG is f -harder than G̃P . ��

For the example protocol Peqdlog, the above theorem and Proposition 1 imply
the following:

Corollary 1. Suppose we construct compile(Peqdlog) using Paillier encryption
with security parameter 1k′

, where k′
.= max(2k, �z(k) + 1). Then, under As-

sumption 1, compile(Peqdlog) is sound for provers generating O(log k) proofs.
Moreover, its communication and computational complexity are a constant fac-
tor times those of Peqdlog.

Non-interactive Zero-Knowledge from Homomorphic Encryption 51

While the restriction to a logarithmic number of proofs may seem like a serious
one, there are in fact many applications where this result is good enough. The
point is that our reduction only fails for polynomially-many proofs because we
assume that the prover learns whether the verifier accepts each individual proof.
However, when a zero-knowledge protocol is used as a tool in a larger construc-
tion, the prover often does not get this information, and thus in such cases, it
is enough that soundness holds for a single proof. The application to threshold
RSA in the next section is an example of this.

Moreover, we believe that compile(Peqdlog) is in fact sound, even for an ar-
bitrary polynomial number of proofs. We can show this under a stronger non-
standard assumption: we report the details in Appendix A.

4 Threshold RSA

Our technique can be used in most known threshold RSA- or discrete-log-based
cryptosystems to obtain efficient solutions not relying on random oracles. As a
concrete example, we consider here Shoup’s threshold RSA protocol [17].

In this construction, a trusted dealer generates an RSA modulus N = pq,
where p = 2p′ + 1, q = 2q′ + 1 and p′, q′ are k-bit primes. In addition, the dealer
publishes an element v ∈ Z∗

N of order p′q′, and sets up a secret sharing of the
private exponent. Each server Si in the protocol privately receives a share si

(which is a number modulo p′q′). Finally, the dealer publishes the value vi
.=

vsi mod N for each server.
When the system is operational, a client may send an input α to be signed

to all servers. Each server Si in the protocol produces an element βi which is
guaranteed to be in the subgroup of Z∗

N of order p′q′ (because it is a square
of another element). Server Si then sends βi to the client, claiming that βi =
αsi mod N . Assuming that the majority of the servers are honest, the client can
reconstruct the desired signature, as long as he does not accept any incorrect
βi’s. Each server must therefore prove to the client that βi was correctly formed.

The following Σ-protocol PdlmodN can be used as the basis for a solution:

1. Si chooses a random 4k-bit integer r and sends a .= (a1, a2) to V , where
a1

.= vr mod N, a2
.= αr mod N .

2. The verifier chooses a random (k − 1)-bit string e and sends it to P .
3. Si sends z .= r + esi to the verifier who checks that vz = a1v

e
i mod N,αz =

a2β
e
i mod N .

Assuming that N, v are generated by the trusted dealer as described, it fol-
lows from the arguments given in [17] that this is a Σ-protocol for proving that
logv(vi) = logα(βi). Indeed, the non-interactive solution proposed in [17] is sim-
ply the Fiat-Shamir heuristic applied to this protocol.

We propose to apply instead our compilation technique based on Paillier
encryption to get a non-interactive solution. This leads to:

Theorem 3. Under Assumption 1, there exists a non-interactive threshold RSA
scheme, secure in the registered public-key model. Its communication and compu-
tational complexity are the same as in Shoup’s scheme, up to a constant factor.

52 I. Damg̊ard, N. Fazio, and A. Nicolosi

Proof. The protocol given above has the right properties for applying the compi-
lation technique, the only exception being a small technical issue with soundness:
the protocol has relaxed special soundness only for inputs where N, v are cor-
rectly formed, while our definition requires it for all inputs. However, we can
simply instruct the verifier to reject all inputs not containing the N, v generated
by the dealer. This will force a cheating prover to only use inputs for which
relaxed special soundness holds, and the proof of Theorem 2 then goes through
in the same way as before.

To apply Theorem 2, we need to show that HPaillier is f(k)-harder (for some
f(k)) than any fake-proof generator GdlmodN = 〈GdlmodN , gdlmodN〉 for PdlmodN .
To this end, observe that when we argue soundness, we may assume that the
factors p, q ofN are known, since soundness is based only on security of the (inde-
pendently chosen) Paillier public key, specified by the verifier’s key pair. Now, in-
stances for a fake-proof generator GdlmodN have the form (x, a) .=((N, v, vi, α, βi),
(a1, a2)), whereas the solution gdlmodN(x, a) typically is the only e-value that Si

can answer (unless either there is no such e-value, or the theorem x is true, in
which cases gdlmodN(x, a) .= 0k). Since p, q are known, we can reduce everything
modulo p and q and the Chinese remainder theorem now implies that we can
find the solution by computing a constant number of discrete logarithms mod p
and q. Consequently, any fake-proof generator for PdlmodN is as easy as Gdlog;
therefore Assumption 1 implies that compile(PdlmodN) is sound against provers
giving O(log k) proofs (though, as we will see below, we only need soundness for
provers giving a single proof).

To prove that the RSA protocol is secure, we must first show that an adversary
corrupting at most half the servers learns nothing from the protocol, except for
the RSA signatures that the protocol is supposed to produce. This follows from
zero-knowledge of compile(PdlmodN) and the simulator given in [17].

Second, we must show that no probabilistic polynomial-time adversary can
make an honest client fail to output a correct RSA signature (even on input
messages chosen by the adversary). We will show that existence of an adver-
sary Adv doing this with non-negligible probability contradicts soundness of
compile(PdlmodN), namely we construct from Adv a prover that cheats the client
on a single proof with non-negligible probability.

For this, we will execute the dealer’s algorithm to set up the RSA key and give
shares of the private key to the adversary for those servers he wants to corrupt.
We also give him the public key of the client we want to attack. Assume Adv
chooses a maximum of imax input messages for the client before halting. We
pick i at random in [1, imax] and hope that the i-th message is the first where
Adv is successful in cheating the client. Since imax is polynomial in k, our guess
is correct with 1/poly(k) probability. Assuming our guess is correct, we can
perfectly simulate what Adv sees for any previous message mj , j < i: for the
actions of honest servers, we can simply follow the protocol (as we know the
private RSA key and all its shares); as for the client, for j < i he will just output
a correct RSA signature on mj , which we can also compute.

Non-interactive Zero-Knowledge from Homomorphic Encryption 53

Since (assuming a correct guess of i) we can perfectly simulate Adv’s view up
to message mi, there is a non-negligible probability that Adv successfully cheats
the client when he tries to get a signature on mi. But for this to happen, Adv
must fool the client into accepting an incorrect share, which can only occur if
Adv produced (for at least one of the corrupt servers) an acceptable proof for an
incorrect statement. Thus, we choose at random one of the corrupt servers and
output its statement and proof. This is clearly a successful cheating prover. ��

5 The OR-Construction and NIZKs for NP

5.1 Closure Under OR-Construction

A construction that is widely used in designing efficient Σ-protocols is the so-
called OR-construction [8]. Given Σ-protocolsΣl and Σr for relations Rl and Rr,
the OR-construction yields a Σ-protocol ΣOR for the following relation ROR:

((xl, xr), (wl, wr)) ∈ ROR ⇔ ((xl, wl) ∈ Rl ∨ (xr , wr) ∈ Rr).

The OR-construction is based on executing the two protocols for relations Rl,
Rr in parallel, where the prover derives the two challenges from a single value
chosen by the verifier. In our case, we do all computations on challenges over
the integers, which means that some details of the standard construction have
to be modified slightly; this is covered in Appendix B.

An attractive feature of the compilation technique proposed in Section 3 is
that if it is applicable to both Σl and Σr, then it is also applicable to the
composed protocol ΣOR. In other words:

Theorem 4. The class of Σ-protocols that can be made non-interactive using
our homomorphic-encryption-based technique is closed under OR-construction.

Proof. Let Σl and Σr be Σ-protocols with linear answer. The theorem amounts
to proving that the Σ-protocol ΣOR resulting from the OR-construction also
features a “linear answer,” and so we can apply the compiler from Section 3.
Now, valid conversations of ΣOR (cf. Appendix B) have the form:

((al, ar), e, (el, zl, er, zr)),

where (el, er) is a “split” for e, that is, e = el − er and either el or er was chosen
randomly by the prover when preparing (al, ar). Hence, el and er are clearly
linear; moreover, since both Σl and Σr have linear answer, zl and zr are also
linear, and the theorem follows. ��

5.2 Non-interactive Bit Commitments

We now describe a non-interactive bit-commitment scheme for the registered
public-key model, along with non-interactive protocols to prove boolean relations
among committed bits.

54 I. Damg̊ard, N. Fazio, and A. Nicolosi

Consider the Σ-protocol Peqdlog for equality of discrete logarithms described
in Section 2.2. Applying the OR-construction to two instances of Peqdlog yields
a Σ-protocol P1out2 for proving that one out of two pairs of discrete logarithms
is equal. In other words, P1out2 is a proof system for statements of the form
x
.= (p, p′, g1, g0

2, g
1
2 , h1, h2), where p, p′ are prime, p = 2p′ + 1, g1, g0

2 , g
1
2 ∈ Z∗

p

have order p′, h1 = gw
1 mod p (for some w ∈ Zp′) and either h2 = (g0

2)
w mod p

or h2 = (g1
2)

w mod p.
To commit to a bit b, the prover picks p, p′, g1, g0

2, g1
2 as described above,2

randomly selects w ∈ Zp′ and computes h1 = gw
1 mod p, h2 = (gb

2)
w mod p.

At this point, the prover uses compile(P1out2) to prove (non-interactively) that
the statement x .= (p, p′, g1, g0

2 , g
1
2 , h1, h2) is well-formed. The commitment then

consists of x along with such NIZK, though in the following we will often refer
to x by itself as the commitment to keep the discussion simpler.

To open the commitment to b, it suffices to show that logg1
h1 = loggb

2
h2,

which the prover can do non-interactively via the protocol compile(Peqdlog).
Now, suppose that we want to show that three bits b1, b2, bf (hidden within

commitments x1, x2, xf , respectively) satisfy bf = f(b1, b2), for some binary
boolean function f . Proving such relation amounts to prove that (x1, x2, xf) can
be opened either to (0, 0, f(0, 0)), or to (0, 1, f(0, 1)), or to (1, 0, f(1, 0)), or to
(1, 1, f(1, 1)). But this is just the disjunction of statements that can each be
proven using three instances of Peqdlog; hence, applying the OR-construction we
get a Σ-protocol Σf that can be made non-interactive as described in Section 3.

5.3 NIZK for Circuit Satisfiability

The discrete-logarithm-based non-interactive bit-commitment scheme from Sec-
tion 5.2 can be used, in conjunction with the approach of [6], to obtain efficient
non-interactive zero-knowledge arguments for Circuit Satisfiability, and hence
for any NP language.

To show that a given circuit is satisfiable, the prover P commits to his satis-
fying assignment and to all intermediate bits resulting form the computation of
the circuit, and sends all these non-interactive bit-commitments to the verifier
V . Additionally, P non-interactively opens the output bit to 1, and prove non-
interactively to the verifier that the commitments to the inputs and the output
of each gate of the circuit are consistent.

Upon receiving such non-interactive proof, V checks that all the commitments
are well-formed, that the output of the circuit actually opens to 1, and that the
proof of consistency of each gate is correct, and if so, V accepts P ’s proof.

Notice that the length of such non-interactive proof is proportional to the
circuit’s size and to the security parameter 1k, and is thus “linear” in the sense
of the “Linear Zero-Knowledge” of [6], whereas previous constructions [14] in the
common random string model are quadratic in this regard, even under specific
number-theoretic assumptions.

2 As a matter of efficiency, we notice that, when committing to many bits, the prover
can safely reuse the values p, p′, g1, g0

2 and g1
2 .

Non-interactive Zero-Knowledge from Homomorphic Encryption 55

6 Implementing the Key Setup

The compilation technique of Section 3 works in the registered public-key setting.
In this model, each verifier V registers her public key by sending the random
coins used to generate her private key/public key pair to a trusted functionality.
This is exploited in the proof of Theorem 1 to enable the simulator M to derive
the private key of the verifier, and to ensure the validity of the public key.

Of course, such a functionality can always be implemented using a more stan-
dard PKI with a certification authority CA, and generic zero-knowledge tech-
niques. The verifier sends her public key to the CA and proves in zero-knowledge
that she knows a set of random coins that, using the given key-generation algo-
rithm, leads to the public key she sent.

This will be very inefficient in general. But in fact, taking a closer look at
the simulation for the case where the verifier uses Paillier encryption, one can
see that all that is needed is knowledge of the challenge value e and of the RSA
modulus n, plus assurance that e lies in the proper interval and that n is well-
formed. (Knowledge of the factorization of n, in particular, is not required.) In
our case, it is enough to know that n is the product of two distinct primes and
that n is relatively prime to φ(n). Hence, registration of the verifier’s key pair
for the key setup from Section 3 can be efficiently implemented by having V and
CA engage in the following protocol:

Step 0: V sends her public key (n, c) to CA;
Step 1: V proves to CA that n is well-formed;
Step 2: V proves knowledge of the plaintext e hidden within c; and that this

value e lies in the specified interval.

All the above steps can be efficiently realized leveraging known tools from
the literature [18, 2, 9]. In particular, Step 1 can be carried out by first using the
protocol of van de Graaf and Peralta [18], by which one can show that n = piqj

where p ≡ q ≡ 3 mod 4 and i, j are odd. Then one can use the following folklore
trick: the verifier chooses a random element in Z∗

n, and the prover proves in
zero-knowledge that it has an n-th root mod n. This will always be the case if
gcd(n, φ(n)) = 1, but fails with constant probability otherwise. As for Step 2,
one can first use an integer commitment scheme (like the one of Damg̊ard and
Fujisaki [9]) to create a commitment Com to e, and then prove knowledge of the
value committed within Com (e.g., using the protocol in Section 4.1 of [9]). Then,
using standard techniques, it is possible to show that the commitment Com and
the ciphertext c hide the same value e. For completeness, in Appendix C we
sketch a simple Σ-protocol to achieve this. Finally, Boudot’s efficient proof of
membership in intervals [2] allows the prover to prove that the e contained in
Com lies in the required range.

Acknowledgement. We thank the anonymous referees for useful advise on
improving the presentation.

56 I. Damg̊ard, N. Fazio, and A. Nicolosi

References

1. B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally Composable Proto-
cols with Relaxed Set-Up Assumptions. In Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’04), pages 186–195. IEEE
Computer Society, 2004.

2. F. Boudot. Efficient Proofs that a Commited Number Lies in an Interval. In
Advances in Cryptology—EUROCRYPT ’00, volume 1807 of LNCS, pages 431–
444. Springer, 2000.

3. R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable zero-knowledge.
In STOC’99, pages 235–244. ACM Press, 1999.

4. D. Chaum and T. P. Pedersen. Wallet databases with observers. In Advances in
Cryptology—CRYPTO ’92, volume Volume 740 of LNCS, pages 89–105. Springer,
1992.

5. R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD
thesis, CWI and University of Amsterdam, 1996.

6. R. Cramer and I. Damg̊ard. Linear Zero-Knowledge—A Note on Efficient Zero-
Knowledge Proofs and Arguments. In Proceedings of the 29th Annual ACM Sym-
posium on Theory of Computing, pages 436–445. ACM Press, 1997.

7. R. Cramer and I. Damg̊ard. Secret-Key Zero-Knowledge. In Theory of
Cryptography—TCC ’04, pages 223–237. Springer-Verlag, 2004. LNCS 2951.

8. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of Partial Knowledge
and Simplified Design of Witness Hiding Protocols. In Advances in Cryptology—
CRYPTO ’94, pages 174–187. Springer, 1994. LNCS 839.

9. I. Damg̊ard and E. Fujisaki. A Statistically-Hiding Integer Commitment
Scheme Based on Groups with Hidden Order. In Advances in Cryptology—
ASIACRYPT ’02, pages 125–142. Springer, 2002. LNCS 2501.

10. C. Dwork and M. Naor. Zaps and Their Applications. In Proceedings of the 41st
Annual IEEE Symposium on Foundations of Computer Science (FOCS’00), pages
283–293. IEEE Computer Society, 2000.

11. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In Advances in Cryptology—Crypto’86, volume 263 of
LNCS, pages 186–194, Berlin, 1987. Springer.

12. S. Goldwasser and Y. Tauman Kalai. On the (In)security of the Fiat-Shamir
Paradigm. In FOCS ’03, pages 102–115. IEEE Computer Society, 2003.

13. J. Groth, R. Ostrovsky, and A. Sahai. Perfect Non-Interactive Zero Knowledge for
NP. http://eprint.iacr.org/2005/290, 2005.

14. Joe Kilian and Erez Petrank. An Efficient Non-interactive Zero-Knowledge Proof
System for NP with General Assumptions. J. Cryptology, 11(1):1–27, 1998.

15. P. Paillier. Public Key Cryptosystems Based on Composite Degree Rediduosity
Classes. In Advances in Cryptology—EUROCRYPT ’99, pages 223–238. Springer,
1999. LNCS 1592.

16. C. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology,
4(3):161–174, 1991.

17. V. Shoup. Practical Threshold Signatures. In Advances in Cryptology—
EUROCRYPT ’00, pages 207–220. Springer, 2000. LNCS 1807.

18. J. van de Graaf and R. Peralta. A Simple and Secure Way to Show Validity of
Your Public Key. In Advances in Cryptology—CRYPTO ’87, volume 293 of LNCS,
pages 128–134. Springer, 1988.

Non-interactive Zero-Knowledge from Homomorphic Encryption 57

A Unbounded Soundness of compile(Peqdlog)

Below we sketch an argument showing soundness of compile(Peqdlog) for provers
generating any polynomial number of NIZKs, assuming Paillier cryptosystem
is used for the homomorphic encryption. Throughout, all exponentiations are
meant modulo p, unless noted otherwise.

Recall that valid statements for the protocol Peqdlog have the form x
.=

(p, p′, g1, g2, gw
1 , g

w
2), where w is the secret input to the prover. Using w, an

honest prover computes his proof as σ .= ((gr
1 , g

r
2), En(r) · cw mod n2), where c

is the encrypted challenge and n is the verifier’s modulus.
Our argument works in a “generic model” for the homomorphic encryp-

tion scheme: namely, we assume that whenever the prover outputs a proof
σ

.= ((a1, a2), c̄), the ciphertext c̄ is specified as a pair of integers (u, v) such
that c̄ = En(u) · cv mod n2.

Theorem 5. Suppose we construct compile(Peqdlog) using Paillier encryption.
Then under Assumption 1, compile(Peqdlog) is unboundedly sound for provers
using the homomorphic properties of Paillier encryption in a black-box fashion.

Proof. Let A be an algorithm completely breaking k-instances of Gdlog in time
T (k), and assume we have a cheating prover P̃ contradicting the conclusion
of the theorem. We show how to use A and P̃ to construct an algorithm A′

that breaks 2k-instances of HPaillier in time O(T (k) + poly(k)), contradicting
Assumption 1.

On input (n, c), A′ starts by executing P̃ on the same values n, c. During its
execution, P̃ produces several statement/proof pairs x, σ to which A′ ought to
reply with a bit representing the verifier’s reaction. Let x .= (p, p′, g1, g2, h1, h2)
and σ

.= ((a1, a2), (u, v)); then A′ replies with 1 if and only if the following
relations hold:

h1 = gv
1 mod p, h2 = gv

2 mod p, a1 = gu
1 mod p, a2 = gu

2 mod p (�)

When P̃ stops running, A′ picks at random a statement/proof pair x, σ among
those produced by P̃ . Then, calling A twice, A′ can compute w1

.= logg1
h1 and

w2
.= logg2

h2, thus being able to decide whether x is a valid statement or not.
In either case, A′ can recover e from σ with either one or two more calls to A:

A-1. if x is a false statement (i.e., w1 �= w2), then A′ invokes A to learn r1
.=

logg1
a1, r2 = logg2

a2, and computes e .= (r2 − r1)(w1 − w2)−1 mod p;
A-2. if x is a valid statement (i.e., w1 = w2 = w), then A′ invokes A to learn

r
.= logg1

a1, and computes e .= (r − u)(v − w)−1 mod p (if w = v, then A′

aborts).

The running time of A′ is clearly O(T (k) + poly(k)). We now argue about its
success probability. In the analysis, we use the term “funny” proof to refer to a
proof σ for a true statement x that was not obtained according to the protocol,
yet it passes the verifier’s test. In our “generic model,” given the fact that Peqdlog

58 I. Damg̊ard, N. Fazio, and A. Nicolosi

admits at most one valid answer z for any given x, a, e, a funny proofs satisfies
(u, v) �= (logg1

a1, logg1
h1), but u+ v · e = logg1

a1 + logg1
h1 · e.

The view that P̃ sees within the simulation put on by A′ deviates from what
P̃ would see in a real interaction with the verifier only after P̃ produces a state-
ment/proof pair x, σ for which either of the following two cases occurs:

B-1. x is a false statement, but σ passes the verifier’s test (whereas according
to the test (�), A′ always rejects σ in such case);

B-2. x is a true statement, but σ is a “funny” proof (notice that the test (�)
ensures that A′ rejects all proofs not created according to the protocol).

Observe that since P̃ is a successful cheating prover, then at least one of the
above cases will occur with non-negligible probability. Let i∗ be the index of the
first such occurrence. With 1/poly(k) probability, the random statement/proof
pair chosen by A′ will be exactly the i∗-th pair. Conditioning on such event, the
simulation of the verifier’s answers up to that point is perfect, and moreover:

C-1. if i∗ corresponds to a false statement (case B-1. above), then the fact that σ
passes the verifier’s condition, along with relaxed special-soundness, implies
that the value e computed by A′ according to case A-1. is indeed correct;

C-2. if i∗ corresponds to a “funny” proof (case B-2. above), then the fact that
σ passes the verifier’s condition implies that the value e computed by A′ ac-
cording to case A-2. is correct. (Notice that σ being a “funny” proof excludes
the possibility of aborting in case A-2.)

In conclusion, with non-negligible probability, A′ outputs the correct solution e
to the 2k-instance n, c in time O(T (k) + poly(k)), contradicting the assumption
that HPaillier is 2-harder than Gdlog. ��

B The OR-Construction of [8]

The OR-construction [8] derives a Σ-protocol ΣOR from Σl and Σr by allowing
the prover to “split” the challenge e ∈ [0, 2k[into two parts el, er ∈ [0, 22k[as
he wishes, as long as el − er = e. This enables the prover to “simulate” the false
part of the statement, while actually carrying out the proof for the part which
is true. More in details, conversations in the OR-construction have the form:

((al, ar), e, (el, zl, er, zr)),

where an honest prover P constructs his flows differently depending on whether
P holds a valid witness wl for xl, or a valid wr for xr.

In the first case, P picks a random er from [0, 22k[and uses the simulator
for Σr to obtain an accepting conversation (ar, er, zr) for xr. Then, P selects al

according to Σl and sends (al, ar) to V . When P receives e, he sets el
.= er + e

and computes zl with respect to xl, al, el and the witness wl, according to Σl.
The second case is completely analogous, except that P sets er

.= el − e.

Non-interactive Zero-Knowledge from Homomorphic Encryption 59

As for the verification condition, V checks that (al, el, zl), (ar, er, zr) are ac-
cepting conversations respectively for xl and xr, and that (el, er) is a valid “split”
for e, that is, e = el − er.

Observe that choosing el and er to be k bits longer than e ensures that the
joint distribution of (el, er) does not reveal (to the verifier) information about
whether P had a valid witness for the “left” or for the “right” part of ΣOR.
Indeed, given any fixed value of e in [0, 2k[, the statistical distance between
the two marginal distributions on (el, er) induced by the experiments described
below is clearly negligible in k:

“Left” distribution: randomly choose er from [0, 22k[, and set el
.= er + e;

“Right” distribution: randomly choose el from [0, 22k[, and set er
.= el − e.

C An Efficient Sub-protocol for the Key Setup

Let n be the verifier’s modulus, e be her secret k-bit challenge, and c be a random
Paillier encryption of e under n, namely c← (1+n)ern mod n2, for some random
r ∈ Z∗

n. Recall that in the integer commitment scheme of [9], a commitment Com
to e has the form Com

.= GeHs mod N , where N is the product of two k-bit
strong primes, G,H are generators of the subgroup of quadratic residues modulo
N , and s is a 2k-bit randomizer.

For binding, it is important that the verifier does not know neither the fac-
torization of N nor the discrete log of H base G. In our setting, this can be
enforced by having CA choosing G,H and N . Afterward, V can prove to CA
that c and Com hide the same value via the following protocol:

1. V randomly selects ê ∈ [0, 23k[, ŝ ∈ [0, 24k[, r̂ ∈ Z∗
n, and sends CA the values

Ĉom← GêH ŝ mod N and ĉ← (1 + n)êr̂n mod n2;
2. CA replies with a random (k − 1)-bit challenge t;
3. V computes ẽ ← ê+et and s̃← ŝ+st (over the integers), and r̃ ← r̂·rt mod n,

and sends ẽ, r̃, s̃;
4. CA checks that GẽH s̃ ?= Ĉom ·Comt mod N and (1+n)ẽr̃n ?= ĉ · ct mod n2.

It is easy to check the usual properties of this protocol; in particular since t is
chosen so that it is less than each prime factor in N , ability to answer more then
one challenge unconditionally implies that the values hidden within Com and c
are the same.

Ring Signatures: Stronger Definitions, and
Constructions Without Random Oracles

Adam Bender, Jonathan Katz�, and Ruggero Morselli��

Department of Computer Science, University of Maryland
{bender, jkatz, ruggero}@cs.umd.edu

Abstract. Ring signatures, first introduced by Rivest, Shamir, and Tau-
man, enable a user to sign a message so that a ring of possible signers
(of which the user is a member) is identified, without revealing exactly
which member of that ring actually generated the signature. In contrast
to group signatures, ring signatures are completely “ad-hoc” and do not
require any central authority or coordination among the various users
(indeed, users do not even need to be aware of each other); furthermore,
ring signature schemes grant users fine-grained control over the level of
anonymity associated with any particular signature.

This paper has two main areas of focus. First, we examine previous
definitions of security for ring signature schemes and suggest that most
of these prior definitions are too weak, in the sense that they do not
take into account certain realistic attacks. We propose new definitions
of anonymity and unforgeability which address these threats, and then
give separation results proving that our new notions are strictly stronger
than previous ones. Next, we show two constructions of ring signature
schemes in the standard model: one based on generic assumptions which
satisfies our strongest definitions of security, and a second, more efficient
scheme achieving weaker security guarantees and more limited function-
ality. These are the first constructions of ring signature schemes that do
not rely on random oracles or ideal ciphers.

1 Introduction

Ring signatures enable a user to sign a message so that a “ring” of possible
signers (of which the user is a member) is identified, without revealing exactly
which member of that ring actually generated the signature. This notion was first
formally introduced by Rivest, Shamir, and Tauman [20], and ring signatures
— along with the related notion of ring/ad-hoc identification schemes — have
been studied extensively since then [5, 19, 1, 23, 16, 11, 22, 18, 2]. Ring signatures
are related, but incomparable, to the notion of group signatures [6]. On the one
hand, group signatures have the additional feature that the anonymity of a signer
can be revoked (i.e., the signer can be traced) by a designated group manager.
� This research was supported in part by NSF Trusted Computing Grants #0310499

and #0310751, NSF-ITR #0426683, and NSF CAREER award #0447075.
�� Supported by NSF Trusted Computing Grant #0310499 and NSF-ITR #0426683.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 60–79, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Ring Signatures: Stronger Definitions, and Constructions 61

On the other hand, ring signatures allow greater flexibility: no centralized group
manager or coordination among the various users is required (indeed, users may
be unaware of each other at the time they generate their public keys), rings may
be formed completely “on-the-fly” and in an ad-hoc manner, and users are given
fine-grained control over the level of anonymity associated with any particular
signature (via selection of an appropriate ring).

Ring signatures naturally lend themselves to a variety of applications which
have been suggested already in previous work (see especially [20, 19, 11, 2]). The
original motivation was to allow secrets to be leaked anonymously. Here, for
example, a high-ranking government official can sign information with respect
to the ring of all similarly high-ranking officials; the information can then be
verified as coming from someone reputable without exposing the actual signer.
Ring signatures can also be used to provide a member of a certain class of users
access to a particular resource without explicitly identifying this member; note
that there may be cases when third-party verifiability is required (e.g., to prove
that the resource has been accessed) and so ring signatures, rather than ad-
hoc identification schemes, are needed. Finally, we mention the application to
designated-verifier signatures [17] especially in the context of e-mail. Here, ring
signatures enable the sender of an e-mail to sign the message with respect to
the ring containing the sender and the receiver; the receiver is then assured that
the e-mail originated from the sender but cannot prove this to any third party.
We remark that for this latter application it is sufficient to use a ring signature
scheme which supports only rings of size two. See also [7] for another proposed
application of ring signatures which support only rings of size two.

1.1 Our Contributions in Relation to Previous Work

This paper focuses on both definitions and constructions. We summarize our
results in each of these areas, and relate them to prior work.

Definitions of security. Prior work on ring signature/identification schemes
provides definitions of security that are either rather informal or seem (to us)
unnaturally weak, in that they do not address what seem to be valid security
concerns. One example is the failure to consider the possibility of adversarially-
chosen public keys. Specifically, both the anonymity and unforgeability defini-
tions in most prior work assume that honest users always sign with respect to
rings consisting entirely of honestly-generated public keys; no security is provided
if users sign with respect to a ring containing even one adversarially-generated
public key. Clearly, however, a scheme which is not secure in the latter case is
of limited use; this is especially true since rings are constructed in an ad-hoc
fashion using keys of (possibly unknown) users which are not validated as being
correctly constructed by any central authority. We formalize security against
such attacks (as well as others), and show separation results proving that our
definitions are strictly stronger than those considered in previous work. In ad-
dition to the new, strong definitions we present, the hierarchy of definitions we
give is useful for characterizing the security of ring signature constructions.

62 A. Bender, J. Katz, and R. Morselli

Constructions. We show two constructions of ring signature schemes which
are proven secure in the standard model. We stress that these are the first such
constructions, as all previous constructions of which we are aware rely on random
oracles/ideal ciphers.1 It is worth remarking that ring identification schemes are
somewhat easier to construct (using, e.g., techniques from [9]); ring signatures
can then easily be derived from such schemes using the Fiat-Shamir methodology
in the random oracle model [14]. This approach, however, is no longer viable
(at least, based on our current understanding) when working in the standard
model.

Our first construction is based on generic assumptions, and satisfies the
strongest definitions of anonymity and unforgeability considered here. This con-
struction is inspired by the generic construction of group signatures due to Bel-
lare, et al. [3] and, indeed, the constructions share some similarities at a high
level. However, a number of subtleties arise in our context that do not arise in
the context of group signatures, and the construction given in [3] does not im-
mediately lend itself to a ring signature scheme. Two issues in particular that
we need to deal with are the fact that we have no central group manager to
issue “certificates” as in [3], and that we additionally need to take into account
the possibility of adversarially-generated public keys as discussed earlier (this is
not a concern in [3] where there is only a single group public key published by
a (semi-)trusted group manager).

Our second construction is more efficient than the first, but relies on specific
number-theoretic assumptions. Furthermore, it provides more limited function-
ality and security guarantees than our first construction; most limiting is that
it only supports rings of size two. Such a scheme is still useful for certain appli-
cations (as discussed earlier); furthermore, constructing an efficient 2-user ring
signature scheme without random oracles seems difficult, as we still do not have
the Fiat-Shamir methodology available in our toolbox. This second scheme is
based on the (standard) signature scheme recently proposed by Waters [21] in
the context of ID-based encryption; in fact, we reduce the security of our scheme
directly to the security of his scheme.

2 Preliminaries

We use the standard definitions of public-key encryption schemes and semantic
security, signature schemes and existential unforgeability under adaptive chosen-
message attacks, and computational indistinguishability. In this paper we will
assume public-key encryption schemes for which, with all but negligible prob-
ability over (pk, sk) generated at random using the specified key generation
algorithm, Decsk(Encpk(M)) = M holds with probability 1.

1 Although Xu, Zhang, and Feng [22] claim a ring signature scheme in the standard
model based on specific assumptions, their proof was later found to be flawed (per-
sonal communication from J. Xu, March 2005). Concurrently to our work, Chow, Liu
and Yuen [8] show a ring signature scheme that they prove secure in the standard
model (for rings of constant size) based on a new number-theoretic assumption.

Ring Signatures: Stronger Definitions, and Constructions 63

We will also use the notion of a ZAP, which is a 2-round, public-coin, witness-
indistinguishable proof system for any language in NP (the formal definition is
given in Appendix A). ZAPs were introduced by Dwork and Naor [12], who
show that ZAPs can be constructed based on trapdoor permutations. For nota-
tional purposes, we represent a ZAP by a triple (�,P ,V) such that (1) the initial
message r from the verifier has length �(k) (where k is the security parameter);
(2) the prover P , on input the verifier-message r, statement x, and witness w,
outputs π ← Pr(x,w); finally, (3) Vr(x, π) outputs 1 or 0, indicating acceptance
or rejection of the proof.

3 Definitions

We begin by presenting the functional definition of a ring signature scheme. We
refer to an ordered list R = (PK1, . . ., PKn) of public keys as a ring, and let
R[i] = PKi. We will also freely use set notation, and say, e.g., that PK ∈ R if
there exists an index i such that R[i] = PK. We will always assume, without
loss of generality, that the keys in a ring are ordered lexicographically.

Definition 1 (Ring signature). A ring signature scheme is a triple of ppt
algorithms (Gen, Sign, Vrfy) that, respectively, generate keys for a user, sign a
message, and verify the signature of a message. Formally:

– Gen(1k), where k is a security parameter, outputs a public key PK and secret
key SK.

– Signs,SK(M,R) outputs a signature σ on the message M with respect to the
ring R = (PK1, . . . , PKn). We assume the following: (1) (R[s], SK) is a
valid key-pair output by Gen; (2) |R| ≥ 2 (since a ring signature scheme is
not intended2 to serve as a standard signature scheme); and (3) each3 public
key in the ring is distinct.

– VrfyR(M,σ) verifies a purported signature σ on a message M with respect
to the ring of public keys R.

We require the following completeness condition to hold: for any integer k,
any {(PKi, SKi)}n

i=1 output by Gen(1k), any s ∈ [n], and any M , we have
VrfyR(M, Signs,SKs

(M,R)) = 1 where R = (PK1, . . . , PKn).
A c-user ring signature scheme is a variant of the above that only supports

rings of fixed size c (i.e., the Sign and Vrfy algorithms only take as input rings
R for which |R| = c, and correctness is only required to hold for such rings).

To improve readability, we will generally omit the input “s” to the signing algo-
rithm (and simply write σ ← SignSK(M,R)), with the understanding that the
signer can determine an index s for which SK is the secret key corresponding
to public key R[s]. Strictly speaking, there may not be a unique such s when
2 Furthermore, it is easy to modify any ring signature scheme to allow signatures with

|R| = 1 by including a special key for just that purpose.
3 This is without loss of generality, since the signer/verifier can simply take the sub-

ring of distinct keys in R and correctness is unchanged.

64 A. Bender, J. Katz, and R. Morselli

R contains incorrectly-generated keys; in real-world usage of a ring signature
scheme, though, a signer will certainly be able to identify their public key.

A ring signature scheme is used as follows: At various times, some collection
of users runs the key generation algorithm Gen to generate public and secret
keys. We stress that no coordination among these users is assumed or required.
When a user with secret key SK wishes to generate an anonymous signature
on a message M , he chooses a ring R of public keys which includes his own,
computes σ ← SignSK(M,R) and outputs (σ,R). (In such a case, we will refer
to the holder of SK as the signer of the message and to the holders of the other
public keys in R as the non-signers.) Anyone can now verify that this signature
was generated by someone holding a key in R by running VrfyR(M,σ).

We remark that although our functional definition of a ring signature scheme
(cf. Def. 1) requires users to generate keys specifically for that purpose (in con-
trast to the requirements of [1, 2]), our first construction can be easily modified
to work with any ring of users as long as they each have a public key for both
encryption and signing (see Sect. 5).

As discussed in the Introduction, ring signatures must satisfy two independent
notions of security: anonymity and unforgeability. There are various ways each of
these notions can be defined (and various ways these notions have been defined
in the literature); we present our definitions in Sections 3.1 and 3.2, and compare
them in Sect. 4.

3.1 Definitions of Anonymity

The anonymity condition requires, informally, that an adversary not be able to
tell which member of a ring generated a particular signature.4 We begin with a
basic definition of anonymity which is already stronger than that considered in
most previous work in that we give the adversary access to a signing oracle (this
results in a stronger definition even in the case of unconditional anonymity).

Definition 2 (Basic anonymity). Given a ring signature scheme (Gen, Sign,
Vrfy), a polynomial n(·), and a ppt adversary A, consider the following game:

1. Key pairs {(PKi, SKi)}n(k)
i=1 are generated using Gen(1k), and the set of pub-

lic keys S def= {PKi}n(k)
i=1 is given to A.

2. A is given access (throughout the entire game) to an oracle Osign(·, ·, ·) such
that Osign(s,M,R) returns SignSKs

(M,R), where we require R ⊆ S and
PKs ∈ R.

3. A outputs a message M , distinct indices i0, i1, and a ring R ⊆ S for which
PKi0 , PKi1 ∈ R. A random bit b is chosen, and A is given the signature
σ ← SignSKib

(M,R).
4. The adversary outputs a bit b′, and succeeds if b′ = b.

4 All the anonymity definitions that follow can be phrased in either a computational
or an unconditional sense (where, informally, in the former case anonymity holds for
polynomial-time adversaries while in the latter case anonymity holds even for all-
powerful adversaries). For simplicity, we only present the computational versions.

Ring Signatures: Stronger Definitions, and Constructions 65

(Gen, Sign,Vrfy) achieves basic anonymity if, for any ppt A and any polynomial
n(·), the success probability of A in the above game is negligibly close to 1/2.

(Some previous papers consider a variant of the above in which the adversary is
given a signature computed by a randomly-chosen member of R, and should be
unable to guess the actual signer with probability better than 1/|R| + negl(k).
A hybrid argument shows that such a variant is equivalent to the above.)

Unfortunately, the above definition of basic anonymity leaves open the pos-
sibility of the following attack: (1) an adversary generates public keys in some
arbitrary manner (which may possibly depend on the public keys of the honest
users), and then (2) a legitimate signer generates a signature with respect to a
ring containing some of these adversarially-generated public keys. The definition
above offers no protection in this case! This attack, considered also in [19] (in
a slightly different context) is quite realistic since, by their very nature, ring
signatures are intended to be used in settings where there is not necessarily any
central authority checking validity of public keys. This motivates the following,
stronger definition:

Definition 3 (Anonymity w.r.t. adversarially-chosen keys). Given a ring
signature scheme (Gen, Sign,Vrfy), a polynomial n(·), and a ppt adversary A,
consider the following game:

1. As in Definition 2.
2. As in Definition 2, except that we no longer require R ⊆ S.
3. As in Definition 2, except that we no longer require R ⊆ S.
4. The adversary outputs a bit b′, and succeeds if b′ = b.

(Gen, Sign,Vrfy) achieves anonymity w.r.t. adversarially-chosen keys if for any
ppt A and polynomial n(·), the success probability of A in the above game is
negligibly close to 1/2.

The above definition only guarantees anonymity of a particular signature as long
as there are at least two honest users in the ring. In some sense this is inherent,
since if an honest signer U chooses a ring in which all other public keys (i.e.,
except for the public key of U) are owned by an adversary, then that adversary
“knows” that U must be the signer (since the adversary did not generate the
signature itself).

A weaker requirement one might consider when the signer U is the only honest
user in the ring is that the adversary should be unable to prove to a third party
that U generated the signature (we call this an attribution attack). Preventing
such an attack in general seems to require the involvement of a trusted party
(or at least a common random string), something we would like to avoid. We
instead define a slightly weaker notion which, informally, can be viewed as offer-
ing some protection against attribution attacks as long as at least one other user
U ′ in the ring generated her public key honestly. The honest users in the ring
(other5 than U), however, may later cooperate with the adversary by revealing
5 The idea is that everyone in the ring is trying to “frame” U , but U is (naturally)

refusing to divulge her secret key. Although this itself might arouse suspicion, the
point is that it still cannot be proved — in court, say — that U was the signer.

66 A. Bender, J. Katz, and R. Morselli

their secret keys. (Actually, we even allow these users to reveal the randomness6

used to generate their secret keys.) Note that this also ensures some measure of
security in case secret keys are exposed or stolen.

In addition to the above, we consider also the stronger variant in which the se-
cret keys of all honest users (i.e., including U) are exposed. This parallels (in fact,
is stronger than) the anonymity definition given by Bellare, et al. in the context of
group signatures [3]. For simplicity, we also protect against adversarially-chosen
keys, although one could consider the weaker definition which does not.

Definition 4 (Anonymity against attribution attacks/full key expo-
sure). Given (Gen, Sign, Vrfy), n(·), and A as in Definition 3, consider the
following game:

1. For i = 1 to n(k), generate (PKi, SKi) ← Gen(1k;ωi) for randomly-chosen
ωi. Give to A the set of public keys {PKi}n(k)

i=1 . The adversary A is also
given access to a signing oracle as in Definition 3.

2. A outputs a message M , distinct indices i0, i1, and a ring R for which
PKi0 , PKi1 ∈ R. Adversary A is given {ωi}i�=i0 . Furthermore, a random
bit b is chosen and A is given σ ← SignSKib

(M,R).
3. The adversary outputs a bit b′, and succeeds if b′ = b.

(Gen, Sign,Vrfy) achieves anonymity against attribution attacks if, for any ppt
A and polynomial n(·), the success probability of A in the above game is negligibly
close to 1/2. If, in the second step, A is instead given {ωi}n(k)

i=1 then we say
(Gen, Sign,Vrfy) achieves anonymity against full key exposure.

Linkability. Another desideratum of a ring signature scheme is that it be un-
linkable; that is, it be infeasible to determine whether two signatures (possibly
generated with respect to different rings) were generated by the same signer. As
in [3], all our definitions imply (appropriate variants of) unlinkability.

3.2 Definitions of Unforgeability

The intuitive notion of unforgeability is, as usual, that an adversary should be
unable to output (R,M, σ) such that VrfyR(M,σ) = 1 unless either (1) the
adversary explicitly knows a secret key corresponding to one of the public keys
in R, or (2) a user whose public key is in R explicitly signed M previously (with
respect to the same ring R). Some subtleties arise, however, when defining what
it means to allow the adversary a chosen-message attack on the scheme. Many
previous works (e.g., [20]), assume a definition like the following:

Definition 5 (Unforgeability against fixed-ring attacks). A ring signa-
ture scheme (Gen, Sign, Vrfy) is unforgeable against fixed-ring attacks if for any
ppt adversary A and for any polynomial n(·), the probability that A succeeds in
the following game is negligible:
6 This ensures security when erasure cannot be guaranteed, or when it cannot be

guaranteed that all users will comply with the directive to erase their random coins.

Ring Signatures: Stronger Definitions, and Constructions 67

1. Key pairs {(PKi, SKi)}n(k)
i=1 are generated using Gen(1k), and the set of pub-

lic keys R def= {PKi}n(k)
i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·), where OSign(s,M) outputs
SignSKs

(M,R).
3. A outputs (M∗, σ∗), and succeeds if VrfyR(M∗, σ∗) = 1 and also A never

made a query of the form Osign(�,M∗).

Note that not only is A restricted to making signing queries with respect to the
full ring R, but its forgery is required to verify with respect to R as well. The
following stronger, and more natural, definition was used in, e.g., [1]:

Definition 6 (Unforgeability against chosen-subring attacks). A ring
signature scheme (Gen, Sign, Vrfy) is unforgeable against chosen-subring at-
tacks if for any ppt adversary A and for any polynomial n(·), the probability
that A succeeds in the following game is negligible:

1. Key pairs {(PKi, SKi)}n(k)
i=1 are generated using Gen(1k), and the set of pub-

lic keys S def= {PKi}n(k)
i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·, ·), where OSign(s,M,R) out-
puts SignSKs

(M,R) and we require that R ⊆ S and PKs ∈ R.
3. A outputs (R∗,M∗, σ∗), and succeeds if R∗ ⊆ S, VrfyR∗(M∗, σ∗) = 1, and

A never queried (�,M∗, R∗) to its signing oracle.

While the above definition is an improvement, it still leaves open the possibil-
ity of an attack whereby honest users are “tricked” into generating signatures
using rings containing adversarially-generated public keys. (Such an attack was
also previously suggested by [19, 18].) The following definition takes this into ac-
count as well as (for completeness) an adversary who adaptively corrupts honest
participants and obtains their secret keys. Since either of these attacks may be
viewed as the outcome of corrupting an “insider,” we use this terminology.7

Definition 7 (Unforgeability w.r.t. insider corruption). A ring signature
scheme (Gen, Sign, Vrfy) is unforgeable w.r.t. insider corruption if for any ppt
adversary A and for any polynomial n(·), the probability that A succeeds in the
following game is negligible:

1. Key pairs {(PKi, SKi)}n(k)
i=1 are generated using Gen(1k), and the set of pub-

lic keys S def= {PKi}n(k)
i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·, ·), where OSign(s,M,R) out-
puts Signs,SKs

(M,R) and we require that PKs ∈ R.
3. A is also given access to a corrupt oracle Corrupt(·), where Corrupt(i) outputs

SKi.
4. A outputs (R∗,M∗, σ∗), and succeeds if VrfyR∗(M∗, σ∗) = 1, A never queried

(�,M∗, R∗), and R∗ ⊆ S \ C, where C is the set of corrupted users.

7 We are aware that, technically speaking, there are not really any “insiders” in the
context of ring signatures.

68 A. Bender, J. Katz, and R. Morselli

We remark that Herranz [15] considers, albeit informally, a definition interme-
diate between our Definitions 6 and 7 in which corruptions of honest players are
allowed but adversarially-chosen public keys are not explicitly mentioned.

4 Separations Between the Security Definitions

In the previous section, we presented various definitions of anonymity and un-
forgeability. Here, we show that these definitions are in fact distinct, in the sense
that there exist (under certain assumptions) schemes satisfying a weaker def-
inition but not a stronger one. First, we show separations for the definitions
of anonymity, considering in each case a scheme simultaneously satisfying the
strongest definition of unforgeability (all proofs appear in the full version [4]):

Claim 1. If there exists a scheme which achieves basic anonymity and is un-
forgeable w.r.t. insider corruption, then there exists a scheme which achieves
these same properties but which is not anonymous w.r.t. adversarially-chosen
keys.

Claim 2. If there exists a scheme which is anonymous w.r.t. adversarially-
chosen keys and is unforgeable w.r.t. insider corruption, then there exists
a scheme which achieves these same properties but which is not anonymous
against attribution attacks.

We also show separations for the definitions of unforgeability, considering now
schemes which simultaneously achieve the strongest definition of anonymity:

Claim 3. If there exists a scheme which is anonymous against full key expo-
sure and unforgeable w.r.t. insider corruption, then there exists a scheme which
is anonymous against full key exposure and unforgeable against fixed-ring
attacks, but not unforgeable against chosen-subring attacks.
In contrast to the rest of the claims, the assumption in the above claim is not
minimal. We remark that the scheme of [16] serves as a natural example of
a scheme that is unforgeable against fixed-ring attacks, but which is not un-
forgeable against chosen-subring attacks (in the random oracle model); this was
subsequently fixed in [15]. We defer a detailed discussion to the full version [4].

Claim 4. If there exists a scheme which is anonymous against full key ex-
posure and unforgeable against chosen-subring attacks, then there exists a
scheme achieving these same properties which is not unforgeable w.r.t. insider
corruption.

5 Ring Signatures Based on General Assumptions

We now describe our construction of a ring signature scheme that satisfies the
strongest of our proposed definitions, and is based on general assumptions. In
what follows, we let (EGen,Enc,Dec) be a semantically-secure public-key encryp-
tion scheme, let (Gen′, Sign′,Vrfy′) be a (standard) signature scheme, and let

Ring Signatures: Stronger Definitions, and Constructions 69

(�,P ,V) be a ZAP (for an NP-language that will become clear once we describe
the scheme). We denote by C∗ ← Enc∗RE

(m) the probabilistic algorithm that
takes as input a set of encryption public keysRE = {pkE,1, . . . , pkE,n} and a mes-
sage m, and does the following: it first chooses random s1, . . . , sn−1 ∈ {0, 1}|m|

and then outputs:

C∗=

⎛⎝EncpkE,1(s1),EncpkE,2(s2), · · · ,EncpkE,n−1(sn−1),EncpkE,n(m⊕
n−1⊕
j=1

sj)

⎞⎠ .

Note that, informally, encryption using Enc∗ is semantically secure as long as at
least one of the corresponding secret keys is unknown.

The idea of our construction is the following. Each user has an encryption
key pair (pkE , skE) and a standard signature key pair (pkS , skS). To generate
a ring signature with respect to a ring R of n users, the signer produces a
standard signature σ′ with her signing key. Next, the signer produces ciphertexts
C∗

1 , . . . , C
∗
n using the Enc∗ algorithm and the set RE of all the encryption public

keys in the ring; one of these ciphertexts will be an encryption of σ′. Finally,
the signer produces a proof π, using the ZAP, that one of the ciphertexts is
an encryption of a valid signature on the message with respect to the signature
public key of one of the ring members.

Toward a formal description, let L denote the NP language:{
(pkS ,M,RE , C

∗) : ∃σ, ω s.t. C∗ = Enc∗RE
(σ;ω)

∧
Vrfy′pkS

(M,σ) = 1
}

;

i.e., (pkS ,M,RE , C
∗) ∈ L if C∗ is an encryption (using Enc∗RE

) of a valid sig-
nature of M with respect to the public key pkS . We now give the details of our
construction, which is specified by the key-generation algorithm Gen, the ring
signing algorithm Sign, and the ring verification algorithm Vrfy:

Gen(1k):

1. Generate signing key pair (pkS , skS) ← Gen′(1k).
2. Generate encryption key pair (pkE , skE) ← Gen(1k) and erase skE .
3. Choose an initial ZAP message r ← {0, 1}�(k).
4. Output the public key PK = (pkS , pkE , r), and the secret key SK = skS .

Signi∗,SKi∗ (M, (PK1, . . . , PKn)):

1. Parse each PKi as (pkS,i, pkE,i, ri), and parse SKi∗ as skS,i∗ . Set RE :=
{pkE,1, . . . , pkE,n}.

2. Set M∗ := M |PK1 | · · · |PKn, where “|” denotes concatenation. Compute
the signature σ′

i∗ ← Sign′skS,i∗ (M∗).
3. Choose random coins ω1, . . . , ωn and: (1) compute C∗

i∗ = Enc∗RE
(σ′

i∗ ;ωi∗)
and (2) for i ∈ {1, . . . , n} \ {i∗}, compute8 C∗

i = Enc∗RE
(0|σ

′
i∗ |;ωi).

8 We assume for simplicity that valid signatures w.r.t. the public keys {pkS,i}i�=i∗

always have the same length as valid signatures w.r.t. pkS,i∗ . The construction can
be adapted when this is not the case.

70 A. Bender, J. Katz, and R. Morselli

4. For i ∈ [n], let xi denote the statement: “ (pkS,i,M
∗, RE , C

∗
i) ∈ L ”, and let

x :=
∨n

i=1 xi. Compute the proof π ← Pr1(x, (σ′
i∗ , ωi∗)).

5. The signature is σ = (C∗
1 , . . . , C

∗
n, π).

VrfyPK1,...,PKn
(M,σ)

1. Parse each PKi as (pkS,i, pkE,i, ri). Set M∗ := M |PK1 | · · · |PKn and
RE := {pkE,1, . . ., pkE,n}. Parse σ as (C∗

1 , . . . , C
∗
n, π).

2. For i ∈ [n], let xi denote the statement “ (pkS,i,M
∗, RE , C

∗
i) ∈ L ” and set

x :=
∨n

i=1 xi.
3. Output Vr1(x, π).

It is easy to see that the scheme above satisfies the functional definition of
a ring signature scheme (recall that the {PKi} in a ring are always ordered
lexicographically). We now prove that the scheme satisfies strong notions of
anonymity and unforgeability:

Theorem 1. If encryption scheme (EGen,Enc,Dec) is semantically secure, sig-
nature scheme (Gen′, Sign′, Vrfy′) is existentially unforgeable under adaptive
chosen-message attacks, and (�,P ,V) is a ZAP for the language L′ = {(x1, . . .,
xn) : ∃i : xi ∈ L}, then the above ring signature scheme is (computationally)
anonymous against attribution attacks, and unforgeable w.r.t. insider corruption.

The proof is given in Appendix B.1.

Extension. The scheme above can also be used (with a few easy modifications)
in a situation where some users in the ring have not generated a key pair accord-
ing to Gen, as long as (1) every ring member has a public key both for encryption
and for signing and (2) at least one of the members has included a sufficiently-
long random string in his public key. Furthermore, the encryption (signature)
public keys of different members of the ring may be associated with different
encryption (signature) schemes. Thus, a single user who establishes a public key
for a ring signature scheme suffices to provide anonymity for everyone. This also
provides a way to include “oblivious” users in the signing ring [1, 2].

Achieving a stronger anonymity guarantee. The above scheme is not se-
cure against full key exposure, and essential to our proof of anonymity is that
the adversary not be given the random coins used to generate all (honest) ring
signature keys.9 (If the adversary gets all sets of random coins, it can decrypt
ciphertexts encrypted using Enc∗RE

for any ring of honest users R and thereby de-
termine the true signer of a message.) It is possible to achieve anonymity against
full key exposure using an enhanced form of encryption for which, informally,
there exists an “oblivious” way to generate a public key without generating a
corresponding secret key. This notion, introduced by Damg̊ard and Nielsen [10],

9 We remark that anonymity still holds if the adversary is given all secret keys (but
not the randomness used to generate all secret keys). This is because the decryption
key skE is erased, and not included in SK.

Ring Signatures: Stronger Definitions, and Constructions 71

can be viewed as a generalization of dense cryptosystems in which the public
key is required to be a uniformly distributed string (in particular, dense cryp-
tosystems satisfy the definition below). We review the formal definition here.

Definition 8. An oblivious key generator for the public-key encryption scheme
(EGen, Enc, Dec) is a pair of ppt algorithms (OblEGen,OblRand) such that:

– OblEGen, on input 1k and random coins ω ∈ {0, 1}n(k), outputs a key pk;
– OblRand, on input a key pk, outputs a string ω;

and the following distribution ensembles are computationally indistinguishable:{
ω ← {0, 1}n(k) : (ω,OblEGen(1k;ω))

}
and {

(pk, sk) ← EGen(1k);ω ← OblRand(pk) : (ω, pk)
}
.

Note that if (EGen,Enc,Dec) is semantically secure, then (informally speaking) it
is also semantically secure to encrypt messages using a public key pk generated
by OblEGen, even if the adversary has the random coins used by OblEGen in
generating pk. We remark for completeness that the El Gamal encryption scheme
(over the group of quadratic residues modulo a prime) is an example of a scheme
having an oblivious key generator.

Given the above, we adapt our construction in the natural way: specifically,
the Gen algorithm is changed so that instead of generating pkE using EGen (and
then erasing the secret key skE and the random coins used), we now generate
pkE using OblEGen. Adapting the proof of Theorem 1, we can easily show:

Theorem 2. Under the assumptions of Theorem 1 and assuming (EGen, Enc,
Dec) has an oblivious key generator, the modified ring signature scheme described
above is (computationally) anonymous against full key exposure, and unforgeable
w.r.t. insider corruption.

The proof is given in Appendix B.2.

6 An Efficient 2-User Ring Signature Scheme

In this section, we present a more efficient construction of a 2-user ring signature
scheme based on specific assumptions. The scheme is based on the (standard)
signature scheme constructed by Waters [21] which we briefly review now.

6.1 The Waters Scheme

Let G,G1 be groups of prime order q such that there exists an efficiently com-
putable bilinear map ê : G×G → G1. We assume that q,G,G1, ê, and a generator
g ∈ G are publicly known. The Waters signature scheme for messages of length
n is defined as follows:

72 A. Bender, J. Katz, and R. Morselli

Key Generation. Choose α← Zq and set g1 = gα. Additionally choose random
elements h, u′, u1, . . . , un ← G. The public key is (g1, h, u′, u1, . . . , un) and the
secret key is hα.

Signing. To sign the n-bit message M , first compute w = u′ ·
∏

i:Mi=1 ui. Then
choose random r ← Zq and output the signature σ = (hα · wr, gr).

Verification. To verify the signature (A,B) on message M with respect to
public key (g1, h, u′, u1, . . ., un), compute w = u′ ·

∏
i:Mi=1 ui and then check

whether ê(g1, h) · ê(B,w) ?= ê(A, g).

6.2 A 2-User Ring Signature Scheme

The main observation we make with regard to the above scheme is the follow-
ing: element h is arbitrary, and only knowledge of hα is needed to sign. So,
we can dispense with including h in the public key altogether; instead, a user
U with secret α and the value g1 = gα in his public key will use as his “h-
value” the value ḡ1 contained in the public key of a second user Ū . This provides
anonymity since Ū could also have computed the same value (ḡ1)α using the se-
cret value ᾱ = logg ḡ1 known to him (because ḡα

1 = gᾱ
1). We now proceed with the

details.

Key Generation. Choose α← Zq and set g1 = gα. Additionally choose random
elements u′, u1, . . . , un ← G. The public key is (g1, u′, u1, . . ., un) and the secret
key is α. (We again assume that q,G,G1, ê, and g are system-wide parameters.)

Ring Signing. To sign message M ∈ {0, 1}n with respect to the ring R =
{PK,PK} using secret key α (where we assume without loss of generality
that α is the secret corresponding to PK), proceed as follows: parse PK as
(g1, u′, u1, . . ., un) and PK as (ḡ1, ū′, ū1, . . ., ūn), and compute w = u′ ·∏

i:Mi=1 ui and w̄ = ū′ ·
∏

i:Mi=1 ūi. Then choose random r ← Zq and output the
signature

σ = (ḡα
1 · (ww̄)r, gr) .

Ring Verification. To verify the signature (A,B) on message M with respect
to the ring R = {PK,PK} (parsed as above), compute w = u′ ·

∏
i:Mi=1 ui and

w̄ = ū′ ·
∏

i:Mi=1 ūi and then check whether ê(g1, ḡ1) · ê(B, (ww̄)) ?= ê(A, g).

It is not hard to see that correctness holds. We prove the following regarding
the above scheme:

Theorem 3. Assume the Waters signature scheme is existentially unforgeable10

under adaptive chosen message attack. Then the 2-user ring signature scheme
described above is unconditionally anonymous against full key exposure, and un-
forgeable against chosen-subring attacks.

10 This holds [21] under the computational Diffie-Hellman assumption in G.

Ring Signatures: Stronger Definitions, and Constructions 73

Proof. Unconditional anonymity against full key exposure follows easily from
the observation made earlier: namely, that only the value ḡα

1 = gᾱ
1 (where ᾱ def=

logg ḡ1) is needed to sign, and either of the two (honest) parties can compute
this value.

We now prove that the scheme satisfies Definition 6. We do this by showing
how an adversary A that forges a signature with respect to the ring signature
scheme with non-negligible probability can be used to construct an adversary
Â that forges a signature with respect to the Waters signature scheme (in the
standard sense) with the same probability. For simplicity in the proof, we assume
that A only ever sees the public keys of two users, requests all signatures to
be signed with respect to the ring R containing these two users, and forges
a signature with respect to that same ring R. By a hybrid argument, it can
be shown that (for this scheme) this is equivalent to the more general case
when A may see multiple public keys, request signatures with respect to various
(different) 2-user subsets, and then output a forgery with respect to any 2-user
subset of its choice.

Construct Â as follows: Â is given the public key (ĝ1, ĥ, û′, û1, . . ., ûn) of
an instance of the Waters scheme. Â constructs two user public keys as follows:
first, it sets g1 = ĝ1 and ḡ1 = ĥ. Then, it chooses random u′, u1, . . . , un ← G and
sets ū′ = û′/u′ and ūi = ûi/ui for all i. It gives to A the public keys (g1, u′, u1,
. . ., un) and (ḡ1, ū′, ū1, . . ., ūn). Note that both public keys have the appropriate
distribution. When A requests a ring signature on a message M with respect to
the ring R containing these two public keys, Â requests a signature on M from
its signing oracle, obtains in return a signature (A,B), and gives this signature
to A. Note that this is indeed a perfect simulation, since(

ĥlogg ĝ1 ·
(
û′

∏
i:Mi=1

ûi

)r

, gr

)
=

(
ḡ
logg g1

1 ·
(
u′ū′

∏
i:Mi=1

uiūi

)r

, gr

)
,

which is an appropriately-distributed ring signature with respect to the public
keys given to A.

When A outputs a forgery (A∗, B∗) on a message M∗, this same forgery is
output by Â. Note that Â outputs a valid forgery whenever A does, since

ê(g1, ḡ1) · ê
(
B∗, (u′ū′

∏
i:M∗

i =1 uiūi)
)

= ê(A∗, g)

implies
ê(ĝ1, ĥ) · ê

(
B∗, (û′

∏
i:M∗

i =1 ûi)
)

= ê(A∗, g) .

We conclude that Â outputs a forgery with the same probability as A. Since, by
assumption, the Waters scheme is secure, this completes the proof.

We remark that the security reduction in the above proof is tight.

An efficiency improvement. A (slightly) more efficient variant of the above
scheme is also possible. Key generation is the same as before, except that an

74 A. Bender, J. Katz, and R. Morselli

additional, random identifier I ∈ {0, 1}k is also chosen and included in the
public key. Let <lex denote lexicographic order. To sign message M ∈ {0, 1}n

with respect to the ring R = {PK,PK}, first parse PK as (I, g1, u′, u1, . . ., un)
and PK as (Ī, ḡ1, ū′, ū1, . . ., ūn). Choose random r ← Zq. If I ≤lex Ī, compute
w = u′ ·

∏
i:Mi=1 ui and the signature

σ = (s · wr, gr) ;

if Ī <lex I, compute w̄ = ū′ ·
∏

i:Mi=1 ūi and the signature

σ = (s · w̄r, gr) ,

where, in each case, s = ḡα
1 = gᾱ

1 is computed using whichever secret key is
known to the signer. Verification is changed in the obvious way. A proof similar
to the above shows that this scheme satisfies the same security properties as in
Theorem 3.

References

1. M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys.
In Advances in Cryptology — Asiacrypt 2002.

2. B. Adida, S. Hohenberger, and R.L. Rivest. Ad-hoc-group signatures from hijacked
keypairs. Available at http://theory.lcs.mit.edu/~srhohen/papers/AHR.pdf,
2005.

3. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. In Advances in Cryptology — Eurocrypt 2003.

4. A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions,
and constructions without random oracles. Cryptology ePrint Archive, 2005.
http://eprint.iacr.org/2005/304.

5. E. Bresson, J. Stern, and M. Szydlo. Threshold ring signatures and applications
to ad-hoc groups. In Advances in Cryptology — Crypto 2002.

6. D. Chaum and E. van Heyst. Group signatures. In Advances in Cryptology —
Eurocrypt ’91.

7. L. Chen, C. Kudla, and K.G. Patterson. Concurrent signatures. In Advances in
Cryptology — Eurocrypt 2004.

8. S. S.M. Chow, J.K. Liu, and T. H. Yuen. Ring signature without random oracles.
Cryptology ePrint Archive, 2005. http://eprint.iacr.org/2005/317.

9. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In Advances in Cryptology — Crypto ’94.

10. I. Damg̊ard and J.B. Nielsen. Improved non-committing encryption schemes based
on a general complexity assumption. In Advances in Cryptology — Crypto 2000.

11. Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in
ad-hoc groups. In Advances in Cryptology — Eurocrypt 2002.

12. C. Dwork and M. Naor. Zaps and their applications. In Proc. 41st Annual Sym-
posium on Foundations of Computer Science (FOCS). IEEE, 2000.

13. U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge
proofs under general assumptions. SIAM J. Computing, 29(1):1–28, 1999.

Ring Signatures: Stronger Definitions, and Constructions 75

14. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Advances in Cryptology — Crypto ’86.

15. J. Herranz. Some digital signature schemes with collective signers. PhD the-
sis, Universitat Politècnica de Catalunya, Barcelona, April 2005. Available at
http://www.lix.polytechnique.fr/~herranz/thesis.htm.

16. J. Herranz and G. Sáez. Forking lemmas for ring signature schemes. In Progress
in Cryptology — Indocrypt 2003.

17. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their
applications. In Advances in Cryptology — Eurocrypt ’96.

18. J.K. Liu, V.K. Wei, and D.S. Wong. Linkable spontaneous anonymous group
signatures for ad hoc groups. In ACISP 2004.

19. M. Naor. Deniable ring authentication. In Advances in Cryptology — Crypto 2002.
20. R.L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Asiacrypt 2001.

Full version available at http://www.mit.edu/~tauman and to appear in Essays in
Theoretical Computer Science: in Memory of Shimon Even.

21. B. Waters. Efficient identity-based encryption without random oracles. In Advances
in Cryptology — Eurocrypt 2005.

22. J. Xu, Z. Zhang, and D. Feng. A ring signature scheme using bilinear pairings. In
Workshop on Information Security Applications (WISA), 2004.

23. F. Zhang and K. Kim. ID-based blind signature and ring signature from pairings.
In Advances in Cryptology — Asiacrypt 2002.

A ZAPs

Let L be an NP language with associated polynomial-time and polynomially-
bounded witness relation RL (i.e., such that L def= {x | ∃w : (x,w) ∈ RL}). If
(x,w) ∈ RL we refer to x as the statement and w as the associated witness for
x. We now recall the definition of a ZAP from [12]:

Definition 9 (ZAP). A ZAP for an NP language L (with associated witness
relation RL) is a triple (�,P ,V), where �(·) is a polynomial, P is a ppt algorithm,
and V is polynomial-time deterministic algorithm, and such that.

Completeness. For11 any (x,w) ∈ RL and any r ∈ {0, 1}�(k):

Pr [π ← Pr(x,w) : Vr(x, π) = 1] = 1 .

Adaptive soundness. There exists a negligible function ε such that

Pr
[
r ← {0, 1}�(k) : ∃(x, π) : x �∈ L and Vr(x, π) = 1

]
≤ ε(k) .

Witness indistinguishability. (Informal) For any x ∈ L, any pair of wit-
nesses w0, w1 for x, and any r ∈ {0, 1}�(k), the distributions {Pr(x,w0)} and
{Pr(x,w1)} are computationally indistinguishable. (Note: more formally, we
need to speak in terms of sequences {rk ∈ {0, 1}�(k)}, {xk}, and {(wk,0, wk,1)}
but we avoid doing so for simplicity of exposition.)

11 We remark that the definition in [12] allows for a negligible completeness error.
However, their construction achieves perfect completeness when instantiated using
the NIZK of [13].

76 A. Bender, J. Katz, and R. Morselli

A ZAP is used in the following way: The verifier generates a random first message
r ← {0, 1}�(k) and sends it to the prover P . The prover, given r, a statement x,
and associated witness w, sends π ← Pr(x,w) to the verifier. The verifier then
runs Vr(x, π) and accepts iff the output is 1.

B Proofs of Theorems 1 and 2

B.1 Proof of Theorem 1

We restate Theorem 1 for convenience:

If encryption scheme (EGen,Enc,Dec) is semantically secure, signature scheme
(Gen′, Sign′, Vrfy′) is existentially unforgeable under adaptive chosen-message
attacks, and (�,P ,V) is a ZAP for L as described above, then the above ring
signature scheme is (computationally) anonymous against attribution attacks,
and unforgeable w.r.t. insider corruption.

Proof. We prove each of the desired security properties in turn.

Anonymity. For simplicity of exposition, we consider Definition 4 with n = 2;
i.e., we assume only two users. By a straightforward hybrid argument, this im-
plies the general case. Given a ppt adversary A, we consider a sequence of ex-
periments E0, Hybrid0, Hybrid1, E1 such that E0 (resp., E1) corresponds to the
experiment of Definition 4 with b = 0 (resp., b = 1), and such that each exper-
iment is computationally indistinguishable from the one before it. This implies
that A has negligible advantage in distinguishing E0 from E1, as desired.

For convenience, we review experiment E0. Here, two key pairs (PK0 =
(pkS,0, pkE,0, r0), SK0) and (PK1 = (pkS,1, pkE,1, r1), SK1) are generated and
A is given PK0 and the randomness used to generate (PK1, SK1) (by hybrid
argument, we can assume that i0 = 0 and i1 = 1). The adversary is also given
access to a signing oracle (which can be used to obtain signatures computed
using SK0). A then outputs a message M along with a ring of public keys R
containing both PK0 and PK1. Finally, A is given σ ← SignSK0

(M,R).
Experiment Hybrid0 is the same as experiment E0 except that we change how

the signature σ is generated. In particular, step 3 of the ring signing algorithm
is modified as follows: let RE and M∗ be as in the description of the ring signing
algorithm given earlier. In step 3, instead of setting C∗

1 to be an encryption of all
zeros, we now compute σ′

1 ← SignskS,1
(M∗) and then set C∗

1 = Enc∗RE
(σ′

1;ω1).
We stress that, as in E0, the ciphertext C∗

0 is still set to be an encryption of the
signature σ′

0, and the remaining ciphertexts are still encryptions of all zeros.
It is not hard to see that experiment Hybrid0 is computationally indistinguish-

able from experiment E0, assuming semantic security of the encryption scheme
(EGen,Enc,Dec). This follows from the observations that (1) adversary A is not
given the random coins used in generating PK0 and so, in particular, it is not
given the coins used to generate pkE,0; (2) (informally) semantic security of
encryption under EncpkE,0 implies semantic security of encryption using Enc∗RE

as long as pkE,0 ∈ RE (a formal proof is straightforward); and, finally, (3) the

Ring Signatures: Stronger Definitions, and Constructions 77

coins ω1 used in generating C∗
1 are not used in the remainder of the ring signing

algorithm.
Experiment Hybrid1 is the same as Hybrid0 except that we use a different

witness when computing the proof π for the ZAP. In particular, instead of us-
ing witness (σ′

0, ω0) we use the witness (σ′
1, ω1). The remainder of the signing

algorithm is unchanged.
It is relatively immediate that experiment Hybrid1 is computationally indistin-

guishable from Hybrid0, assuming witness indistinguishability of the ZAP. (We
remark that the use of a ZAP, rather than non-interactive zero-knowledge, is
essential here since the adversary may choose the “random string” component
of all the adversarially-chosen public keys any way it likes.) In more detail, we
can construct the following malicious verifier algorithm V∗ using A: verifier V∗

generates (PK0, SK0) and (PK1, SK1) exactly as in experiments Hybrid0 and
Hybrid1, and gives these keys and the appropriate associated random coins to A.
The signing queries of A can easily be answered by V∗. When A makes its sign-
ing query, V∗ computes the C∗

i exactly as in Hybrid1 and then gives to the prover
P the keys {pkS,i}i∈R, the message M∗, the set of keys RE , and the ciphertexts
{C∗

i }i∈R; this defines the NP-statement x exactly as in step 4 of the ring signing
algorithm. In addition, V∗ gives the two witnesses (σ′

0, ω0) and (σ′
1, ω1) to P .

Finally, V∗ sends as its first message the “random string” component r of the
lexicographically-first public key in R (note that this r is the random string that
would be used to generate the proof π in step 4 of the ring signing algorithm).
The prover responds with a proof π ← Pr(x, (σ′

b, ωb)) (for some b ∈ {0, 1}), and
then V∗ outputs (C∗

1 , . . . , C
∗
n, π).

Note that if the prover uses the first witness provided to it by V∗ then the
output of V∗ is distributed exactly according to Hybrid0, while if the prover uses
the second witness provided to it by V∗ then the output of V∗ is distributed ex-
actly according to Hybrid1. Witness indistinguishability of the ZAP thus implies
computational indistinguishability of Hybrid0 and Hybrid1.

We may now notice that Hybrid1 is computationally indistinguishable from E1
by exactly the same argument used to show the indistinguishability of Hybrid0
and E0. This completes the proof.

Unforgeability. Assume there exists a ppt adversary A that breaks the above
ring signature scheme (in the sense of Definition 7) with non-negligible probabil-
ity. We construct an adversary A′ that breaks the underlying signature scheme
(Gen′, Sign′,Vrfy′) (in the standard sense of existential unforgeability) with non-
negligible probability.

A′ receives as input a public key pkS . Let n = n(k) be a bound on the
number of (honest user) public keys that A expects to be generated. A′ runs A
with input public keys S = {PK1, . . . , PKn}, that A′ generates as follows. A′

chooses i∗ ← {1, . . . , n} and sets pkS,i∗ = pkS . The remainder of public key PKi∗

is generated exactly as prescribed by the Gen algorithm, with the exception that
the decryption key skE,i∗ that is generated is not erased. Public keys PKi for
i �= i∗ are also generated exactly as prescribed by the Gen algorithm, again with
the exception that the decryption keys {skE,i} are not erased.

78 A. Bender, J. Katz, and R. Morselli

A′ then proceeds to simulate the oracle queries of A in the natural way:

1. When A requests a signature on message M , with respect to ring R (which
may possibly contain some public keys generated in an arbitrary manner by
A), to be signed by user i �= i∗, then A′ can easily generate the response to
this query by running the Sign algorithm completely honestly;

2. When A requests a signature on messageM , with respect to ring R (which,
again, may possibly contain some public keys generated in an arbitrary man-
ner by A) to be signed by user i∗, then A′ cannot directly respond to this
query since it does not have skS,i∗ . Instead, A′ sets M∗ appropriately, sub-
mits M∗ to its signing oracle, and obtains in return a signature σ′

i∗ . It then
computes the remainder of the ring signature by following the rest of the
Sign algorithm; note, in particular, that skS,i∗ is not needed for this;

3. Any corruption query made by A for a user i �= i∗ can be faithfully an-
swered by A′. On the other hand, if A ever makes a corruption query for i∗,
then A′ simply aborts.

At some point, A outputs a forgery σ̄ = (C̄∗
1 , . . . , C̄

∗
n, π̄) on a message M̄ with

respect to some ring of honest-user public keys R̄ ⊆ S. If PKi∗ �∈ R̄, then A′

aborts. Otherwise, since A′ knows all relevant decryption keys (recall that the
ring R̄ contains public keys of honest users only, and these keys were generated
by A′) it can decrypt C̄∗

i∗ and obtain a candidate signature σ̄i∗ . Finally, A′ sets
M̄∗ = M̄ |PK1 | · · · |PKn′ (where R̄ = {PKi}) and outputs (M̄∗, σ̄i∗). Note
that (by requirement) A never requested a signature on message M̄ with respect
to the ring R̄, and so A′ never requested a signature on message M̄∗ from its
own oracle.

We claim that if A forges a signature with non-negligible probability ε = ε(k),
then A′ forges a signature with probability at least ε′ = ε/n−negl(k). To see this,
note first that if A outputs a valid forgery then with all but negligible probability
(by soundness of the ZAP) it holds that (pkS,i, M̄

∗, R̄E , C̄
∗
i) ∈ L for some i

(where pkS,i and R̄E are defined in the natural way based on the ring R̄ and the
public keys it contains). Conditioned on this, with probability 1/n it is the case
that (1) A′ did not abort and furthermore (2) (pkS,i∗ , M̄∗, R̄E , C̄

∗
i∗) ∈ L. When

this occurs, then with all but negligible probability A′ will recover (by decrypting
as described above) a valid signature σ̄i∗ on the message M̄∗ with respect to the
given public key pkS,i∗ = pkS (relying here on the fact that with all but negligible
probability over choice of encryption public keys the encryption scheme Enc∗ has
zero decryption error). Security of (Gen′, Sign′,Vrfy′) thus implies that ε must
be negligible.

B.2 Proof of Theorem 2

We restate Theorem 2 for convenience:

Under the assumptions of Theorem 1 and assuming (EGen,Enc,Dec) has an
oblivious key generator, the modified ring signature scheme described above is

Ring Signatures: Stronger Definitions, and Constructions 79

(computationally) anonymous against full key exposure, and unforgeable w.r.t.
insider corruption.

Proof. The proof of unforgeability follows immediately from Theorem 1 since,
by Definition 8, the adversary cannot distinguish between the original scheme
(in which the encryption key is generated using EGen) and the modified scheme
(in which the encryption key is generated using OblEGen).

We now argue that the modified scheme achieves anonymity against full key
exposure. First we note that the anonymity against attribution attacks claimed
in Theorem 1 holds even when the adversary is given all random coins used
to generate (PK0, SK0) except for those coins used to generate pkE,0 (using
EGen). Now, if there exists a ppt adversary A that breaks anonymity of the
modified scheme in the sense of full key exposure, we can use it to construct a
ppt adversary A′ that breaks anonymity of the original scheme against attri-
bution attacks. A′ receives PK0, the random coins ωS,1, ωE,1 used to generate
(PK1, SK1), and the random coins ωS,0 used to generate pkS,0 (i.e., A is not
given the coins used to generate pkE,0). Next, A′ runs ω′

E,0 ← OblRand(pkE,0)
and ω′

E,1 ← OblRand(pkE,1) and gives to A the public key PK0 it received as
well as the random coins ωS,0, ω

′
E,0, ωS,1, ω

′
E,1. The remainder of A’s execution

is simulated in the natural way by A′.
Now, Definition 8 implies that the advantage of A in the above is negligibly

close to the advantage of A in attacking the modified scheme in the sense of
full key exposure. But the advantage of A in the above is exactly the advantage
of A′ in attacking the original scheme via key attribution attack. Since we have
already proved that the original scheme is anonymous against attribution attacks
(cf. Theorem 1), we see that the modified scheme is anonymous against full key
exposure.

Efficient Blind and Partially Blind Signatures
Without Random Oracles

Tatsuaki Okamoto

NTT Laboratories, Nippon Telegraph and Telephone Corporation,
1-1 Hikarino-oka, Yokosuka, 239-0847 Japan

okamoto.tatsuaki@lab.ntt.co.jp

Abstract. This paper proposes a new efficient signature scheme from
bilinear maps that is secure in the standard model (i.e., without the
random oracle model). Our signature scheme is more effective in many
applications (e.g., blind signatures, group signatures, anonymous cre-
dentials etc.) than the existing secure signature schemes in the stan-
dard model such as the Boneh-Boyen [6], Camenisch-Lysyanskaya [10],
Cramer-Shoup [15] and Waters [33] schemes (and their variants). The
security proof of our scheme requires a slightly stronger assumption, the
2SDH assumption, than the SDH assumption used by Boneh-Boyen. As
typical applications of our signature scheme, this paper presents effi-
cient blind signatures and partially blind signatures that are secure in
the standard model. Here, partially blind signatures are a generalization
of blind signatures (i.e., blind signatures are a special case of partially
blind signatures) and have many applications including electronic cash
and voting. Our blind signature scheme is much more efficient than the
existing secure blind signature schemes in the standard model such as
the Camenisch-Koprowski-Warinsch [8] and Juels-Luby-Ostrovsky [22]
schemes, and is also almost as efficient as the most efficient blind sig-
nature schemes whose security has been analyzed heuristically or in the
random oracle model. Our partially blind signature scheme is the first
one that is secure in the standard model and it is very efficient (almost
as efficient as our blind signatures). We also present a blind signature
scheme based on the Waters signature scheme.

1 Introduction

1.1 Background

Digital Signatures. The concept of digital signatures was invented by Diffie
and Hellman [17], and their security was formalized by Goldwasser, Mical and
Rivest [21]. A secure signature scheme exists if and only if a one-way function
exists [26,32]. However, the general solution is far from yielding any practical
applications.

Using the random oracle model, much more efficient secure signature schemes
have been presented such as RSA-FDH, RSA-PSS, Fiat-Shamir and Schnorr
signature schemes. However, the random oracle model cannot be realized in the

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 80–99, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Blind and Partially Blind Signatures Without Random Oracles 81

standard (plain) model. In addition, signatures with hash functions (random
oracles) are less suitable to several applications (e.g., group signatures).

Several efficient schemes that are secure in the standard model have recently
been presented. There are two classes of such schemes, ones are based on the
strong RSA assumption (i.e., based on the integer factoring (IF) problem), while
the others are based on bilinear maps (i.e., based on the discrete logarithm
(DL) problem). The Camenisch-Lysyanskaya [10], Cramer-Shoup [15], Fischlin
[19] and Gennaro-Halevi-Rabin [20] schemes are based on the strong RSA as-
sumption. The Boneh-Boyen [6], Camenisch-Lysyanskaya [10], and Waters [33]
schemes are based on bilinear maps.

Digital signatures not only provide basic signing functionality but also are
important building blocks for many applications such as blind signatures (for
electronic voting and electronic cash), group signatures and credentials. In the
light of these applications, the schemes based on bilinear maps (i.e., based on
the discrete logarithm problem) are better than those based on the strong RSA
assumption (i.e., based on the integer factoring problem), since we can often more
easily construct efficient protocols based on the DL problem (because the order of
a DL-based group can be published but the order of an IF-based multiplicative
group cannot), and the data size is shorter with bilinear maps than with IF
problems.

Among the bilinear-map-based schemes, the Boneh-Boyen scheme is not suit-
able to many applications such as blind signatures and credentials, since the
signature forms σ ← g1/(x+m+sy), where (x, y) is the secret key, m is a mes-
sage and (σ, s) is the signature, so it is hard to separate an operation (blinding,
encryption etc.) with m from another operation that uses the secret key.

The Waters scheme is better than the Boneh-Boyen scheme, since a message
operation, through the form

∏
i∈M ui, can be separated from another operation

that uses the secret key. However, as shown in Section 9 the protocol of proving
the knowledge of a message is not so efficient.

Blind Signatures. Since the concept of blind signatures was introduced by
Chaum [13], it has been used in numerous applications, most prominently in
electronic voting and electronic cash. Informally, blind signatures allow a user
to obtain signatures from a signer on any document in such a manner that the
signer learns nothing about the message that is being signed. The security of
blind signatures was formalized by [22,28].

Even in the random oracle model, only a few secure blind signature schemes
have been proposed [1,4,27,28,29,30]; [4] requires a non-standard strong assump-
tion and [28,29,30] only allow a user to make a poly-logarithmically (not poly-
nomially) bounded number of interactions with a signer, while [1,27] are secure
for a polynomially number of interactions.

Only two secure blind signature schemes have been presented in the standard
model [8,22]. However, the construction of [22] is based on a general two-party
protocol and is thus extremely inefficient. The solution of [8] is much more ef-
ficient than that of [22], but it is still much less efficient than the secure blind
signature schemes in the random oracle model [1,4,27,28,29,30]. For example,

82 T. Okamoto

the protocol of [8] is much more complicated (where proofs of knowledge for at
least 40 variables are required for a user) than that of [4,28,29], and requires
many interactions between user and signer. Recently, a new blind signature
scheme that is concurrently secure without random oracles has been presented
[23], but it is not in the standard model but in the common reference string
(CRS) model.

Partially Blind Signatures. One particular shortcoming of the concept of
blind signatures is that, since the singer’s view of the message to be signed is
completely blocked, the signer has no control over the attributes except for those
bound by the public key. For example, a shortcoming can be seen in a simple
electronic cash system where a bank issues a blind signature as an electronic
coin. Since the bank cannot set the value on any blindly issued coin, it has to
use different public keys for different coin values. Hence the shops and customers
must always carry a list of those public keys in their electronic wallet, which is
typically a smart card whose memory is very limited. Some electronic voting
schemes also face the same problem.

A partially blind signature scheme allows the signer to explicitly include com-
mon information in the blind signature under some agreement with the receiver.
This concept is a generalization of blind signatures since the (normal) blind
signatures are a special case of partially blind signatures where the common
information is a null string.

The notion of partially blind signatures was introduced in [2], and the formal
security definition and a secure partially blind signature scheme in the random
oracle model were presented by [3]. However, no partially blind signature scheme
secure in the standard model has been proposed.

1.2 Our Result

This paper proposes new digital signatures, blind signatures, and partially blind
signatures that are secure in the standard model:

– (Digital signatures:)
We propose a new efficient signature scheme secure in the standard model
that is more suitable to many applications than the existing signature
schemes secure in the standard model [6,10,15,33]. The security proof of
our scheme requires a slightly stronger assumption, the 2SDH assumption,
than the SDH assumption used by [6].

– (Blind signatures:)
We propose a secure blind signature scheme in the standard model that
is almost as efficient as the most efficient blind signature schemes whose
security has been analyzed heuristically or in the random oracle model.

– (Partially blind signatures:)
We propose the first secure partially blind signature scheme in the standard
model. This scheme is almost as efficient as our blind signatures.

The proposed (partially) blind signature scheme is secure for polynomially
many synchronized (or constant-depth concurrent) attacks, but not for general

Efficient Blind and Partially Blind Signatures Without Random Oracles 83

concurrent attacks. This paper presents an efficient way to convert our (partially)
blind signature scheme in the standard model to a scheme secure for general
concurrent attacks in the common reference string (CRS) model.

This paper also presents (partially) blind signatures from the Waters scheme
that are secure in the standard model under the BDH assumption. The (par-
tially) blind signatures are much less practical than the above-mentioned pro-
posed scheme.

2 Preliminaries

2.1 Definition of Secure (Partially) Blind Signature Scheme

In this section we recall the definition of a secure partially blind signature scheme
[3,8]. Note that this definition includes that of a secure blind signature scheme
[22] as a special case where the piece of information shared by the signer and
user, info, is a null string, ⊥ (i.e., info = ⊥).

Although our definition is based on [3,8], our blindness definition is slightly
stronger than [3,8] as follows:

– Signer S∗ can arbitrarily choose pk in ours, while pk must be honestly gen-
erated in [3,8].

– Even if only one of two users, U0 or U1, outputs a valid signature, S∗ is
allowed to obtain the valid signature and output the decision, b′, in our
definition, while only when both users, U0 and U1, output valid signatures,
S∗ is allowed to obtain them in [3,8].

Partially Blind Signature Scheme. In the scenario of issuing a partially
blind signature, the signer and the user are assumed to agree on a piece of com-
mon information, denoted as info. In some applications, info may be decided
by the signer, while in other applications it may just be sent from the user to
the signer. Anyway, this negotiation is done outside of the signature scheme,
and we want the signature scheme to be secure regardless of the process of
agreement.

Definition 1. (Partially Blind Signature Scheme) A Partially blind signature
scheme is made up of four (interactive) algorithms (machines) (G,S,U ,V).

– G is a probabilistic polynomial-time algorithm that takes security parameter
n and outputs a public and secret key pair (pk, sk).

– S and U are a pair of probabilistic interactive Turing machines each of which
has a public input tape, a private input tape, a private random tape, a private
work tape, a private output tape, a public output tape, and input and output
communication tapes. The random tape and the input tapes are read-only,
and the output tapes are write-only. The private work tape is read-write.
The public input tape of U contains pk generated by G(1n) and info. The
public input tape of S contains info. The private input tape of S contains
sk, and that for U contains message m. S and U engage in the signature

84 T. Okamoto

issuing protocol and stop in polynomial-time in n. When they stop, the public
output tape of S contains either completed or not-completed. Similarly,
the private output tape of U contains either ⊥ or (m,σ).

– V is a (probabilistic) polynomial-time algorithm that takes (pk, info,m, σ) and
outputs either accept or reject.

Definition 2. (Completeness) If S and U follow the signature issuing protocol
with common input (pk, info), then, with probability of at least 1−1/nc for suffi-
ciently large n and some constant c, S outputs completed, and U outputs (m,σ)
that satisfies V(pk, info,m, σ) = accept. The probability is taken over the coin
flips of G, S and U .

We say message-signature tuple (info,m, σ) is valid with regard to pk if it leads
V to accept.

Partial Blindness. To define the blindness property, let us introduce the fol-
lowing game among adversarial signer S∗ and two honest users U0 and U1.

1. Adversary S∗(1n, info) outputs pk and (m0,m1).
2. Set up the input tapes of U0, U1 as follows:

– Randomly select b ∈ {0, 1} and put mb and mb̄ on the private input
tapes of U0 and U1, respectively (b̄ denotes 1 − b hereafter).

– Put (info, pk) on the public input tapes of U0 and U1.
– Randomly select the contents of the private random tapes.

3. Adversary S∗ engages in the signature issuing protocol with U0 and U1.
4. If U0 and U1 output valid signatures (info,mb, σb) and (info,mb̄, σb̄), respec-

tively, then give those outputs to S∗ in random order. If either U0 or U1
outputs a valid signature, (info,mb, σb) or (info,mb̄, σb̄), then give this out-
put to S∗. Give ⊥ to S∗ otherwise.

5. S∗ outputs b′ ∈ {0, 1}.

We define
Advblind

PBS = 2 · Pr[b′ = b] − 1,

where the probability is taken over the coin tosses made by S∗, U0 and U1.

Definition 3. (Partial Blindness) Adversary S∗ (t, ε)-breaks the blindness of a
partially blind signature scheme if S∗ runs in time at most t, and Advblind

PBS is
at least ε. A partially blind signature scheme is (t, ε)-blind if no adversary S∗

(t, ε)-breaks the blindness of the scheme.

Remark. (Partially Perfect Blindness) As usual, one can go for a stronger notion
of blindness depending on the power of the adversary and its success probability.
A scheme provides partially perfect blindness if it is (∞, 0)-blind.

Unforgeability. To define unforgeability, let us introduce the following game
among adversarial user U∗ and an honest signer S.

1. (pk, sk) is generated by G(1n), pk is put on the public input tapes of U∗ and
S, and sk is put on the private input tape of S.

Efficient Blind and Partially Blind Signatures Without Random Oracles 85

2. For each run of the signature issuing protocol with S, adversary U∗ outputs
info, which is put on the public input tape of S. Then, U∗ engages in the
signature issuing protocol with S in a concurrent and interleaving way.

3. For each info, let �info be the number of executions of the signature issuing
protocol where S outputs completed, given info on its input tape. (For info
that has never appeared on the input tape of S, define �info = 0.) Even when
info = ⊥, �⊥ is also defined in the same manner.

4. U∗ wins the game if U∗ output � valid signatures (info,m1, σ1), . . . ,
(info,m�, σ�) for some info such that
(a) mi �= mj for any pair (i, j) with i �= j (i, j ∈ {1, . . . , �}).
(b) � > �info.

We define Advunforge
PBS to be the probability that U∗ wins the above game, taken

over the coin tosses made by U∗, G and S.

Definition 4. (Unforgeability) An adversary U∗ (t, qS , ε)-forges a partially blind
signature scheme if U∗ runs in time at most t, U∗ executes at most qS times the
signature issuing protocol, and Advunforge

PBS is at least ε. A partially blind signature
scheme is (t, qS , ε)-unforgeable if no adversary U∗ (t, qS , ε)-forges the scheme.

2.2 Bilinear Groups

This paper follows the notation regarding bilinear groups in [7,6]. Let (G1,G2)
be bilinear groups as follows:
1. G1 and G2 are two cyclic groups of prime order p, where possibly G1 = G2,
2. g1 is a generator of G1 and g2 is a generator of G2,
3. ψ is an isomorphism from G2 to G1, with ψ(g2) = g1,
4. e is a non-degenerate bilinear map e : G1 × G2 → GT , where |G1| = |G2| =

|GT | = p, i.e.,
(a) Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab,
(b) Non-degenerate: e(g1, g2) �= 1 (i.e., e(g1, g2) is a generator of GT),

5. e, ψ and the group action in G1, G2 and GT can be computed efficiently.

3 Assumptions

Here we introduce a new assumption, the 2-variable strong Diffie-Hellman
(2SDH) assumption on which the security of the proposed signature scheme
is based.

q 2-Variable Strong Diffie-Hellman (q-2SDH) Problem. Let (G1,G2) be
bilinear groups shown in Section 2.2. The q-2SDH problem in (G1,G2) is defined

as follows: given a (2q + 6)-tuple (g1, g2, gx
2 , . . . , g

xq

2 , gy
2 , g

yx
2 , . . . , gyxq

2 , g
y+b
x+a

2 , a, b)

as input, output pair (g
1

x+c

1 , c) where c ∈ Z∗
p. Algorithm A has advantage,

Adv2SDH(q), in solving q-2SDH in (G1,G2) if

Adv2SDH(q) ← Pr[A(g1, g2, gx
2 , . . . , g

xq

2 , gy
2 , g

yx
2 , . . . , gyxq

2 , g
y+b
x+a

2 , a, b)=(g
1

x+c

1 , c)],

where the probability is taken over the random choices of g2 ∈ G2, x, y, a, b ∈ Z∗
p,

and the coin tosses of A.

86 T. Okamoto

Definition 5. Adversary A (t, ε)-breaks the q-2SDH problem if A runs in time
at most t and Adv2SDH(q) is at least ε. The (q, t, ε)-2SDH assumption holds if
no adversary A (t, ε)-breaks the q-2SDH problem.

Variant of q 2-Variable Strong Diffie-Hellman (q-2SDHS) Problem.
The q-2SDHS problem in (G1,G2) is defined as follows: given a (3q + 4)-tuple

(g1, g2, gx
2 , g

y
2 , g

y+b1
x+a1
2 , . . . , g

y+bq
x+aq

2 , ga1
2 , . . . , g

aq

2 , b1, . . . , bq) as input, output a pair

(g
y+d
x+c

1 , gc
2, d) where b1, . . . , bq, d ∈ Z∗

p and d �∈ {b1, . . . , bq}. Algorithm A has
advantage, Adv2SDHS

(q), in solving q-2SDHS in (G1,G2) if

Adv2SDHS
(q)

← Pr[A(g1, g2, gx
2 , g

y
2 , g

y+b1
x+a1
2 , . . . , g

y+bq
x+aq

2 , ga1
2 , . . . , g

aq

2 , b1, . . . , bq)=(g
y+d
x+c

1 , gc
2, d)],

where b1, . . . , bq, d ∈ Z∗
p and d �∈ {b1, . . . , bq}, and the probability is taken over

the random choices of g2 ∈ G2, x, y, a1, b1, . . . , aq, bq ∈ Z∗
p, and the coin tosses

of A.

Definition 6. Adversary A (t, ε)-breaks the q-2SDHS problem if A runs in time
at most t and Adv2SDHS

(q) is at least ε. The (q, t, ε)-2SDHS assumption holds
if no adversary A (t, ε)-breaks the q-2SDHS problem.

Remark 1. We occasionally drop t and ε and refer to the q-2SDH (or q-2SDHS)
assumption rather than the (q, t, ε)-2SDH (or (q, t, ε)-2SDHS) assumption. We
also sometimes drop q- and S and refer to the 2SDH assumption rather than the
q-2SDH or q-2SDHS assumption.

Remark 2. (Relation between the 2SDH and 2SDHS assumptions)

The 2SDH and 2SDHS assumptions are closely related in a manner similar to
the equivalence of (q−1)-wDHA assumption and q-CAA assumption [25], where

the q-wDHA problem is to output g
1
x
1 , given a (q + 2)-tuple (g1, g2, gx

2 , . . . , g
xq

2)

as input, and the q-CAA problem is to output pair (g
1

x+c

1 , c) where c ∈ Z∗
p and

c �∈ {a1, . . . , aq}, given a (2q + 3)-tuple (g1, g2, gx
2 , g

1
x+a1
2 , . . . , g

1
x+aq

2 , a1, . . . , aq)
as input.

4 The Proposed Signature Scheme

This section presents the proposed secure signature scheme in the standard
model under the 2SDH assumption.

Let (G1,G2) be bilinear groups as shown in Section 2.2. Here, we assume that
the message, m, to be signed is an element in Z∗

p, but the domain can be extended
to all of {0, 1}∗ by using a collision resistant hash function H : {0, 1}∗ → Z∗

p, as
mentioned in Section 3.5 in [6].

Efficient Blind and Partially Blind Signatures Without Random Oracles 87

4.1 Signature Scheme

Key Generation. Randomly select generators g2, u2, v2 ∈ G2 and set g1 ←
ψ(g2), u1 ← ψ(u2), and v1 ← ψ(v2). Randomly select x ∈ Z∗

p and compute
w2 ← gx

2 ∈ G2. The public and secret keys are:

Public key: g1, g2, w2, u2, v2
Secret key: x

Signature Generation. Let m ∈ Z∗
p be the message to be signed. Signer S

randomly selects r and s from Z∗
p, and computes

σ ← (gm
1 u1v

s
1)

1/(x+r).

Here 1/(x+r) mod p (and m/(x+r) mod p and s/(x+r) mod p) are computed.
In the unlikely event that x+r ≡ 0 mod p, we try again with a different random
r. (σ, r, s) is the signature of m.

Signature Verification. Given public-key (g1, g2, w2, u2, v2), message m, and
signature (σ, r, s), check that m, r, s ∈ Z∗

p, σ ∈ G1, σ �= 1, and

e(σ,w2g
r
2) = e(g1, gm

2 u2v
s
2).

If they hold, the verification result is valid; otherwise the result is invalid.

Remark. Here we assume that g1 = ψ(g2) has been confirmed when the public-
key is registered. Alternatively, g1 = ψ(g2) can be confirmed in the signature
verification procedure, or g1 is not included in the public-key and g1 = ψ(g2) is
calculated in the signature verification process.

4.2 A Performance Improvement Technique (Precomputation)

By introducing additional secret key y, z ∈ Z∗
p such that u2 = gy

2 and v2 = gz
2 ,

we can apply a precomputation technique for signature generation.
Before getting message m, signer S randomly selects r, δ from Z∗

p, and com-

putes σ ← g
δ/(x+r)
1 as the precomputation of a signature. Given message m, S

computes s such that s ← (δ −m − y)/z mod p, where 1/z mod p can be also
precomputed.

4.3 Security

Theorem 1. If the (qS + 1, t′, ε′)-2SDH assumption holds in (G1,G2), the pro-
posed signature scheme is (t, qS , ε)-strongly-existentially-unforgeable against adap-
tive chosen message attacks, provided that

ε ≥ 3qSε
′, and t ≤ t′ −Θ(q2ST),

where T is the maximum time for a single exponentiation in G1 and G2.

88 T. Okamoto

Proof. (Sketch) Assume A is an adversary that (t, qS , ε)-forges the signature
scheme. We will then construct algorithm B that breaks the (qS + 1)-2SDH
assumption with (t′, ε′). Hereafter, we often use q ← qS + 1 (as well as qS).

An informal outline of our proof is as follows: First we classify the output
(forgery) of A into three types (Types-1,2,3). We will then show that any type
of output allows B to break the q-2SDH assumption. Type-1 forgery leads to
breaking the q-SDH (to which q-2SDH is reducible) assumption in a manner
similar to that in [6]. Type-2 forgery leads to breaking the q-2SDH assumption

by producing g
1

x+b

2 from the q-2SDH problem including g
y+a
x+b

2 . Type-3 forgery
leads to breaking the discrete logarithm (to which q-2SDH is reducible).

First, we introduce three types of forgers, A. Let (g1, g2, w2, u2, v2) be given
to A as a public-key, and z ← logg2

v2 ∈ Z∗
p (i.e., v2 = gz

2). Suppose A asks for
signatures on messages m1, . . . ,mqS

∈ Z∗
p and is given signatures (σi, ri, si) for

i = 1, . . . , qS on these messages. The three types of forgers are as follows:

Type-1 forger outputs forged signature (m∗, σ∗, r∗, s∗) such that r∗ �∈ {r1, r2,
. . . , rqS

}.
Type-2 forger outputs forged signature (m∗, σ∗, r∗, s∗) such that r∗ ∈ {r1, r2,

. . . , rqS
} (i.e., r∗ = rk for some k ∈ {1, . . . , qS}) and m∗ + s∗z �≡ mk + skz

(mod p).
Type-3 forger outputs forged signature (m∗, σ∗, r∗, s∗) such that r∗1 ∈ {r1, r2,

. . . , rqS
} (i.e., r∗ = rk for some k ∈ {1, . . . , qS}) and m∗ + s∗z ≡ mk+ skz

(mod p). Note that in this case s∗ �= sk, since s∗ = sk implies m∗ = mk and
σ∗ = σk.

Algorithm B is constructed as follows:

1. (Input:)
(g1, A0, A1, . . . , Aq, B0, B1, . . . , Bq, C, a, b), where Ai = gxi

2 , Bi = gyxi

2 , and

C = g
y+b
x+a

2 (i = 0, 1, . . . , q).
2. (Coin flip:)

Algorithm B first picks a random value ctype ∈ {1, 2, 3} that indicates its
guess for the type of forger that A will emulate. The subsequent actions
performed by B differ with ctype ∈ {1, 2, 3} as follows:

3. (If ctype = 1;)
In this case, q-SDH assumption is broken in a manner similar to that shown
in [6].

4. (If ctype = 2;)

(a) (Key setup)
B randomly selects z, ri(�= a) (i = 1, . . . , q − 1) from Z∗

p. Let f(X) ←∏q−1
i=1 (X + ri) mod p =

∑q−1
i=0 βiX

i. B can efficiently calculate βi ∈ Z∗
p

(i = 0, . . . , q − 1) from ri (i = 1, . . . , q − 1).
B computes

Efficient Blind and Partially Blind Signatures Without Random Oracles 89

g′2 ←
q−1∏
i=0

Aβi

i = g
f(x)
2 , w′

2 ←
q−1∏
i=0

Aβi

i+1 = (g′2)
x,

u′2 ←
q−1∏
i=0

Bβi

i = (g′2)
y, v′2 ← (g′2)

z.

Let g′1 ← ψ(g′2), u
′
1 ← ψ(u′2) and v′1 ← ψ(v′2).

B gives (g′1, g
′
2, w

′
2, u

′
2, v

′
2) to A as a public-key of the signature scheme.

(b) (Simulation of signing oracle)
Upon receiving a query to the signing oracle, B simulates the reply to A
as follows:
Let fi(X) ← f(X)/(X+ri) mod p =

∏q−1
j=1,j �=i(X+ri) mod p =

∑q−2
j=0 γj

Xj . B can efficiently calculate γj ∈ Z∗
p (j = 0, . . . , q − 2) from rl (l �=

i ∧ l = 1, . . . , q − 1).
First, B randomly selects k ∈ {1, 2, . . . , q − 1}.
For each query i ∈ {1, 2, . . . , k − 1, k + 1, q − 1} (i.e., i �= k) with mes-
sage mi from A to the signing oracle, B randomly selects si ∈ Z∗

p, and
computes

σi ←
(q−2∏

j=0

ψ(Aj)γj

)mi+siz

(
q−2∏
j=0

ψ(Bj)γj) = (g′1)
(mi+y+siz)/(x+ri).

B returns (σi, ri, si) to A as the reply to the query. Clearly this is a valid
signature for public-key (g′1, g

′
2, w

′
2, u

′
2, v

′
2).

For the k-th query with message mk from A to the signing oracle, B
computes ωi, d ∈ Z∗

p (i = 1, . . . , q − 2) such that f(X) = c(X)(X + a) +
d mod p, c(X) ←

∑q−2
i=0 ωiX

i and d ∈ Z∗
p, and computes

σk ← ψ(C)d
(q−2∏

i=0

ψ(Ai)ωi

)b
q−2∏
i=0

ψ(Bi)ωi = (g′1)
(mk+y+skz)/(x+rk),

sk ← (b−mk)/z mod p, rk ← a.

B returns (σk, rk, sk) to A as the reply to the query.
(c) (Output) When A outputs a (valid) forgery (m∗, σ∗, r∗, s∗), B checks

whether r∗ = a and m∗ + s∗z �≡ mk + skz (mod p). If r∗ �= a or m∗ +
s∗z ≡ mk+skz (mod p), then B outputs failure and aborts. Otherwise,
m∗ + s∗z �≡ mk + skz (mod p). Let b∗ ← m∗ + s∗z mod p. (Here b =
mk + skz mod p). Since b∗ �= b, B can compute

η ←
(

(σ∗/σk)1/(b∗−b)∏q−2
i=0 ψ(Ai)ωi

)1/d

= g
1/(x+a)
1 .

B outputs (η, a).

90 T. Okamoto

5. (If ctype = 3;)
(a) (Key setup)

B randomly selects x′, y′ from Z∗
p.

B computes

g′2 ← A0 = g2, w′
2 ← (g′2)

x′
, u′2 ← (g′2)

y′
, v′2 ← A1 = gx

2 .

Here we rename x as z′ just for representation, so

v′2 = (g′2)
z′
.

Let g′1 ← g1.
B gives (g′1, g

′
2, w

′
2, u

′
2, v

′
2) to A as a public-key of the signature scheme.

(b) (Simulation of signing oracle) Since B knows x′, the simulation of the
signing oracle exactly replicates the signing oracle.

(c) (Output) When A outputs a (valid) forgery (m∗, σ∗, r∗, s∗), B checks
whether r∗ ∈ {r1, . . . , rqS

} (i.e., r∗ = rk for some k ∈ {1, . . . , qS}) and
s∗ �= sk. If r∗ �∈ {r1, . . . , rqS

} or s∗ �= sk, then B outputs failure and
aborts. Otherwise, B computes

z∗ ← (mk −m∗)/(s∗ − sk) mod p,

and checks whether A1 = Az∗

0 . If it holds, z∗ = z′ = x. B then randomly
selects c ∈ Z∗

p and can compute η ← g
1/(z∗+c)
1 = g

1/(x+c)
1 .

B outputs (η, c).

Since the value of ctype is independent from the type of forgery, B breaks the
q-2SDH assumption with probability at least ε/(3qS). �

5 Variant of the Proposed Signature Scheme

This section presents a slight variant of the proposed signature scheme presented
in the previous section. This variant is used by our blind signatures.

5.1 Signature Scheme

The variant scheme is the same as the proposed signature scheme except for
the signature generation and verification parts as follows: in this variant, the
signature is

(σ ← (gm
1 u1v

s
1)

1/(x+r), α ← gr
2, s),

while in the proposed signature scheme in Section 4, the signature is (σ, r, s).
The signature verification equation of this variant is

e(σ,w2α) = e(g1, gm
2 u2v

s
2),

while the proposed signature scheme in Section 4, the signature verification equa-
tion is e(σ,w2g

r
2) = e(g1, gm

2 u2v
s
2).

Efficient Blind and Partially Blind Signatures Without Random Oracles 91

5.2 Security

Theorem 2. If the (qS , t
′, ε′)-2SDHS assumption holds in (G1,G2), the pro-

posed signature scheme is (t, qS , ε)-existentially-unforgeable against adaptive cho-
sen message attacks, provided that

ε ≥ 2ε′, and t ≤ t′ −O(qST),

where T is the maximum time for a single exponentiation in G1 and G2.

The proof is shown in the full paper version.

6 The Proposed (Partially) Blind Signature Scheme

This section shows the proposed partially blind signature scheme, which includes
our blind signature scheme as a special case where m0 = 0 or h2 = 1.

6.1 Partially Blind Signature Scheme

Let (G1,G2) be bilinear groups as shown in Section 2.2. Here, we also assume
that the messages, m0 and m1, to be (partially blindly) signed are elements in
Z∗

p, but the domain can be extended to all of {0, 1}∗ by using a collision resistant
hash function H : {0, 1}∗ → Z∗

p, as mentioned in Section 3.5 in [6].

Key Generation. Randomly select generators g2, u2, v2, h2 ∈ G2 and set g1 ←
ψ(g2), u1 ← ψ(u2), v1 ← ψ(v2), and h1 ← ψ(h2). Randomly select x ∈ Z∗

p and
compute w2 ← gx

2 ∈ G2. The public and secret keys are:

Public key: g1, g2, w2, u2, v2, h2
Secret key: x

Partially Blind Signature Generation.

1. Signer S and user U agree on common information m0 (which is info in
Section 2.1) in an predetermined way.

2. U randomly selects s, t ∈ Z∗
p, computes

X ← hm0t
1 gm1t

1 ut
1v

st
1 ,

and sends X to S. Here, m1 is the message to be blindly signed along
with common information m0. In addition, U proves to S that U knows
(t,m1t, t, st) for X = (hm0

1)tgm1t
1 ut

1v
st
1 using the witness indistinguishable

proof as follows:
(a) U randomly selects a1, a2, a3 from Z∗

p, computes

W ← (hm0
1)a2ga1

1 ua2
1 va3

1 ,

and sends W to S.
(b) S randomly selects η ∈ Z∗

p and sends η to U .

92 T. Okamoto

(c) U computes

b1 ← a1 + ηm1t mod p, b2 ← a2 + ηt mod p, b3 ← a3 + ηst mod p,

and sends (b1, b2, b3) to S.
(d) S checks whether the following equation holds or not:

(hm0
1)b2gb1

1 u
b2
1 v

b3
1 = WXη.

If it holds, S accepts. Otherwise, S rejects and aborts.
3. If S accepts the above protocol, S randomly selects r ∈ Z∗

p. In the unlikely
event that x+ r ≡ 0 mod p, S tries again with a different random r. S also
randomly selects � ∈ Z∗

p, computes

Y ← (Xv�
1)

1/(x+r) and R ← gr
2,

and sends (Y,R, �) to U .
Here, Y = (Xv�

1)
1/(x+r) = (hm0

1 gm1
1 u1v

s+�/t
1)t/(x+r).

4. U randomly selects f ∈ Z∗
p, and computes

τ = (ft)−1 mod p, σ ← Y τ , α ← wf−1
2 Rf , β ← s+ �/t mod p.

Here, σ = (hm0
1 gm1

1 u1v
s+�/t
1)1/(fx+fr) = (hm0

1 gm1
1 u1v

s+�/t
1)1/(x+(f−1)x+fr) =

(hm0
1 gm1

1 u1v
β
1)1/(x+δ), and α = wf−1

2 Rf = g
(f−1)x+fr
2 = gδ

2, where δ =
(f − 1)x+ fr mod p.

5. (σ, α, β) is the partially blind signature of (m0,m1), where m0 is common
information between S and U , and m1 is blinded to S.

Signature Verification. Given public-key (g1, g2, w2, u2, v2, h2), common in-
formationm0, messagem1, and signature (σ, α, β), check thatm0 ∈ Z∗

p,m1 ∈ Z∗
p,

β ∈ Zp, σ �= 1, σ ∈ G1, α ∈ G2, and

e(σ,w2α) = e(g1, hm0
2 gm1

2 u2v
β
2).

6.2 Security

Theorem 3. The proposed blind signature scheme (m0 = 0 or h2 = 1) is per-
fectly blind.

Proof. Even if dishonest signer S∗ outputs any public-key, (g2, w2, u2, v2) ∈
(G2)4 and g1 = ψ(g2), the view of S∗, (X,W, η, b1, b2, b3) as well as S’s random-
ness, in the signature generation protocol is perfectly (information theoretically)
independent from the value of (m, s, f), since X = (gm

1 u1v
s
1)

t is perfectly inde-
pendent from (m, s), the protocol is witness indistinguishable with respect to
(m, s) against any dishonest S∗, and f is not used in the protocol with S∗.

Hence, the value of (m, δ, β) is perfectly independent from the view of S∗,
where δ = (x+r)f−x mod p and β ← s+�/t mod p. Here, σ = (gm

1 u1v
β
1)1/(x+δ),

α = gδ
2, and (σ, α, β) is the (blind) signature of m. Therefore, the signature along

with m, (m,σ, α, β), is also perfectly independent from the view of S∗, since σ
and α are perfectly dependent on (m, δ, β). �

Efficient Blind and Partially Blind Signatures Without Random Oracles 93

Definition 7. Let suppose a protocol between two parities, Alice and Bob. In a
round of the protocol, Alice and Bob exchange messages, a, b, c, . . . , d, where the
first move is Alice (i.e., Alice sends a and Bob returns b etc.). We now con-
sider q rounds of the protocol execution. Here (ai, bi, ci, . . . , di) is the exchanged
messages in the i-th round (i = 1, . . . , q). We say that a protocol between Alice
and Bob is executed in a synchronized run of q rounds of the protocol, if the q
rounds of the protocol consists of L sequential intervals and each interval, or the
j-th interval (j = 1, . . . , L), consists of the parallel run of qj (qj ∈ {1, . . . , q}
rounds of the protocol. q = q1 + · · · + qL. Therefore, the first interval consists
of: the first move from Alice is (a1, a2, . . . , aq1), the second move from Bob is
(b1, a2, . . . , bq1), and so on. After completing the first interval, the second inter-
val starts and consists of: the first move from Alice is (aq1+1, aq1+2, . . . , aq1+q2),
the second move from Bob is (bq1+1, bq1+2, . . . , bq1+q2), and so on.

Clearly the synchronized run is a generalization of the parallel and sequential
runs.

Theorem 4. If the (qS , t
′, ε′)-2SDHS assumption holds in (G1,G2), the pro-

posed blind signature scheme (m0 = 0 or h2 = 1) is (t, qS , ε)-unforgeable against
an L-interval synchronized run of adversaries, provided that

ε′ ≤ 1 − 1/(L+ 1)
16

· ε, and t′ ≥ 24L log (L+ 1)
ε

· (t+Θ(T)) +Θ(qST),

where T is the maximum time for a single exponentiation in G1 and G2.

Proof. (Sketch)
Assume A is an adversary that (t, qS , ε)-forges the blind signature scheme.

We will then construct an algorithm B that (t′′, qS , ε
′′)-forges the proposed sig-

nature scheme (basic signature scheme) presented in Section 5. This leads to an
algorithm that breaks the 2SDHS assumption with (qS , t

′′ + O(qST), ε′′/2) by
Theorem 2.

B, given (g1, g2, w2, u2, v2) as a public key of the basic signature scheme, pro-
vides them to A as a public key for blind signatures.

B is allowed to access the signing oracle of the basic signature scheme qS

times. By using this signing oracle, B plays the role of an honest signer against
A (dishonest user).

First, A requests B to sign X along with the witness indistinguishable (WI)
protocol on witness (mt mod p, t, st mod p) against B’s random challenge η ∈ Z∗

p.
After completing the WI protocol, B resets A to the initial state of the WI
protocol and runs the same procedure with the same commitment value of W
and another random challenge η′ ∈ Z∗

p (η �= η′). If B succeeds in completing the
WI protocol twice with different challenges η and η′ such that

gb1
1 u

b2
1 v

b3
1 = WXη, g

b′
1

1 u
b′
2

1 v
b′
3

1 = WXη′
, (1)

94 T. Okamoto

B can compute

m′ ← (b1 − b′1)/(η − η′) mod p,
t← (b2 − b′2)/(η − η′) mod p, (2)
s′ ← (b3 − b′3)/(η − η′) mod p,

such that
X = gm′

1 ut
1v

s′

1 .

B computes
m← m′/t mod p, s← s′/t mod p. (3)

B then resumes the protocol just after the WI protocol, and sends m to
the signing oracle. The signing oracle returns to B (σ, α, β) such that (σ ←
gm
1 u1v

β
1)1/(x+r) and α = gr

2. B computes

Y ← σt, �← t(β − s) mod p, (4)

and returns A (Y, �).
B repeats the above procedures (at the request of A) qS times. If all qS

rounds of the above procedures are completed, A finally outputs at least qS + 1
valid signatures with distinct messages. From the pigeon-hole principle, among
at least qS + 1 distinct messages with valid signatures that A outputs, at least
one message with valid signature is different from the qS messages with valid
signatures given by the signing oracle. This contradicts the qS-unforgeability of
the basic signature scheme.

The remaining problem in this strategy is how to execute all qS rounds of
the WI protocol twice with distinct challenges η and η′ in a synchronized run
with A.

Claim. B can execute all qS rounds of the WI protocol twice with distinct
challenges η and η′ in a synchronized run with A with probability at least
(1 − 1/(L + 1))ε/8 under the condition that B rewinds A with random chal-
lenges at most 24L log (L+ 1)/ε times in total (or in L intervals).

Combining this result with Theorem 2 we obtain this theorem. �

Theorem 5. The proposed partially blind signature scheme is perfectly blind.

The proof is almost the same as that in Theorem 3.

Theorem 6. If the (qS , t
′, ε′)-2SDHS assumption holds in (G1,G2), the proposed

partially blind signature scheme is (t, qS , ε)-unforgeable against an L-interval syn-
chronized run of adversaries, provided that

ε′ ≤ 1 − 1/(L+ 1)
32

· ε, and t′ ≥ 48L log (L+ 1)
ε

· (t+Θ(T)) +Θ(qST),

where T is the maximum time for a single exponentiation in G1 and G2.

Efficient Blind and Partially Blind Signatures Without Random Oracles 95

Remark. (Constant-depth concurrency) We can define a specific type of concur-
rent runs, constant-depth concurrent runs, in which, informally speaking, only
a constant depth of purely inner rounds is allowed in all paths. Synchronized
runs are a specific type of depth-1 concurrent runs. We can show that our blind
signature scheme is still secure against a constant-depth concurrent run of ad-
versaries under the same assumption and model. The result is presented in the
full paper version.

6.3 Generalization

(m0,m1) with an additional key h2 is generalized to (m0, . . . ,ml) with additional
key (h2,1, . . . , h2,l). Arbitrary subset in {m0, . . . ,ml} can be blinded messages
and the remaining be common messages.

7 Conversion to Fully Concurrent Security in the CRS
Model

As mentioned above, the proposed (partially) blind signature scheme is secure
against a synchronized run of adversaries (or more generally, a constant-depth
concurrent run of adversaries). In this section, we show how to convert the pro-
posed scheme to a scheme secure against a fully-concurrent run of adversaries. Our
proposed blind signature scheme is secure in the plain model (without any setup
assumptions), while the converted scheme is secure in the common reference string
(CRS) model. The key idea is similar to [23], and uses the Paillier encryption for
a simulator to extract blind messages with the help of the CRS model, and also
uses a trapdoor commitment [16] to realize a concurrent zero-knowledge proto-
col. For simplicity of description, we will show a blind signature scheme, but it is
straightforward to extend it to our partially blind signature scheme.

Key Generation. Randomly select generators g2, u2, v2 ∈ G2 and set g1 ←
ψ(g2), u1 ← ψ(u2), and v1 ← ψ(v2). Randomly select x ∈ Z∗

p, and compute
w2 ← gx

2 ∈ G2. In addition, randomly select secret and public keys of the
Paillier encryption, two prime integers P and Q, and (N = PQ,G), where
|N | = (6 + 3c0)|p| (c0 is a constant and 0 < c0 < 1). The public and secret keys,
(pk, sk), of a trapdoor commitment, commit, [16] are also generated.

The public and secret keys and CRS are:

Public key: g1, g2, w2, u2, v2
Secret key: x
CRS: N,G, pk
Trapdoor of CRS: P,Q, sk

Blind Signature Generation.

1. U checks whether g2, w2, u2, v2 ∈ G2 and g1 = ψ(g2). If they hold, U
proceeds the following signature generation protocol.

96 T. Okamoto

2. U randomly selects s, t ∈ Z∗
p and A ∈ ZN2 , computes

X ← gmt
1 ut

1v
st
1 , D ← G(mt mod p)+t2K+(st mod p)22K

AN mod N2,

and sends (X,D) to S. Here K = (2+c0)|p|, and m ∈ Z∗
p is the message to be

blindly signed. In addition, U proves to S that U knows (mt mod p, t, st mod
p) for X as follows:
(a) U randomly selects a1, a2, a3 from {0, 1}(2+c1)|p| (c1 is a constant and

0 < c1 < c0 < 1), B ∈ ZN2 and r∗ from the domain, computes

W ← ga1
1 ua2

1 va3
1 , E ← Ga1+a22K+a322K

BN mod N2,

C ← commit(E, r∗, pk),

and sends (W,C) to S.
(b) S randomly selects η ∈ Z∗

p and sends η to U .
(c) U computes

b1 ← a1 + η(mt mod p), b2 ← a2 + ηt, b3 ← a3 + η(st mod p),

F ← BAη mod N2,

and sends (b1, b2, b3, F) as well as (E, r∗) to S.
(d) S checks whether the following equation holds or not:

|bi| ≤ (2 + c1)|p| (i = 1, 2, 3), C = commit(E, r∗, pk).

gb1
1 u

b2
1 v

b3
1 = WXη, Gb1+b22K+b322K

FN ≡ EDη (mod N2)

If it holds, S accepts. Otherwise, S rejects and aborts.
3. The remaining procedure is the same as that of the original blind signature

scheme.

Signature Verification. Same as that of the original blind signature scheme.

Security. The signature generation protocol is statistically WI except D, which
is the Paillier encryption of a message. Since the Paillier encryption is seman-
tically secure under the N -th residue assumption, this blind signature scheme
satisfies blindness under this assumption.

If the WI protocol in the signature generation protocol is accepted by signer,
simulator can extract (m, s, t) by decrypting D without rewinding A with high
probability, by using the trapdoor of CRS (i.e., P,Q). That is, this scheme is
unforgeable against any concurrent run of adversaries under the 2SDHS assump-
tion. (The proof is shown in the full paper version.)

8 Other Applications

We have shown the application of the proposed signature scheme to blind and
partially blind signatures. The proposed signature scheme also supports other
applications such as restrictive (partially) blind signatures, group signatures [24],

Efficient Blind and Partially Blind Signatures Without Random Oracles 97

verifiably encrypted signatures, anonymous credentials and chameleon hash sig-
natures. (The full paper version presents restrictive (partially) blind signatures
based on our (partially) blind signatures.)

9 (Partially) Blind Signatures from the Waters Scheme

9.1 The Proposed Blind Signature Scheme from the Waters Scheme

Key Generation. Let a symmetric bilinear group, (G1,G1), be used in this
scheme. Randomly select α ∈ Z∗

p. Randomly select generators g, g2, u′, u1, . . . ,
un ∈ G1 and set g1 ← gα.

Public key: g, g1, g2, u′, u1, . . . , un

Secret key: gα
2

Blind Signature Generation. Let m be the n-bit message to be signed, mi

the ith bit of m.

1. User U randomly selects t ∈ Z∗
p, computes

X ← (u′
n∏

i=1

umi
i)t,

and sends X to S. In addition, U proves to S that U knows (t,m1, . . . ,mn)
with mi ∈ {0, 1} for X = (u′

∏n
i=1 u

mi
i)t using the witness indistinguishable

Σ protocols. For example,
(a) U randomly selects δ1, . . . , δn ∈ Z∗

p, computes Mi = umi
i (u′)δi (i =

1, . . . , n), and sends (M1, . . . ,Mn) to S.
(b) U proves to S that U knows δi such that Mi = (u′)δi or Mi = ui(u′)δi

(i = 1, . . . , n). Such an OR-proof can be efficiently realized by a Σ pro-
tocol [3].

(c) U proves to S that U knows (t, β, γ1, . . . , γn) such that X = (
∏n

i=1Mi)t

(u′)β , and X = (u′)t
∏n

i=1 u
γi

i , where β ← t − t(
∑n

i=1 δi) mod p and
γi ← tmi.

2. If S accepts the above protocol, S randomly selects r ∈ Z∗
p, computes

Y1 ← gα
2X

r, Y2 ← gr,

and sends (Y1, Y2) to U .
3. U randomly selects s ∈ Z∗

p, and computes

σ1 ← Y1(u′
n∏

i=1

umi
i)s, σ2 ← Y t

2 g
s

4. σ ← (σ1, σ2) is a blind signature.

98 T. Okamoto

Signature Verification. Given public-key (g, g1, g2, u′, u1, . . . , un), message
m ∈ Z∗

p, and signature σ = (σ1, σ2), check

e(σ1, g)/e(σ2, u
′

n∏
i=1

umi
i) = e(g1, g2).

If it holds, the verification result is valid; otherwise the result is invalid.

Remark: If adversary A executes in a synchronized (or constant-depth concur-
rent) run with simulator B (as signer), B can effectively extract (m1, . . . ,mn)
and t from A. B can then reduce the basic Waters signature scheme attack to
the proposed blind signature scheme attack. It is straightforward to realize a
partially blind signature scheme in a similar manner. The major problem in the
efficiency of the signing process is in proving the knowledge of many (O(n))
variables in the WI Σ protocols.

Acknowledgements

The author would like to thank anonymous reviewers of TCC 2006 for their
invaluable comments and suggestions.

References

1. Abe, M., A Secure Three-Move Blind Signature Scheme for Polynomially Many
Signatures, Eurocrypt’01, LNCS 2045, pp.136-151, Springer-Verlag (2001).

2. Abe, M. and Fujisaki, E., How to Date Blind Signatures, Asiacrypt’96, LNCS 1163,
pp.244-251, Springer-Verlag (1996).

3. Abe, M. and Okamoto, T., Provably Secure Partially Blind Signatures, Crypto’00,
LNCS 1880, pp.271-286, Springer-Verlag (2000).

4. Bellare, M., Namprempre, C., Pointcheval, D. and Semanko, M., The power of RSA
inversion oracles and the security of Chaum’s RSA-based blind signature scheme,
Financial Cryptography’01, LNCS, Springer-Verlag (2001).

5. Boldyreva, A., Threshold Signature, Multisignature and Blind Signature Schemes
Based on the Gap-Diffie-Hellman-Group Signature Scheme, PKC’03, LNCS 2567,
pp.31-46, Springer-Verlag (2003).

6. Boneh, D. and Boyen, X., Short Signatures Without Random Oracles, Crypto’04,
LNCS, Springer-Verlag (2004).

7. Boneh, D., Lynn, B. and Shacham, H., Short Signatures from the Weil Pairing,
Asiacrypt’01, LNCS, Springer-Verlag (2001).

8. Camenisch, J., Koprowski, M. and Warinschi, B., Efficient Blind Signatures with-
out Random Oracles, Forth Conference on Security in Communication Networks -
SCN ’04, LNCS, Springer-Verlag (2004).

9. Camenisch, J. and Lysyanskaya, A., Efficient non-transferable anonymous multi-
show credential system with optional anonymity revocation, Eurocrypt’01, LNCS
2045, pp. 93-118, Springer-Verlag (2001).

10. Camenisch, J. and Lysyanskaya, A., A signature scheme with efficient protocols, Se-
curity in communication networks, LNCS 2576, pp.268-289, Springer-Verlag (2002).

Efficient Blind and Partially Blind Signatures Without Random Oracles 99

11. Camenisch, J. and Shoup, V., Practical verifiable encryption and decryption of
discrete logarithms, Crypto’03, LNCS, pp. 126-144. Springer-Verlag (2003).

12. Camenisch, J. and Lysyanskaya, A., Signature Schemes and Anonymous Creden-
tials from Bilinear Maps, Crypto’04, LNCS, Springer-Verlag (2004)

13. Chaum, D., Blind signatures for untraceable payments, Crypto’82, pp. 199-203.
Plenum Press (1983).

14. Chow, S., Hui, L., Yiu, S. and Chow, K., Two Improved Partially Blind Signature
Schemes from Bilinear Pairings, IACR Cryptology ePrint Archive, 2004/108 (2004).

15. Cramer, R. and Shoup, V., Signature schemes based on the strong RSA assumption,
6th ACM CCS, pp. 46-52. ACM press (1999).

16. Damg̊ard, I., Efficient Concurrent Zero-Knowledge in the Auxiliary String Model,
Eurocrypt’00, LNCS 1807, pp.418-430, Springer-Verlag (2000).

17. Diffie, W. and Hellma, M.E., New directions in cryptography, IEEE Trans. on
Information Theory, IT-22(6), pp.644-654 (1976).

18. Fiat, A. and Shamir, A., How to prove yourself: Practical solution to identification
and signature problems, Crypto’86, LNCS 263, Springer-Verlag (1987).

19. Fischlin, M., The Cramer-Shoup strong-RSA signature scheme revisited, PKC
2003, LNCS 2567, Springer-Verlag (2003).

20. Gennaro, R., Halevi, S. and Rabin, T., Secure hash-and-sign signatures without
the random oracle, Eurocrypt’99, LNCS 1592, pp.123-139, Springer-Verlag (1999).

21. Goldwasser, S., Micali, S., and Rivest, R., A digital signature scheme secure against
adaptive chosen-message attacks, SIAM Journal on Computing, 17, 2, pp.281-308
(1988).

22. Juels, A., Luby, M. and Ostrovsky, R., Security of blind digital signatures,
Crypto’97, LNCS 1294, pp. 150-164, Springer-Verlag (1997).

23. Kiayias, A. and Zhou, H., Two-Round Concurrent Blind Signatures without Ran-
dom Oracles, IACR Cryptology ePrint Archive, 2005/435 (2005)

24. Makita, T., Manabe, Y. and Okamoto, T., Short Group Signatures with Efficient
Flexible Join, Manuscript (2005).

25. Mitsunari, S., Sakai, R. and Kasahara, M., A New Traitor Tracing, IEICE Trans.
E-85-A, 2, pp. 481-484 (2002).

26. Naor, M. and Yung, M., Universal one-way hash functions and their cryptographic
applications, 21st STOC, pp. 33-43, ACM (1989).

27. Pointcheval, D., Strengthened security for blind signatures, Eurocrypt’98, LNCS,
pp.391-405, Springer-Verlag (1998).

28. Pointcheval, D. and Stern, J., Provably secure blind signature schemes, Asi-
acrypt’96, LNCS, Springer-Verlag (1996).

29. Pointcheval, D. and Stern, J., New blind signatures equivalent to factorization,
ACM CCS, pp. 92-99. ACM Press (1997).

30. Pointcheval, D. and Stern, J., Security arguments for digital signatures and blind
signatures, Journal of Cryptology, 13, 3, pp.361-396, Springer-Verlag (2000).

31. Schnorr, C.P., Security of Blind Discrete Log Signatures against Interactive At-
tacks, ICICS’01, LNCS 2229, pp.1-12, Springer-Verlag (2001).

32. Rompel, J., One-way functions are necessary and sufficient for secure signatures,
STOC, pp.387-394, ACM (1990).

33. Waters, B., Efficient Identity-Based Encryption Without Random Oracles, Euro-
crypt’05, LNCS 3494, pp. 114-127, Springer-Verlag (2005).

34. Zhang, F., Safavi-Naini, R. and Susilo, W, Efficient Verifiably Encrypted Sig-
nature and Partially Blind Signature from Bilinear Pairings, Indocrypt’03,
LNCS 2904, pp. 191-204, Springer-Verlag (2003). Revised version available at
http://www.uow.edu.au/susilo.

Key Exchange Using Passwords and Long Keys�

Vladimir Kolesnikov and Charles Rackoff

Dept. Comp. Sci., University of Toronto, Toronto, ON, M5S 3G4, Canada
{vlad, rackoff}@cs.utoronto.ca

Abstract. We propose a new model for key exchange (KE) based on a
combination of different types of keys. In our setting, servers exchange
keys with clients, who memorize short passwords and carry (stealable)
storage cards containing long (cryptographic) keys. Our setting is a gen-
eralization of that of Halevi and Krawczyk [16] (HK), where clients have
a password and the public key of the server.

We point out a subtle flaw in the protocols of HK and demonstrate
a practical attack on them, resulting in a full password compromise. We
give a definition of security of KE in our (and thus also in the HK)
setting and discuss many related subtleties. We define and discuss pro-
tection against denial of access attacks, which is not possible in any of the
previous KE models that use passwords. Finally, we give a very simple
and efficient protocol satisfying all our requirements.

1 Introduction

We consider the goal of enabling multiple independent secure conversations be-
tween pairs of parties over an insecure network. The most convenient and natural
way to achieve this is to perform a key exchange (KE), that is to provide the par-
ties with matching randomly chosen keys that can be used for securing (only) a
particular conversation. Of course, each player wants to communicate with a par-
ticular person, and even a powerful adversary Adv should not be able to match
him up with a wrong partner. Therefore, players must possess some secret informa-
tion with which they can authenticate themselves. The kind of information that
is available to players determines the setting of KE. The simplest KE setting is
when players have a shared random string. KE is more complicated in the pub-
lic key setting, where parties have public/private key pairs with the public keys
securely published. The most difficult setting is the pure password setting, where
parties only have a short (presumably memorizable) shared password. We note
that pure password KE protocols, at least in the standard model, are currently
rather complicated and inefficient, due to the complexity of the setting.

1.1 Our Setting

Consider the client-server setting where both long keys and short keys (passwords)
are used for KE. Assume that the server’s (e.g. bank’s) keys are securely stored. We
� The full version of this paper, containing a rigorous proof of security, appears in the

Eprint archive [17].

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 100–119, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Key Exchange Using Passwords and Long Keys 101

take advantage of the inherent logistical differences in how keys are stored by the
client (password in memory, long key on a storage card), to achieve more robust
security than what is possible by using either type of key alone. Indeed, possession
of long keys allows strong security guarantees against an online attacker. However,
long keys can not be memorized, and thus must be stored, perhaps on a convenient
plastic storage card. This is the vulnerability of this solution – the card may be
(relatively) easily stolen by a physical attacker. On the other hand, passwords may
be memorized, need not be stored, and thus can not be stolen. However, the pro-
tection against an online attacker one can hope to achieve with passwords is rather
weak – passwords can always be guessed with relatively high probability. The only
(somewhat satisfactory) protection against guessing attacks is recognizing them
and refusing connection after a predetermined number of password failures1.

Combining the benefits of both settings allows us to obtain a system, secure
against both types of attack, and thus suitable for protection of sensitive infor-
mation. This model is even more appealing due to its wide acceptance – it is
natural for us to think of a card and a password, when we do, say, personal
banking. More motivation is given in Sect. 3.

1.2 Our Contributions

We demonstrate a dangerous practical attack on the Halevi and Krawczyk (HK)
[16] protocols, resulting in full compromise of any client’s password (Sect. 2). The
elegance, simplicity and practicality of the HK model and protocols resulted in
their widespread practical use (e.g. their variants are being considered for parts
of the IETF key exchange standard [12,10]). Therefore, the discovery of our
attack may also have an important practical impact.

We propose and advocate the above Combined Key model of key exchange
(ckKE). To the best of our knowledge, it has never been formally discussed.
ckKE is a generalization of the HK model.

We give a formal definition of security of ckKE (Sect 3). Defining KE even
in simpler settings has proven to be notoriously difficult, with a variety of (only
seemingly!) innocuous decisions to be made. We discuss the subtleties of many
of our choices, such as the necessity of tightness in the allowed success of the
adversary, distinguishing the types of failures and reporting them, etc. Much of
our discussion (e.g. on tightness of allowed success of the adversary Adv) also
applies to and benefits pure password models.

We aim to make our definition as simple and natural as possible. For example,
we require the server to explicitly indicate in its output whether a password fail-
ure occurred. We find this more intuitive than defining password guessing attack
as an act of interference by the adversary (e.g. a successful impersonation!), as
done in previous formalizations, such as [16,2]. Moreover, in previous formaliza-
tions, such as [16,2,5], the attacks are accounted by the environment; the server
may not even “know” they occurred (e.g. in case of successful impersonation),
1 We mention (but do not explicitly address) a variation of this defense against “too

many” password guessing attacks. There the server limits the rate with which logins
can be made, e.g. by exponentially increasing wait times between unsuccessful logins.

102 V. Kolesnikov and C. Rackoff

which makes attack recognition in practice less intuitive. We also find the game
style of definitions (used in this paper) generally simpler and less prone to error
than the simulation style (see discussion on the style of definition in Sect. 3.1
for more details).

We discuss unique security features available in ckKE “for free”, such as the
possibility of protection against the following Denial of Access (DoA) attack.
Adv, attacking a player P , tries to connect to P ’s partner Q, using any password
pwd. If pwd is correct, Adv wins; if not, Adv continues until he wins or Q refuses
to connect to P . Then a legitimate P can no longer connect to Q. This easy
to mount attack is unavoidable in any password-based setting (including HK)
and is highly disruptive. We are not aware of the prevention of this attack being
previously formalized. We formalize this attack and show how to prevent it in
our model.

Finally, we give a very simple and efficient two flow KE protocol and prove
its security (Sect. 4). An important feature of our protocol is that its flows are
independent of each other, and thus can be sent in any order (or simultaneously),
allowing for more flexibility and round efficiency.

1.3 Related Work

The problem of key exchange has deservedly received a vast amount of attention
(e.g. [11,3,18,1,20,8,9]). The more complicated setting of pure password-based
KE (pwKE) was first considered by Bellovin and Merritt [4]. Formal definitions
(and protocols) in this setting were given by Bellare, Pointcheval and Rogaway
[2], Boyko, Mackenzie and Patel [6], Goldreich and Lindell [13], and, recently, by
Canetti et al. [7], as well as by many others.

Most relevant to our work is the problem of password-based KE in the asym-
metric client-server setting, where the client has a password and the public key
of the server. The question of resistance to off-line password-guessing attacks in
this setting was first raised by Gong, et al. [14]. Later, Halevi and Krawczyk [16]
formalized the notion of one-way password authentication in this setting and
gave very simple and efficient protocols realizing it. They also extended their
protocols to achieve key exchange with mutual authentication and perfect for-
ward secrecy. The HK model is much simpler than the pure password model.
The work of HK was the inspiration of our paper.

Further, Boyarsky [5] criticised the protocols of the earlier version [15] of [16]
and suggested his own formalization of the same model. He showed several ways
to amend a variant of protocols of [15] to satisfy his definition. We stress that
he does not criticize protocols of the later version [16] we are considering.

Pinkas and Sander [19] consider heuristic approaches to securing password-
only based authentication. They increase the cost of password-guessing and DoA
attacks by using reverse Turing tests (RTT), that is, problems that are easy to
solve for humans, but not for computers. We approach a different problem. In
particular, RTT techniques can not increase security of a particular client against
a determined attacker.

Key Exchange Using Passwords and Long Keys 103

2 Attacking the Protocols of Halevi and Krawczyk [16]

Halevi and Krawczyk give four versions of their protocol (suitable for different
tasks: password transmission, one-way authentication, and key exchange in two
settings). Three of the four versions (with the exception of the Encrypted Pass-
word Transmission protocol) are (similarly) affected. We demonstrate our attack
on their key exchange protocol.

The Halevi-Krawczyk protocol. Let S be a server with the public key pkS ,
and p be the password shared between S and the client C. Let function f(·; ·) be
one-to-one on its components, i.e. for every fixed strings p, x, functions f(p; ·) and
f(·;x) are one-to-one. Let E = (Gen,Enc,Dec) be a CCA2 secure encryption
scheme.

Construction 1. (The Halevi-Krawczyk Mutual Authentication and Key Ex-
change Protocol (ΠHK))
S C
pick a nonce n n, pkS → verify pkS

pick random long key k
← C, n,EncpkS

(k, f(p;C,S, k, n))
decrypt and verify
y := PRFk(n, S,C) y→ check y = PRFk(n, S,C)
set K = PRFk(y) set K = PRFk(y)

The “decrypt and verify” step outputs “FAIL” if the encryption is invalid or
the received value of f does not match what S computes himself. The nonces
must satisfy the only requirement that they never repeat.

Our Attack exploits the structure of f . We show that the conditions imposed
on f are insufficient.The flaw of the proof of security of the protocol seems to
be in the incorrect conclusion in Footnote 9 on p. 258 of [16]. We note that it
is possible to make the proof (of security of one-way password authentication
protocol) of Halevi and Krawczyk go through by additionally requiring that
f(·;C, ·) �= f(·;C ′, ·) for any unequal client names C, C ′.

For simplicity, we describe our attack on a specific instantiation of ΠHK . We
stress that natural variants of our attack apply to many choices for f , and for
nonce strategies, as well as for other parameter settings.

Let client names and passwords be 10 bits long, and nonces be 30 bits long.
For a variable V , let vi be the i-th bit of V . For example, C = 〈c1, c2, ..., c10〉
is the name of the honest player, and n = 〈n1, n2, ..., n30〉 is the nonce. Let
the function be f(p;C,S, k, n) = 〈c1, ...c9, c10 ⊕ p1, n1, ...n21, n22 ⊕ p2, ..., n30 ⊕
p10, S, k〉. Finally, let nonces be chosen sequentially starting from 0. Note that
this is a valid configuration of ΠHK .

The attack proceeds as follows. Adv creates an honest server S, an honest
client C with any name C = 〈c1, c2, ..., c10〉, and a bad client B with the name
B = 〈c1, c2, ..., c10 ⊕ 1〉 and a randomly chosen password p′ = 〈p′1, ..., p′10〉. Let p
be C’s password. Suppose for now that p1 �= p′1, i.e. passwords of C and B differ
in the high order bit. Adv observes one execution of KE between S and C. Adv

104 V. Kolesnikov and C. Rackoff

records the encryption e sent by C and the nonce n (for concreteness, say n =
00..00, e.g. n is the first nonce). Now, B logs into S as himself, as follows. S sends
the nonce n′ = n+1 = 00..01, and B replies with 〈B,n′, e〉. Now, if S doesn’t fail,
the password of C is computed as pwd = 〈p′1⊕1, n22⊕n′

22⊕p′2, ..., n30⊕n′
30⊕p′10〉

(since for i = 22, ..., 30, it must be that ni−20⊕pi = n′
i−20⊕p′i). Also, if p = pwd,

then S must accept, since f(p′;B,S, k, n′) = f(pwd,C, S, k, n). Thus, if S fails,
pwd is eliminated from the possible passwords list.
B proceeds logging in as himself another 29 − 2 times, eliminating different

passwords one by one, until S accepts and that fact determines C’s password.
If S does not accept after B logged in 29 − 1 times, B changes the first bit of
his password with the server, and repeats the above entire attack (say, starting
with a nonce ending with nine zeros), searching the other half-space. Finally,
the two possible unchecked passwords can be verified by the same approach
(and changing the password of B).

We stress that there were no attempts at impersonating C or S, and all fail-
ures are attributed to B. Neither C nor S know that C was attacked, thus C’s
account is never blocked. If B’s account is blocked due to failures, B can claim
mistyping and restore access. Moreover, there is no need to attack from only B’s
account; the attack can be easily distributed to try only a few passwords from
each of many bad accounts. Again, it is easy to see that our attack is naturally
generalizable to many practical instantiations of ΠHK .

On Boyarsky’s [5] amendments of HK. The earlier version [15] of [16]
had essentially the same protocol as [16], with the exception of the imposed re-
quirements on the encryption scheme ([15] only required so-called one-ciphertext
verification attack resistance, vs ciphertext verification attack resistance in [16]).
Boyarsky [5] (independently from the revision resulting in the current version
[16]) discovered the insufficiency of the weaker encryption. He gives his own for-
malization of the model and suggests three different amendments (see Sect. 5 of
[5]) of the protocols of [15]. Boyarsky limits his consideration to the case where
f is a concatenation function; thus our attack is not applicable to his protocols.

3 Key Exchange in the Combined Keys Model

Recall from the discussion in the Introduction that our setting (client carrying
a plastic storage card and remembering a password) allows the advantage of ro-
bustness, that is graceful degradation of security in case one of the two types of
keys is compromised. In particular, if the client’s password is compromised, the
security of KE should not suffer. On the other hand, if the card is compromised
(e.g. copied), the remaining security should be that of the HK password model.

On resistance to server compromise. Halevi and Krawczyk briefly discuss
resistance to insider attacks, i.e. attacks by rogue server employees who have
access to some, but not all, private information stored on the server (see Sect.
3.3 in [16] for discussion of heuristic defense approaches). As another advantage
of our setting, we mention that it allows stronger protection against server com-

Key Exchange Using Passwords and Long Keys 105

promise. For example, public/private key pairs for each client Ci can be set up
and used appropriately. Of course, an attacker who steals all the server data
would now be able to successfully pose as the server. However, he can be pre-
vented from posing as a client, as long as the client’s private key remains secret.
We note that such protection will require significant additional complexity of
the definition and the protocol, and we leave it outside the scope of this paper.
Therefore, as do Halevi and Krawczyk, in our exposition we assume that the
server is secure, and his private information is never compromised.

On Denial of Access (DoA) attacks resistance. Recall that in the HK (and
also in the pure password) setting, security critically depends on the ability of
servers to suspend clients’ accounts if there are “too many” password failures.
At the same time, it is all too easy for Adv to cause them, making systems
unusable by a trivial and easily mounted attack. In our combined key setting, it
is natural to introduce protection against such DoA attacks. This can be done
by requiring that polytime attackers can not cause password failures (and thus
account suspension) without possession of long keys, stored on the card of the
client. Of course, Adv may attempt attacks even without having the long keys,
and furthermore, such attacks may be noticed by the servers. However, it is not
hard to ensure that Adv does not learn anything from such attacks. This can
be done, for example, by server first verifying possession of the long key (e.g. in
form of a MAC), and immediately failing, if such verification failed. Then Adv
does not learn anything about pwd, since it was not even used by the server.
Therefore, such password guessing attacks are not a threat, and can be ignored.
We formalize resistance to DoA attacks in our definition.

In our view, the main reason for using two types of keys is the two qualitatively
different layers of protection against compromise. DoA resistance, although an
important bonus, may not alone justify the cost of long key storage and man-
agement.

The reader may ask why one can’t simply do two KE’s in the two relevant
models (one with parties sharing long keys, and the HK model) and combine
the keys to obtain a KE protocol in our model. There are a number of issues
to be addressed there. Firstly, a definition of security has to be given anyway –
which is the bulk of our work. Secondly, natural ways of combining the two KE
protocols (such as establishing a secure session using long keys, and sending the
password over it) result in less efficient protocols.

3.1 Pre-definition Discussion

We start by briefly recalling the general setting for KE. There is a number of
players (in our case, they are divided into two types – clients and servers) who
have associated credentials, and pairs of whom may have shared common infor-
mation. We think of a player as an identity, which may have many instantiations.
Whenever a player P wishes to talk to another player Q, an instance of P is
created with the required credentials passed. Thus an instance can be thought
of as a participant of a particular conversation.

106 V. Kolesnikov and C. Rackoff

It is convenient to separate the notions of identity and instance for several
reasons. Firstly, it is easier to talk about the independence of instances. Inde-
pendence is highly desirable to avoid maintaining state and worry about com-
munication and synchronization between instances. Secondly, a need often arises
to have several channels of communication open between two or more parties
simultaneously. Then the notion of instance makes it easier to implement and
model concurrent executions of KE by a player.

We do not discuss how a player P knows that he wants to talk to a player
Q. This may be done as part of previous (possibly insecure) communication,
scheduled to happen at some predetermined time, or be requested by a higher
level protocol. We give Adv the power to initiate conversations between players
to model all possible scenarios.

Our goal is to enable a secure conversation, or session, between the instances
of two players. Key exchange provides corresponding pairs of participants with
matching keys that can be used for securing their communication. Of course,
the keys of honest parties must appear random to the adversary Adv, and Adv
must not be able to cause instances to match up in an inconsistent way2.

To formalize the latter requirement, we need to define the notion of partners
– instances who end up having a (n intended) conversation. We use session IDs
(SID) to partner instances of players. There are several ways of using SID for
this purpose, and we choose what we find to be the most natural – requiring each
party that output a key to have an additional output sid. The other ways (e.g.
requiring sid to be an input to parties, or requiring existence of a partnering
function) seem to be less intuitive. We note that many natural protocols can be
naturally modified to produce session ids. The sid output is not necessary in
real protocols; it is only used for the purpose of defining and analyzing security
of KE protocols.

Definition 1. (KE Partners) Let P be a player. We denote by Pi the i-th in-
stance of P . We write PQ

i to emphasize that Pi intends to do KE with (some
instance of) player Q. We say that an instance CS

i of a client C and an instance
SC

j of a server S are partners, if they have output the same session id sid.

Note that no two instances are partners when they are created; they may become
partners once they’ve executed their KE protocols. We stress that Pi and PQ

i

refer to the same instance of P . We may omit the superscript in PQ
i , when it is

clear from the context.
Mutual authentication (MA) is an assurance that, if PQ

i successfully com-
pleted and output a key, there must have been a QP

j “communicating” with
him. We choose not to require it, because it can be achieved at the cost of two
additional “key confirmation” flows (and refreshing the session key). Moreover,
PQ

i can never be sure that QP
j “is there” anyway, since QP

j may go offline at
any time. Note, it is rather common and accepted to not require explicit mutual
authentication for these reasons (e.g. [7]). Further, if we required MA, we must
2 We note that Adv can cause confusion by mismatching instances of players and

making them output unrelated keys. We don’t regard this as a problem.

Key Exchange Using Passwords and Long Keys 107

use a special ⊥ output symbol to denote failure. In our definition we allow ⊥,
but don’t insist on its use.

On the notions of attacks and failures. We first note that a special kind
of failure – the password failure – must be introduced in our model to allow
protection against DoA attacks. Intuitively, if Adv’s attack is such that the act
of failure of the server may reveal some information about the client’s password,
then such failure is a password failure.

A natural approach to define adversary’s ability to attack the system is by
counting password checking attempts. However, it is less natural to define what
an “attempt” is. Indeed, previous works on password-based key exchange (e.g.
[16,2]) define “attempt” essentially as the act of Adv’s interference with the
exchange of messages between two parties. However, it is less clear, for example,
whether an act of Adv changing an insignificant bit of a message or an act of
successful impersonation is such an attempt. Moreover, previously, the number
of attempts was counted not by the server instances (they are not required to
“know” whether a password guessing attack occurred), but by the environment.

An important feature of our definition is that servers themselves determine
when, whether and what type of failure occurred. This explicates the notion of
a failed password attempt, and ensures server’s ability to identify a threat and
react to it. Therefore, depending on the kind of failure, we allow servers to output
either a failure symbol ⊥, or a password failure symbol P⊥. We count password
failures as P⊥’s reported by the servers, and clients accounts are suspended
(to prevent further password guessing) based solely on that information and a
predetermined threshold q. Therefore, a misidentification of an attack by the
server is an omission of the protocol (opening a possibility of either password
checking or DoA attacks), and we deem such protocols insecure.

We note that previous definitions, such as those of [16,2,5], can be similarly
amended to ensure “explicit authentication” by additionally requiring that the
server output P⊥ when he thinks a password attack has occurred. However, as
discussed above, it seems to be cleaner to use the server’s output as the only
criterion for determining whether such an attack took place. Further, to ensure
that the server does not misidentify the attacks, his output would need to be
incorporated into the definitions, further complicating them.

The use of smart cards vs storage cards is briefly discussed in Sect. 4.

On the style of definition. As mentioned earlier, we prefer the game style of
KE definitions in this paper. We find it easier to understand, since the game of
the definition naturally corresponds to the actions and abilities of the adversary.
We don’t seem to need the complexity of simulation style definitions. An excep-
tion seems to be the very complex universally composable (UC) definitions, which
can model very subtle issues such as password mistyping (see [7] and discussion
in Sect 3.3). In addition to their complexity, UC-secure protocols currently are
significantly less efficient than protocols in other frameworks. From another point
of view, it is highly desirable to have different styles of definitions to discuss their
relative strengths and, hopefully, prove equivalence in some settings.

108 V. Kolesnikov and C. Rackoff

On modelling the adversary. We consider a powerful Adv, who schedules
events (such as creation of players and their instances) and controls all commu-
nications. This latter is modelled by the parties not sending messages to each
other, but giving them to Adv for delivery. Adv is allowed to arbitrarily modify
the messages (including dropping and injecting them) and schedule delivery. We
allow Adv to create and arbitrarily initialize a polynomial number of accounts
for corrupted clients. Note that in this model the actions of corrupt players need
not be discussed separately from the actions of Adv, since Adv can simulate all
their actions. For example, a message sent by a corrupted party can be viewed
as a message injected by Adv.

Recall, Adv steals either the long key or the password of a client, and attacks
one of the several security features of the protocol. We describe the (five) possible
settings as games the attacker plays. (These games cover all cases – the cases
that are not discussed explicitly are implicitly covered by stronger settings.)

Game KE1 models the most complicated setting where Adv stole the long
key of the client, and is attacking a server (that is trying to distinguish server’s
session key from random). This is the only game where Adv can benefit from
guessing a password. Thus, in KE1 Adv is allowed a limited number of P⊥’s.

Game KE2 models the setting where Adv stole the long key and the password
of the client, but is attacking a client.

Game KE3 models the setting where Adv stole only the password of the client,
and is attacking a server.

Game DOA models the inability of Adv to cause password failures without
stealing the long key.

Game SID models the inability of Adv to cause two honest parties output
different session keys, and is included for technical reasons (see discussion before
the game’s definition in Sect. 3.2 below).

One way to define security is to describe one adversary who, at some point in
his attack, decides which of the five games above he really wants to play. However,
since Adv’s breaking abilities vary significantly among the games, defining al-
lowed success of Adv in a “combined” game would be unnecessarily complicated.
Therefore, we choose to describe five adversaries, each playing the correspond-
ing game. We define the security of ckKE by inability of any of adversaries to
win any of these games “too often”. We note that it is possible to define the
“combined” adversary model carefully, and to prove that any protocol that is
secure with respect to the five adversaries would also be secure with respect to
one “combined” adversary.

Liveness. Note that protocols may never terminate (e.g. when Adv cuts the
communication channels). Instances may also output special failure symbols in-
stead of (sid, key) pairs (e.g. when they detect Adv’s interference). To ensure
usability of KE protocols, we disallow these exceptional cases, unless Adv in-
deed attacks the system. Thus, we require that in the absence of an adversary,
when processes communicate as intended, all sessions terminate, and intended
partners output the same session id and key.

Key Exchange Using Passwords and Long Keys 109

3.2 Formal Definition of Security of Key Exchange in the Combined
Keys Model

Let n be a security parameter, and m be the number of bits in the password. In
general, m can be a function of n; interesting cases are when m is constant or
logarithmic in n. WLOG, say, the password domain is D = {0, 1}m. All players
(Adv, clients and servers) are p.p.t. machines. Recall, the notion of partnering
is defined in Def. 1.

We start by presenting the KE games. Recall, the first game models the
setting where Adv obtained the long key of the client, is attacking a server, and
is allowed a limited number of P⊥’s.

Game KE1. The adversary Adv starts by deterministically choosing the active
attack threshold q ∈ 1..|D| (based on the security parameter n) and creating an
(honest) server S. Adv chooses S’s name; then S’s public and private keys are
set up, and only the public key revealed to Adv. Adv then runs the parties by
executing steps 1-5 multiple times, in any order:

1. Adv creates an honest client C. Adv is allowed to pick any unused name for
the client; the client C is registered with S, and long key � and password pwd
are set up and associated with C. Only one honest client can be created. Adv
is given the long key �, but not pwd.

2. Adv creates a corrupt client Bi. Adv is allowed to initialize him in any way,
choosing any unused name, long key and password for him.

3. Adv creates an instance Ci of the honest client C. Ci is given (secretly from
Adv) as input: his name C, the partner server’s name S, the public key of
S, the long key and the password of C.

4. Adv creates an instance Sj of the honest server S. Sj is given (secretly from
Adv) as input: his name S, the private key of S, the partner client’s name
(C or Bi) and that client’s long key and password.

5. Adv delivers a message m to an honest party instance. That instance im-
mediately responds with a reply (by giving it to Adv) and/or terminates and
outputs the result (either a (sid,session key) pair or the failure symbol ⊥)
according to the protocol. The server instance can additionally output the
password failure symbol P⊥. If the total number of P⊥ for the honest client
is equal to the threshold q, Adv becomes restricted – he can not deliver mes-
sages to any instances SC

j .
Adv learns the output, with the exception of its session key part. Additionally,
at any time Adv may “open” any completed honest instance – then Adv is
given the session key output by that instance.

Then Adv asks for a challenge on an instance SC
j of the server S. SC

j , who
has been instantiated to talk to the honest client C, must have completed and not
failed. The challenge is, equiprobably, either the key output by SC

j or a random
string of the same length. Adv must not have opened SC

j or a partner of SC
j ,

and is not allowed to do it in the future.
Then Adv continues to run the game as before (execute steps 2-5). Finally,

Adv outputs a single bit b which denotes Adv’s guess at whether the challenge

110 V. Kolesnikov and C. Rackoff

string was random. Adv wins if he makes a correct guess, and loses otherwise.
Adv cannot “withdraw” from a challenge, and must produce his guess.

Note the following technicality of KE1. It is possible that Adv may find himself
unable to complete the game. This may happen only when he had just caused
the q-th P⊥ (and hence he is not allowed to deliver messages to servers) and he
has no completed instances whom he is allowed to challenge. One way to handle
this would be to require Adv flip a coin to determine whether he won or lost.
We prefer to simply disallow, by this discussion, such behaviour of Adv, since
the stalemate can be easily avoided by Adv having a “safety instance” complete
before he risks the q-th P⊥.

In all other KE games (KE2, KE3, SID and DOA) below, it is possible (and
natural) to require that the knowledge of pwd does not help Adv. We thus choose
to reveal the password to Adv and remove restrictions on the number of P⊥’s
(thus removing the definition of q). These games are presented by modifying
KE1. All of the above three modifications are included in all games below (and
the last two are omitted in individual descriptions for conciseness).

Game KE2 models the setting where Adv stole the long key and the password
of the client, but is attacking a client.

Game KE2.This game is identical to KE1, with the following additional excep-
tions.

– Adv is given pwd (in addition to �) and must challenge an honest client
instance CS

i , who is talking to S.

Game KE3 models the setting where Adv stole only the password of the client,
and is attacking a server.

Game KE3.This game is identical to KE1, with the following additional excep-
tions.

– Adv is given pwd, but not the long key �.

Game SID enforces a non-triviality condition, preventing parties from improperly
partnering up (e.g. by unnecessarily outputting the same session ids). Recall,Adv
is not allowed to challenge parties whose partner has been opened, and we need
to ensure that Adv is not unfairly restricted.

Game SID. This game is identical to KE1, with the following additional excep-
tions.

– Adv is given pwd (in addition to �) and does not ask for (nor answers) the
challenge.

– Adv wins if any two honest partners output different session keys.

Finally, game DOA models resistance to the Denial of Access (DoA) attacks.

Game DOA. This game is identical to KE1, with the following additional
exceptions.

Key Exchange Using Passwords and Long Keys 111

– Adv is given pwd, but not the long key �.
– Adv does not ask for (nor answers) the challenge.
– Adv wins if a server instance SC

j outputs P⊥.

Definition 2. (Secure Key Exchange in the Combined Keys Model.) We say
that a key exchange protocol Π is secure in the Combined Keys model, if for every
polytime adversaries Adv1, Adv2, Adv3, Advsid and Advdoa playing games KE1,
KE2, KE3, SID and DOA, their probabilities of winning (over the randomness
used by the adversaries, all players and generation algorithms) is at most only
negligibly (in n) better than:

– 1/2 + q
2|D| , for KE1,

– 1/2, for KE2 and KE3,
– 0, for SID and DOA.

KE definition for the HK setting. We note that Halevi and Krawczyk do not
formally define the full notion of KE in their setting, but concentrate on the one-
way password authentication of the client to the server. Because ckKE is a gener-
alization of the HK setting and thanks to the modularity of our presentation, it
is not hard to extract the KE definition for the HK setting from Def. 2. The only
difference between our and the HK settings is that we additionally allow for the
use of the long shared key �. It turns out that it suffices to remove the games that
do not allow Adv to know � from Def. 2, to obtain a definition for the HK setting.
(Of course, we also need to remove the uses of the long key � from the remaining
games.) Indeed, it is not hard to verify that the remaining games cover all possible
attacks Adv can do in the HK setting. We explicate this definition below.

Definition 3. (Secure Key Exchange in the HK Model.) We say that a key
exchange protocol Π is secure in the Halevi-Krawczyk, or hybrid, model, if for
every polytime adversaries Adv1, Adv2 and Advsid playing (amended as described
above) games KE1, KE2 and SID, their probabilities of winning (over the ran-
domness used by the adversaries, all players and generation algorithms) is at
most only negligibly (in n) better than:

– 1/2 + q
2|D| , for KE1,

– 1/2, for KE2,
– 0, for SID.

We note that although the pre- and post-definition discussion (of Sect. 3.1 and
3.3) discusses the ckKE setting, much of it applies to the HK setting as well.

3.3 Post-definition Discussion

On the sufficiency of only one honest server and one honest client. We
note that definition of security is not strengthened by allowing Adv to create
additional (good or bad) servers or good clients. The reason for this is that we
assume independence in the initialization procedures of each pair of identities,
and each instance is initialized only with information relevant to its partner.
More detail follows.

112 V. Kolesnikov and C. Rackoff

Consider an adversary who wishes to attack a particular player – a client C
or a server S. Suppose we allowed creation of additional good or bad servers.
Note that initialization of a client C proceeds independently for servers S1 and
S2, and, further, CS1

i1
has no information about CS2

i2
, that is not known to Adv.

Therefore, creating accounts for C with more than one server and instances of
C talking to them does not help Adv, since it can be simulated by Adv. On the
other hand, the ability to create many clients with a server is essential, since
server instances talking to different clients do share common information among
themselves – the secret key of the server. In fact, we exploit that in our attack
on ΠHK . Only one honest client is sufficient, however, since additional honest
clients can be played by Adv. We note that had we allowed clients to possess
information common to two or more servers, we would have to allow Adv to
create additional bad servers.

Addressing Boyarsky’s criticism of the single-user case ([5]), we note that our
definition allows Adv to determine whether two honest clients have the same
password, causing at least an (expected) one P⊥ on each of the two clients.
However, we don’t see it as a problem, since, with high probability, clients’
passwords differ. Therefore, determining a large clique of users with the same
password would cause a large number of system-wide password failures and not
cause bigger than expected “bang for the buck”.

On the order of creation of good client and revealing the long key �.
Adv should first create the good client, and only then be allowed to see �. This
is the way the attack works in real life. Had we reversed the order, it would be
easy to construct good protocols that would be defined insecure (e.g., a server
leaks some information, if the client’s name is the same as �.)

On the allowed success of Adv in KE1. Consider the success an adversary
can always achieve (and therefore must be allowed in our definition). After q
queries, Adv can guess the password with probability q/|D|, and if he fails to
guess it, he can distinguish the key from random with probability 1/2. Therefore,
we should allow Adv’s probability of success of at least q

|D| +
1
2
|D|−q
|D| = 1

2
q+|D|
|D| =

1
2 + q

2|D| .

On independence of the states of instances. In our model, there is no
global information, and state is not preserved between executions of instances of
players. Therefore, for example, it is not possible for an instance to know exactly
how many P⊥’s occurred. Nevertheless, some communication and preservation
of state can be achieved with the help of the adversary, as follows. The pri-
vate key of S now additionally includes an n-bit MAC key kM . Whenever Sj

wants to publish a message m, he gives (m,MACkM
(m)) to Adv. The server’s

protocol has an optional field in one of the expected messages. Sj only accepts
the properly MAC’ed messages in that field (this is essential, so that Adv can-
not forge messages). We stress that communication may only happen if it is in
the interest of Adv. Therefore, it can not be used to increase security of proto-
cols, but mainly to uncover weaknesses of definitions (see example in the next
topic).

Key Exchange Using Passwords and Long Keys 113

On continuing the game after q P⊥’s. In the real world, at least ideally,
after q P⊥’s, the server knows there is an attack on C, and will not accept new
connections and will terminate all incomplete instances. How should we model
this in our KE games? Although S may have cut communication with C, old
sessions may still exist, and we need to ensure that they remain secure. That is
why we allow the game to continue as before, but disallow sending messages to
the server instances after q P⊥’s occurred.

Observe that once Adv got the challenge, “trying” another password may
not help him much. Therefore, in particular, it is crucial to allow to challenge
instances after q P⊥’s occurred.

It is not hard to design a concrete protocol demonstrating the necessity of our
choice. Take a secure protocol Π. Modify it as follows to obtain Π ′. Once a P⊥ of
an honest client C occurred in the game (see above discussion on independence
of states), in all future sessions with instances of C the all-zero session key is
chosen with fixed small, but non-negligible probability (say prob = 1

|D|3). Clearly,
this is a bad protocol, since after performing only one active attack, an attacker
certainly breaks into one of the next few sessions. However, Π ′ would be deemed
secure according to the definition, if Adv is not allowed to challenge after q P⊥’s
(this is because Adv is allowed only one challenge, and he does not know which
is the weak session. The expected advantage of Adv is less than what he gets
from the q-th password try.)

On the necessity of tightness in defining the allowed success of Adv.
Note that for every non-negligible slack allowed in Adv’s success, there is a
natural variant of Π ′ above, deemed secure by such definition. While one may be
tempted to not be very careful in denying Adv “a few extra password tries”, Π ′

has a much more dangerous vulnerability, which really should be prevented. We
remark that in the password-only setting, if an indistinguishability of challenge
based security definition does not require tightness, a simpler variant of Π ′,
where players always output an all zero key with sufficiently small (yet non-
negligible) probability, would be deemed secure.

On clients mistyping the passwords. How should we model the case when
an honest client mistypes the password and causes P⊥? Consider the following
protocol. Take a secure protocol, and modify it, so that SC

j reveals � once P⊥
occurred. It is easy to see that the new protocol remains secure in our definition,
since we implicitly assume that C never mistypes the password. Indeed, in our
definition, if a P⊥ occurred, it must have been caused by Adv. Since Adv cannot
cause P⊥ without possession of �, it is OK if SC

j reveals �. However, intuitively,
we would not want to call such a protocol secure.

The only way to formally address the issue in our model is to allow C to
mistype the password. A natural first idea is to allow Adv to instantiate clients
with the password of his choice. However, it is not clear that this models real life
– most often clients mistype their passwords to something related. Further, this
would not address the protocol that reveals � if the pwd is mistyped as pwd+ 1,
or, more generally, if the pwd is mistyped as a function of pwd.

114 V. Kolesnikov and C. Rackoff

A natural next idea is to instantiate clients with the password being f(pwd),
where the deterministic function f is specified by Adv. Only such an f that
does not allow to check more than one password at a time may be allowed, and
therefore strong restrictions on f are necessary. Indeed, setting f(pwd) = 0 on
the first half of password domain D, and f(pwd) = pwd on the second half,
allows Adv to check half of password domain in one try. Restricting f to be a
permutation does not work either, since applying such f allows to check whether
pwd is a fixed point of f . Therefore functions f that have more than one or fewer
than |D|− 1 fixed points are not allowed. At the same time, it is not hard to see
that functions with 0, 1, |D|−1 or |D| fixed points do not allow Adv to check more
than one password at a time when server is running a secure protocol, and thus
may be allowed in our definition. Indeed, a function with 0 fixed points always
causes SC

j to P⊥; one with 1 fixed point fp always causes P⊥, unless p = pwd, and
thus allows to check precisely one password; one with |D| fixed points (identity)
never causes P⊥; one with |D| − 1 fixed points always succeeds, unless pwd is
the non-fixed point, and thus allows to check precisely one password.

At the same time, the most natural mistyping functions (e.g. confusing the
order of digits) do not satisfy the requirements on f and do help the adversary
(e.g. Adv can quickly test if the pin consists of the same decimal digits). More
generally, Adv may infer a lot from simply observing a large volume of traffic,
noting the patterns of honest clients mistyping their passwords, and matching
them with expected patterns. However, it is not clear how to analyze this ad-
vantage, so we choose not to include password mistypes in our model at all, with
the understanding that protocol designers take this discussion into account.

This subtlety also arises in KE in the pure password model, when passwords
need not be chosen uniformly from D. Indeed, let D1 ⊂ D be all elements of D
that end with a 0, and pwd ∈ D is chosen uniformly from D1. Then a protocol Π
that reveals pwd iff pwd is mistyped only in the last digit, would be secure under
a natural definition that does not allow mistyping. This is because pwd would
not be revealed, unless Adv already had tried it. At the same time, such protocol
Π should not be deemed secure. We note that the recent definition of password
based KE in the complex Universal Composability model ([7]) addresses the is-
sue of mistyping by allowing the environment both choose and type passwords.

On reporting failures to Adv immediately after failing. Consider a mod-
ification of ΠHK , where, upon a password failure, the server does not report it
to Adv, but produces a random key and simulates successful completion of KE.
This change would have prevented our attack of Sect 2. However, the achieved
security would be illusory, since, in practice, it is hard to simulate successful
completion well. Indeed, the fact of P⊥ must be somehow registered and used
by S. This changes the state of S (in particular, the counter of active attacks is
incremented). Since C can login after q − 1, but not after q P⊥’s, Adv is able to
infer some information about S′ outputs. To account for such “side channels”,
we require that players don’t have private failure outputs (either ⊥ or P⊥), and
Adv is informed of failure as soon as it output. Note that this discussion relates

Key Exchange Using Passwords and Long Keys 115

to the Additional discussion in Sect. 2.1 of [7], where the authors argue that Adv
need not know whether the passwords of two honest partners matched.

To further illustrate this point, suppose Sj at some point “knows” he is going
to output P⊥, that is, Sj entered a state from which all execution paths lead to
outputting P⊥, and Adv learned this fact. Suppose Sj does not terminate yet,
but is waiting to receive another message. Then Adv can delay the delivery of
the message indefinitely, Sj would never report P⊥, and we don’t count it. In
particular, adding an extra round of communication to a secure protocol Π, in
which parties say whether they failed, makes Π insecure. This is consistent with
our desire to force a server to correctly and timely report active attacks.

4 Our Protocol

Let n be a security parameter. To simplify discussion, we present our construc-
tions with the domains and ranges of PRFG and MAC equal to {0, 1}n. Let
E = (Gen,Enc,Dec) be a CCA2 secure public key encryption scheme, F :
{0, 1}n × {0, 1}n �→ {0, 1}n be a PRFG, and MAC : {0, 1}n × {0, 1}∗ �→ {0, 1}n

be a message authentication code. Let NC be the name of the client C, drawn
from {0, 1}n. Shorter names can be used for efficiency, if desired.

Consider the following KE protocol Π, with two types of players, a server S
and a client C who have secretly agreed on a password pwd ∈R D, a long secret
key � ∈R {0, 1}n. Also, S has generated public/private key pair (pkS , skS), and
gave pkS to C.

Construction 2. (KE in the Combined Key Model (Π).)

SC CS

choose r ∈R {0, 1}n choose k ∈R {0, 1}n ,
set α = EncpkS

(NC , pwd, k)
r → · · · ← α,MAC�(α)

verify MAC�(α) and NC ; output
if fail, output ⊥ and halt K = Fk(r), sid = (r, α)

verify pwd;
if fail, output P⊥ and halt

else output
K = Fk(r), sid = (r, α)

WLOG, we assume that all protocol messages are formed properly (i.e. values
are drawn from the appropriate domains, etc.). Then a client instance never fails,
while a server instance may. Note that Adv may cause non-partnered parties to
output unrelated keys. This is not a problem (see Sect. 3.1 and Footnote 2).

We stress that the two flows of the protocol are independent, and thus either
of the parties can be the initiator. The DoA attacks are prevented if Adv does
not have �, even though, in particular, Adv is able to resend old messages of the
client. The latter causes a server to output a random (from the point of view of
Adv) session key, thus Adv is not able to take advantage of it. This also does

116 V. Kolesnikov and C. Rackoff

not enable Adv to “reset” the fail counter in real executions (and thus try many
passwords undetected), since the same effect can be achieved by Adv executing
a KE between honest SC

j and CS
i , and then cutting the communication.

We treat the policies of account suspension and resetting of failure counters
as external to our discussion, but stress that care should be taken in designing
and implementing them. In particular, the client’s explicit consent (communi-
cated over a secure session) should be necessary for resetting the failed attempts
counter, since otherwise Adv can be undetected when trying passwords between
legitimate client logins. A natural scenario would be that the server asks the
client whether he mistyped the password a certain number of times, and when
client confirms, the fail counter is reset.

We further note that we can prevent Adv from resending C’s old replies to
S (e.g. if it is undesirable to have “hanging” sessions) by including r in the
encryption of the client’s reply and adding the corresponding verification step
to S. We chose not to include it because it disallows the independence of flows
of KE, and it is unclear whether hanging sessions are “worse” than hanging KE.

An alert reader will notice that smart cards may be gainfully used in place of
client’s storage cards. A smart card may hide the long key �, only exposing the
MAC’ing interface. An interesting setting is when Adv can “borrow” and return
(but not copy) the card, obtaining only a period of ability to MAC strings of
his choice. Our protocol will not benefit from such security improvements: C’s
messages are independent of S’s, and thus Adv can MAC all the strings he might
possibly need for an attack (e.g. strings containing all possible passwords) in one
batch. Again, including r in the encryption of C’s reply resolves this problem.
Π is secure. We first observe that for every Advsid and Advdoa playing games

SID and DOA, their probability of winning is negligible. Indeed, in our protocol,
partners never output different keys (since the session key is determined by sid).
As for Advdoa, for a server to output P⊥, it is necessary to forge a MAC on an
encryption not produced by any of the honest clients. This is only possible with
negligible probability without the knowledge of the long key �, assuming security
of MAC.

Due to the lack of space, we formally consider the remaining games KEi and
adversaries in the full version [17], which appears in the Eprint archive. The
structure of our proof is as follows. We start by reducing the KE adversaries to
ones playing much simpler games. As a second step, we show that existence of
new adversaries implies insecurity of either of the employed primitives. To give
a flavor of the proof within the limited space, we include the most interesting
intermediate game in Appendix A. Altogether, we’ve proven

Theorem 1. The protocol Π of Constr. 2 is a secure key exchange protocol in
the combined keys model.

On generalizing Constr. 2. Consider creating a family of protocols parame-
terized by a function f similarly to the approach of Halevi and Krawczyk. The
goal is to shorten the plaintext of the encryption α sent by C, which may improve
the performance of the protocol. We note that we already reduce the amount
of data under the CCA2-secure encryption – it is smaller than in any member

Key Exchange Using Passwords and Long Keys 117

of the HK families of KE protocols (but note that HK KE additionally achieve
mutual authentication). We do not see how to further significantly increase effi-
ciency by applying the HK idea to our protocols.

KE protocols for the HK setting. It is easy to see that removing the uses of
the long key � from the protocol of Constr. 2 casts it into the HK setting. The
obtained protocol (explicated in Constr. 3 below) is a secure KE protocol in the
HK setting, according to Def. 3. This conclusion immediately follows from the
method of construction and Theorem 1.

Construction 3. (KE in the HK setting.)

SC CS

choose r ∈R {0, 1}n choose k ∈R {0, 1}n ,
set α = EncpkS

(NC , pwd, k)
r → · · · ← α

verify NC ; output
if fail, output ⊥ and halt K = Fk(r), sid = (r, α)

verify pwd;
if fail, output P⊥ and halt

else output
K = Fk(r), sid = (r, α)

Acknowledgements. We thank Shai Halevi and the anonymous referees of
TCC 2006 for very helpful comments on earlier versions of this work. We also
thank Ian F. Blake for several stimulating discussions. The authors were in part
supported by Natural Sciences and Engineering Research Council of Canada
(NSERC) grants. The first author was also supported by Ontario Graduate
Scholarship (OGS).

References

1. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the design
and analysis of authentication and key exchange protocols (extended abstract).
In STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 419–428, New York, NY, USA, 1998. ACM Press.

2. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key ex-
change secure against dictionary attacks. In EUROCRYPT 2000, pages 139–155,
2000.

3. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
CRYPTO ’93: Proceedings of the 13th annual international cryptology conference
on Advances in cryptology, pages 232–249, New York, NY, USA, 1994. Springer-
Verlag New York, Inc.

4. Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based
protocols secureagainst dictionary attacks. In SP ’92: Proceedings of the 1992 IEEE
Symposium on Security and Privacy, page 72, Washington, DC, USA, 1992. IEEE
Computer Society.

118 V. Kolesnikov and C. Rackoff

5. Maurizio Kliban Boyarsky. Public-key cryptography and password protocols: the
multi-user case. In CCS ’99: Proceedings of the 6th ACM conference on Computer
and communications security, pages 63–72, New York, NY, USA, 1999. ACM Press.

6. V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password-Authenticated
Key Exchange Using Diffie-hellman. In B. Preneel, editor, Proceedings EURO-
CRYPT 2000, pages 156–171, 2000.

7. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKen-
zie. Universally composable password-based key exchange. In EUROCRYPT 2005,
pages 404–421, 2005.

8. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In EUROCRYPT ’01: Proceedings of the International
Conference on the Theory and Application of Cryptographic Techniques, pages 453–
474, London, UK, 2001. Springer-Verlag.

9. Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange
and secure channels. In EUROCRYPT ’02: Proceedings of the International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 337–
351, London, UK, 2002. Springer-Verlag.

10. T. Clancy. Eap password authenticated exchange, draft archive.
http://www.cs.umd.edu/ clancy/eap-pax/, 2005.

11. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976.

12. Internet Engineering Task Force. Eap password authenticated exchange.
http://www.ietf.org/internet-drafts/draft-clancy-eap-pax-03.txt, 2005.

13. Oded Goldreich and Yehuda Lindell. Session-key generation using human pass-
words only. In CRYPTO ’01: Proceedings of the 21st Annual International Cryp-
tology Conference on Advances in Cryptology, pages 408–432, London, UK, 2001.
Springer-Verlag.

14. L. Gong, M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting poorly chosen
secrets from guessing attacks. IEEE Journal on Selected Areas in Communications,
11(5):648–656, 1993.

15. Shai Halevi and Hugo Krawczyk. Public-key cryptography and password protocols.
In CCS ’98: Proceedings of the 5th ACM conference on Computer and communi-
cations security, pages 122–131, New York, NY, USA, 1998. ACM Press.

16. Shai Halevi and Hugo Krawczyk. Public-key cryptography and password protocols.
ACM Trans. Inf. Syst. Secur., 2(3):230–268, 1999.

17. Vladimir Kolesnikov and Charles Rackoff. Key exchange using passwords and long
keys. Manuscript, available from Eprint archive, http://eprint.iacr.org.

18. H. Krawczyk. Skeme: a versatile secure key exchange mechanism for internet. In
SNDSS ’96: Proceedings of the 1996 Symposium on Network and Distributed System
Security (SNDSS ’96), page 114, Washington, DC, USA, 1996. IEEE Computer
Society.

19. Benny Pinkas and Tomas Sander. Securing passwords against dictionary attacks. In
CCS ’02: Proceedings of the 9th ACM conference on Computer and communications
security, pages 161–170, New York, NY, USA, 2002. ACM Press.

20. Victor Shoup. On formal models for secure key exchange. Technical Report RZ
3120 (#93166), 1999.

Key Exchange Using Passwords and Long Keys 119

A An Intermediate Game in the Proof of Theorem 1

We include the following game G1 as an important intermediate step that gives
the flavor of the proof of the most subtle case – the inability of Adv playing KE1
win “too often”. In the proof (included in the full version [17]) we show that
Adv winning KE1 implies an adversary Dist1 winning G1. We then show that
Dist1 winning “too often” implies insecurity of one of the employed primitives.
Let n be a security parameter.

Game G1. A maximum number of “password tries” q is deterministically (based
on n) chosen by Dist1 and fixed. The game initializes a CCA2 secure encryp-
tion scheme (by generating public and private keys pkS and skS) and randomly
chooses the password pwd ∈R D. Only the public key pkS is given to Dist1.
Dist1 queries the decryption oracle OD(e′) = DecskS

(e′) to obtain decryp-
tions of chosen strings. Then Dist1 chooses a “client name” NC . Then, for
i = 1, ..., u, Dist1 queries the encryption oracle OE that produces random en-
cryptions ei = EncpkS

(NC , pwd, ki), where ki ∈R {0, 1}n are chosen randomly
and unknown to Dist1. Here u is chosen by Dist1. Then Dist1 proceeds by exe-
cuting Steps 1 - 2 multiple times, in any order:

1. Dist1 queries the PRFG oracle OF (i, r) = Fki
(r), where ki was chosen (but

not revealed) by OE during it’s i-th query. Here r ∈ {0, 1}n and i ∈ {1..u}
are chosen by Dist1.

2. Dist1 queries the decryption oracle OD(e′), where e′ is chosen by Dist1. He
is not allowed to query OD on any ei obtained from OE.

Then Dist1 chooses i ∈ {1, ..., u} and r0 ∈ {0, 1}n and queries the challenge
oracle OC(i, r0). OC produces a challenge as follows: it randomly chooses a bit b
and a string ρ ∈R {0, 1}n. Then OC(i, r0) = Fki

(r0) if b = 0, and OC(i, r0) = ρ
if b = 1. Dist1 is not allowed to query OC(i, r0), if he queried OF (i, r0).

Then, Dist1 continues running Steps 1-2, with the exception that he is not
allowed to query OF (i, r0).

Finally, Dist1 generates a list of q password guesses PL = {p1, ..., pq} and
outputs a bit b′. Dist1 wins if pwd ∈ PL or if b = b′.

Mercurial Commitments: Minimal Assumptions
and Efficient Constructions

Dario Catalano1, Yevgeniy Dodis2, and Ivan Visconti3

1 CNRS-Ecole Normale Supérieure, Laboratoire d’Informatique, 45 Rue d’Ulm,
75230 Paris Cedex 05 - France

dario.catalano@ens.fr
2 Department of Computer Science, New York University, 251 Mercer Street,

New York, NY 10012, USA
dodis@cs.nyu.edu

3 Facoltà di Scienze Matematiche, Fisiche e Naturali, Università di Salerno,
via S. Allende n. 2, 84081 Baronissi (SA) - Italy

visconti@unisa.it

Abstract. (Non-interactive) Trapdoor Mercurial Commitments (TMCs)
were introduced by Chase et al. [8] and form a key building block for
constructing zero-knowledge sets (introduced by Micali, Rabin and Kil-
ian [28]). TMCs are quite similar and certainly imply ordinary (non-
interactive) trapdoor commitments (TCs). Unlike TCs, however, they
allow for some additional freedom in the way the message is opened:
informally, by allowing one to claim that “if this commitment can be
opened at all, then it would open to this message”. Prior to this work, it
was not clear if this addition is critical or not, since all the constructions
of TMCs presented in [8] and [28] used strictly stronger assumptions than
TCs. We give an affirmative answer to this question, by providing sim-
ple constructions of TMCs from any trapdoor bit commitment scheme.
Moreover, by plugging in various trapdoor bit commitment schemes, we
get, in the trusted parameters (TP) model, all the efficient constructions
from [28] and [8], as well as several immediate new (either generic or ef-
ficient) constructions. In particular, we get a construction of TMCs from
any one-way function in the TP model, and, by using a special flavor of
TCs, called hybrid TCs [6], even in the (weaker) shared random string
(SRS) model.

Our results imply that (a) mercurial commitments can be viewed as
surprisingly simple variations of trapdoor commitments; and (b) the ex-
istence of non-interactive zero-knowledge sets is equivalent to the exis-
tence of collision-resistant hash functions. Of independent interest, we
also give a stronger and yet much simpler definition of mercurial com-
mitments than that of [8], which is also met by our constructions in the
TP model.

1 Introduction

Commitment schemes are important cryptographic primitives. They allow one
party to commit to some value v so that v is kept secret from the rest of the world

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 120–144, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Mercurial Commitments: Minimal Assumptions and Efficient Constructions 121

(this is called hiding), and yet everybody knows that the value v is uniquely de-
fined at the time v was committed (this is called binding). In particular, binding
ensures that the party cannot announce the commitment first, and then decide
later how to open it depending on the circumstances. In this sense, commitment
schemes force the party to fully decide on what he is committing to.

At Eurocrypt 2005, Chase et al. [8] introduced an intriguing variant of com-
mitments called mercurial commitments. The main difference comes from the
fact that mercurial commitments allow for a small, and yet noticeable relax-
ation of the strict binding property of regular commitments. Namely, they allow
for a two-stage opening protocol. In the soft-open stage the committer can claim
that “if I committed to anything at all, then this value is m”, while in the
hard-opening stage he would indeed declare that “Yes, I really committed to
the value m.” In particular, any committed value c can either be both soft- and
hard-opened only to one (correct!) message m, or can be soft-opened to arbitrary
messages, but then it cannot be hard-opened at all! Moreover, the committer
must decide before forming the commitment which one of the two cases suits
him better: to commit to only one value, or not to commit to anything at all.
Although this is seemingly not much better than regular commitments, the ex-
tra freedom of the committing party comes from the fact that by showing a
soft-opening of his commitment to some value m, the receivers still cannot tell
if m was really committed to by c, or if c was simply a “non-commitment” to
anything (and the committer might be just going around and soft-opening c to
arbitrary values m′). The receivers are sure, however, that it is impossible to
hard-open c to any m′ �= m.

Chase et al. [8] distilled the above natural primitive to abstract away a rela-
tively complicated (but efficient!) construction of zero-knowledge sets by Micali
et al. [28]. Such ZK sets allow one to commit to some secret set S over some
universe, and then to be able to non-interactively prove statements of the form
x ∈ S and x �∈ S, and yet no other information (which cannot be deduced from
the inclusions/exclusions above) about S is leaked — not even its size! With the
abstraction of mercurial commitments, Chase et al. [8] obtained an elegant and
easy-to-follow general “explanation” of the construction from [28]. Namely, they
showed that the construction of [28] is an instance of a general construction of
ZK sets from any mercurial commitment scheme and any collision-resistant hash
function.

Plain vs. Trapdoor Mercurial Commitments. We remark that to match
a very strong zero-knowledge definition of ZK sets from [28], Chase et al. [8]
had to require that mercurial commitments satisfy the following “equivocation”
property: there exists some trapdoor information msk (ordinarily not available
to anybody) which enables one to completely destroy all the binding proper-
ties of mercurial commitments. Namely, using msk one can construct fake com-
mitments, which look just like regular commitments and yet can be soft- or
hard-opened to completely arbitrary values. (This is very similar to the notion
of regular trapdoor commitments [4], where the knowledge of the corresponding
trapdoor key can enable somebody to create fake regular commitments which

122 D. Catalano, Y. Dodis, and I. Visconti

can be opened to any message.) As already observed by [8], this strong equivoca-
tion property does not seem to be inherent for the “plain” primitive of mercurial
commitments, but they chose to insist on this extra property since it was need
for their main application. Since we believe that mercurial commitments are also
interesting without equivocation, in our results we will distinguish between plain
and trapdoor mercurial commitments. (Although our results described below will
hold equally naturally for either case.) Indeed, we observe that one can define a
weaker notion of ZK sets, which we informally call indistinguishable sets, which
have the same functionality as ZK sets, but the privacy property is relaxed to
only state that for any two sets and any sequence of inclusion/exclusion asser-
tions which does not “separate” these sets, seeing the proofs of the corresponding
assertions does not allow one to distinguish between these two sets. (This is some-
what similar to the distinction between witness indistinguishable [17] and ZK
proofs [21].) And then it is easy to see that the same generic construction from [8]
would give indistinguishable sets when applied to plain mercurial commitments.
To summarize, we believe that both plain and trapdoor mercurial commitments
are useful and deserve investigation.

Minimal Assumptions for Mercurial Commitments. Having introduced
a new cryptographic primitive, it is always very important to understand where
it lies in the hierarchy of cryptographic assumptions. Towards this goal, [8] gave
a general construction of (trapdoor) mercurial commitments in the plain model
from any zero-knowledge proof system for NP. This construction, however, re-
quires interaction. Then [8] showed a construction of non-interactive (trapdoor)
mercurial commitments from non-interactive zero-knowledge proofs (NIZK) for
NP, which are known, for example, to be implied by trapdoor permutations in
the shared random string (SRS) model. However, this construction is mainly of
theoretical interest, since it is very inefficient in practice. They also gave a more
efficient (although bit-by-bit) construction of non-interactive (trapdoor) mercu-
rial commitments from an even stronger assumption of claw-free permutations
[22] in the trusted parameters (TP) model. On the other hand, [8] observed that
(trapdoor) mercurial commitments are similar and trivially imply (trapdoor)
regular commitments, although they pointed out some important differences as
well. Thus, the following two questions were left open:

Question 1. What minimal cryptographic and set-up assumptions are sufficient
for non-interactive plain/trapdoor mercurial commitments?
Question 2. Can plain/trapdoor mercurial commitments be (efficiently) built
from plain/trapdoor commitments?

Our first result resolves these questions in a surprisingly simple fashion. We show
a very simple and efficient construction of (bit) plain/trapdoor mercurial com-
mitments from any bit plain/trapdoor regular commitment. The construction
is a very simple generalization of the claw-free construction from [8], and since
regular/trapdoor commitments are in principle equivalent to one-way functions
in the SRS/TP model, we get

Mercurial Commitments: Minimal Assumptions and Efficient Constructions 123

Theorem 1. There exists a simple and efficient construction of (non-interactive)
bit plain/trapdoor mercurial commitments from bit plain/trapdoor commitments.
In particular, (non-interactive) plain/trapdoor mercurial commitments exist in the
SRS/TP model if and only if one-way functions exist.

The above result leaves open a question of basing (only trapdoor) mercurial
commitments on one-way functions in the SRS model, which is a weaker set-
up assumption than the TP model. Luckily, we observe that by using the same
construction with a slight relaxation of trapdoor commitments, called hybrid
trapdoor commitments, which were introduced by Catalano and Visconti [6]
and shown to be equivalent to one-way functions even in the SRS model, we get

Theorem 2. There exists a simple and efficient construction of (non-interactive)
bit trapdoor mercurial commitments from (non-interactive) bit hybrid trapdoor
commitments. In particular, non-interactive trapdoor mercurial commitments ex-
ist in the SRS model if and only if one-way functions exist.

Efficiency? Having resolved the question of feasibility, we can turn to the ques-
tion of efficiency. Of course, we can plug in various efficient bit trapdoor commit-
ment schemes to our previous construction, but this will only result in bit-by-bit
constructions for long messages, which is pretty inefficient for practical use (e.g.,
for the ZK sets application). On the other hand, Chase et al. [8] gave two efficient
constructions for long messages based on specific number-theoretic constructions
(discrete log and factoring; the discrete log construction was implicit in [28]). Ex-
amining these constructions, one can see that there seems to be some kind of simi-
larity between them, although it is not obvious exactly where this similarity comes
from. Also, it is relatively hard to understand why each construction is really se-
cure, without going into the details of the proof. Motivated by this, we ask

Question 3. Is there an efficient and yet reasonably general construction of
plain/trapdoor mercurial commitments, which would abstract and explain the
efficient number-theoretic constructions from [8]?

Our second result gives a surprisingly general answer to this question. Namely,
we present a construction which directly transforms a plain/trapdoor bit com-
mitment C into an efficient and (typically) multi-bit plain/mercurial commitment
C′. Namely, we still base it on general plain/trapdoor commitment, just like in
Theorem 1. However, a small catch is that we will need to assume an extra
property from C (see Section 2.1 for a definition of Σ-protocol):

Theorem 3. Assume C is a plain/trapdoor bit commitment which has an effi-
cient Σ-protocol Π proving that one knows a witness d that a given (regular)
commitment c can be opened to 0.1 Then one one can construct an efficient
plain/trapdoor mercurial commitment C′ whose message space is equal to the
challenge space of Π.
1 As explained in Section 5 proving this theorem, we will need a slight extra property

(*) from such Σ-protocols, but it will always hold in any practical construction we
are aware of. So we omit it from this statement.

124 D. Catalano, Y. Dodis, and I. Visconti

Thus, to get message-efficient constructions, it will be important to design
“challenge-efficient” Σ-protocols for our plain/trapdoor commitment schemes.
While such Σ-protocol’s Π in principle (see Theorem 5 below) can always be
built from one-way functions, in general this will not outperform the simple con-
struction in Theorem 1. However, the utility of this transformation comes from
the fact that all number-theoretic (trapdoor) bit commitment schemes have very
efficient Σ-protocols, and usually with rich challenge spaces. Plugging in vari-
ous such commitment schemes with efficient protocols, we get many efficient
constructions of mercurial commitments. In particular, both the discrete log
and the factoring construction of [8] become special cases of our general trans-
formation, when applied to an appropriate trapdoor commitment scheme! And
several new constructions can be obtained as well (e.g., from RSA and Paillier
[32] assumptions, as well as new discrete log and factoring constructions; see
Section 5.1). More generally, we also believe that our construction is much eas-
ier to understand and sheds more light onto why the previous number-theoretic
constructions where built in this particular way.

Simpler Definition. As another small contribution, by strengthening the def-
inition of trapdoor mercurial commitments as compared to the definition of [8],
we considerably simplified the equivocation property of mercurial commitments.
Since all our constructions (with the exception of Theorem 2) satisfy the stronger
definition, and it results in easier and shorter proofs, we believe our strengthen-
ing is justified and could be of independent interest.

Implication To ZK Sets. It is known from [8] and [31] that collision-resistant
hash functions (CRHF) suffices for constructing interactive ZK sets in the plain
model. Chase et al. [8] also made a simple observation that ZK sets imply the exis-
tence ofCRHFsand therefore interactiveZKsets in theplainmodel andCRHFsare
equivalent. Chase et al. in [8] also show that non-interactive indistinguishable/ZK
sets can be constructed from any non-interactive plain/trapdoor mercurial com-
mitment scheme and a collision-resistant hash function (CRHF).UsingTheorem1,
Theorem 2, Theorem 3, and the fact that CRHFs imply both one-way functions
(and, thus, plain/trapdoor/hybrid commitments in theSRS/TP/SRSmodels) and
efficient plain commitment schemes (see [12] and [25]), we immediately obtain:

Theorem 4. The existence of ZK (and, thus, indistinguishable) sets in the SRS
model is equivalent to the existence of CRHFs. Moreover, ZK sets can be efficiently
constructed fromCRHFsandtrapdoorbit commitmentschemes,while indistinguish-
able sets can be efficiently constructed using CRHFs alone (by also building commit-
ments out of them).The constructions becomeevenmore efficient if the commitment
scheme in question has a challenge-efficientΣ-protocol needed for Theorem 3.

2 Definitions

2.1 Σ-Protocols

Let R = {(x,w)} be some NP-relation (i.e., it is efficiently testable to see if
(x,w) ∈ R and |w| ≤ poly(|x|)). We usually call x the input, and w — the witness

Mercurial Commitments: Minimal Assumptions and Efficient Constructions 125

(for x). Consider a three move protocol run between a PPT prover P , with input
(x,w) ∈ R, and a PPT verifier V with input x, of the following form. P chooses
a random string rp, computes a = Start(x,w; rp), and sends a to V . V then
chooses a random string e (called “challenge”) from some appropriate domain
E (see below) and sends it to P . Finally, P responds with z = Finish(x,w, e; rp).
The verifier V then computes and returns a bit b = Check(x, a, e, z). We require
that Start, Finish, and Check be polynomial-time algorithms, and that |e| ≤
poly(|x|). Such a protocol (given by procedures Start,Finish,Check) is called a
Σ-Protocol for R if it satisfies the following properties, called completeness,
special soundness, and special honest-verifier zero-knowledge:

– Completeness: If (x,w) ∈ R then the verifier outputs b = 1 (with all but
negligible probability).

– Special Soundness: There exists a PPT algorithm Extract, called the
(knowledge) extractor, such that it is computationally infeasible to produce
an input tuple (x, a, e, z, e′, z′) such that e �= e′ both lie in the proper “chal-
lenge” domain, Check(x, a, e, z) = Check(x, a, e′, z′) = 1, and yet Extract(x, a,
e, z, e′, z′) fails to output a witness w such that (x,w) ∈ R. Intuitively, if
some prover can correctly respond to two different challenges e and e′ on the
same first flow a, then the prover must “know” a correct witness w for x (in
particular, x has a witness).

– Special HVZK: There exists a PPT algorithm Simul, called the simulator,
such that for any (x,w) ∈ R and for any fixed challenge e, the following two
distributions are computationally indistinguishable. The first distribution
(x, a, e, z) is obtained by running an honest prover P (with some fresh ran-
domness rp) against a verifier whose challenge is fixed to e. The second dis-
tribution (x, a, e, z) is obtained by computing the output (a, z) ← Simul(x, e)
(with fresh randomness rs). Intuitively, this says that for any a-priori fixed
challenge e, it is possible to produce a protocol transcript computationally
indistinguishable from an actual run with the prover (who knows w).

Since the standard zero-knowledge protocol for the Hamiltonian Cycle (see [16]
and [23]) language is a (binary challenge) Σ-protocol, we get

Theorem 5 ([23],[16]). Any NP-relation R has a (binary challenge)Σ-protocol
if secure commitment schemes exist (in particular, in the SRS model if one-way
functions exist).

Of course, we will see and crucially exploit the fact that many natural specific
languages have much more efficient Σ-protocols. We also notice that, aside from
computational efficiency, a good quality measure for a givenΣ-protocol is the size
of its challenge space E (the larger the better). One reason for this dependency
comes because the special soundness property easily implies that if a malicious
prover does not “know” a valid witness w for x, then he can succeeds in fooling
the verifier with probability at most (only negligibly better than) 1/|E|. In our
application, we will also see that the large size of E will also naturally translate
to more efficient solutions, and we will therefore strive to use “challenge-efficient”
Σ-protocols.

126 D. Catalano, Y. Dodis, and I. Visconti

Generalizations. First, we will allow R to depend on some honestly generated
public parameter pk (known to everybody after generation); e.g. the standard
discrete-log relation would be Rp,g(x,w) = 1 if and only if x = gw mod p, where
the prime p and the generator g could be randomly generated. In this case the
corresponding properties of the Σ-protocol should computationally hold over
the choice of such parameters. However, for one of our applications we will re-
quire an even stronger technical property. Namely, we will say that a family of
relations {Rpk} has a Σ-protocol which is strongly hiding w.r.t. instance gen-
eration procedure P if the special HVZK property holds even in the following
experiment: P produces (pk, x, w,I), where pk is the public key for R, x is the
input, w is the witness, and I is some side information available to attacker.
Then we either give to the distinguisher a tuple (I, pk, x, a, e, z) obtained by
having the prover run the real protocol with x and w, or where (a, z) is pro-
duced by the simulator Simulpk(x, e). To put it differently, the side information
I does not help the distinguisher to break the special HVZK property. We no-
tice that, essentially all of the practical Σ-protocols known (including all the
ones we will actually consider) will satisfy the statistical HVZK property, in
which case they will be strongly-hiding w.r.t. any P. Also, the generic proto-
col from Theorem 5 will also be strongly-hiding w.r.t. any efficient procedure
P which only depends on the public parameters of the commitments used in-
side the protocol. This, once again, includes essentially all interesting procedures
(including the specific one we will need later). In other words, for all practical
purposes this extra property is just a technicality we need for the proof to go
through.

As a second, orthogonal generalization, we can also consider “auxiliary-input”
Σ-protocols, where in order to run the protocol, the prover P might need some
extra information aux satisfying some property (which, presumably can be gen-
erated together with (x,w)), in addition to w. Notice, w alone is enough to allow
for verification that (x,w) ∈ R, so aux is only needed by the prover to fulfill his
completeness requirement (in particular, the simulator does not need to know
aux and special soundness and HVZK stay the same as before).

Efficient Σ-protocols. We briefly survey the following efficient Σ-protocols
which we will use in the sequel. (The exact details will not be crucial for our
purposes, so we will not present them here.) We notice that most of them will
be unconditional: the security assumption behind the relation (such as discrete
log) will be used later in the application; for example, in claiming that the
hypothetical extraction of the witness contradicts the corresponding assumption.

The Schnorr Σ-protocol [34] allows one to unconditionally prove the knowl-
edge of the discrete log in cyclic groups of prime order. A less known fact [19,9]
is that (a slightly modified)2 Schnorr protocol also works over the subgroup
of quadratic residues Qn over Z∗

n, where n is the product of two safe primes.
Interestingly, unlike in prime order groups, where the special soundness holds

2 In particular, the prover works over the integers instead of over Z|Qn|, since he does
not know |Qn|. Because of that the special HVZK guarantee is statistical here rather
than perfect.

Mercurial Commitments: Minimal Assumptions and Efficient Constructions 127

unconditionally, here it will hold computationally under the strong RSA assump-
tion. In both of these cases the challenge space is exponential.

Very similar to Schnorr protocol, Gilliou-Quisquater (GQ) [24] protocol proves
the knowledge of the e-th root over Z∗

n (i.e., solution to RSA), where gcd(e, ϕ(n))
= 1 and n is the produce of two safe primes. Here, however, the challenge space
should be smaller than the exponent e, so this protocol is challenge-efficient only
if e is large (which is typically required when this protocol is used).

The Fiat-Shamir protocol is an unconditional binary-challenge Σ-protocol
proving the knowledge of the square root over Z∗

n, where n is the product of two
primes. One way to make it challenge-efficient is to repeat it in parallel, but this
is computationally inefficient. A better way is to use the elegant technique of
Ong-Schnorr [30], at the expense of working over the set of quadratic residues
Qn, requiring n to be a Blum integer, and, more crucially, requiring an auxiliary
witness to the prover. Namely, in order to make the challenge space to be of size
2�, the prover not only needs to know a square root of the input x ∈ Qn, but also
the 2�-root root u ∈ Qn of x (which is well defined when n is a Blum integer):
see Lemma 3.1 in [1] explicitly stating the special soundness of this protocol.
Of course, to run this protocol in practice one would first pick u and then set
w = u2�−1

mod n (by repeated squaring) and x = w2 mod n.
All the above mentioned protocols have statistical special HVZK, so they

always satisfy strong-hiding. To summarize, natural relations arising from well
established cryptographic assumptions have very computationally and challenge-
efficient Σ-protocols.

2.2 Commitments and Trapdoor Commitments

Commitments. A (non-interactive) commitment scheme consists of four ef-
ficient algorithms: C = (Com-Gen,Com,Open,Ver). The generation algorithm
Com-Gen(1k), where k is the security parameter, outputs a public commitment
key pk (possibly empty, but usually consisting of public parameters for the
commitment scheme). Given a message m from the associated message space
M (e.g., {0, 1}k, although we will mainly concentrate on bit commitments),
Compk(m; r) (computed using the public key pk and additional randomness r)
produces a commitment string c for the message m. We will sometimes omit
r and write c ← Compk(m). Similarly, the opening algorithm Openpk(m; r)
(which is supposed to be run using the same value r as the commitment al-
gorithm) produces a decommitment value d for c. Finally, the verification al-
gorithm Verpk(m, c, d) accepts (i.e., outputs 1) if it thinks the pair (c, d) is a
valid commitment/decommitment pair for m. We require that for all m ∈ M,
Verpk(m,Compk(m; r),Openpk(m; r)) = 1 holds with all but negligible proba-
bility. We remark that without loss of generality we could have assumed that
the opening algorithm simply outputs its randomness r as the decommitment,
and the verification algorithm simply checks if c = Compk(m; r). However, we
will find our more general notation more convenient for our purposes. When
clear form the context, we will sometimes omit pk from our notation. Regular
commitment schemes have two security properties:

128 D. Catalano, Y. Dodis, and I. Visconti

Hiding. No PPT adversary (who knows pk) can distinguish the commit-
ments to any two message of its choice: Compk(m1) ≈ Compk(m2). That
is, Compk(m) reveals “no information” about m.

Binding. Having the knowledge of pk, it is computationally hard for the PPT
adversary A to come up with c,m, d,m′, d′ such that (c, d) and (c, d′) are
valid commitment pairs for m and m′, but m �= m′ (such a tuple is said to
cause a collision). That is, A cannot find a value c which it can open in two
different ways.

Commitments are known to be theoretically equivalent to one-way functions
[29],[26] (at least in the SRS model). However, efficient commitments can be built
from collision-resistant hash functions [12],[25], and many number-theoretic as-
sumptions (such as factoring, discrete log and RSA, and Paillier [32]; see below).
In fact, most of these number-theoretic construct give a stronger kind of com-
mitment — called trapdoor commitment — which we explain next.

Trapdoor Commitments. A (non-interactive) trapdoor commitment scheme
consists of six efficient algorithms: C = (TrCom-Gen,Com,Open,Ver,Fake,Equiv).
The generation algorithm TrCom-Gen(1k), where k is the security parameter,
outputs a public commitment key pk and and a secret trapdoor key sk. Once pk
is fixed, the meaning of Com, Open and Ver is exactly the same as for regular
commitments. In particular, we will require that these algorithms satisfy the
usual hiding and binding properties of the commitment schemes.

The trapdoor key sk is used in the algorithms Fake and Equiv to break the
binding property of commitments. Namely, Fakesk(; r) (which takes no input
except for randomness r) produces “fake” commitment c, initially not associated
to any message m. On other other hand, for any messagem, Equivsk(m; r) (which
is supposed to be run using the same value r as the fake commitment algorithm)
produces a “fake decommitment” value d for c = Fakesk(; r). In particular, we
require that such fake (c, d) still satisfy the verification equation: for all m ∈ M,
Verpk(m,Fakesk(; r),Equivsk(m; r)) = 1 holds with all but negligible probability.
Even stronger, we require that

Equivocation. for any m ∈ M (chosen by the adversary), a “true” com-
mitment tuple (m,Compk(m; r),Openpk(m; r)) should look computationally
indistinguishable (over r) from the fake tuple (m,Fakesk(; r), Equivsk(m; r)).
More importantly, we require that these distributions should look indistin-
guishable even if the distinguisher knows not only the commitment key pk,
but also the trapdoor key sk (we will explain the rational for this shortly)!

We notice that equivocation easily implies that trapdoor commitments satisfy
the usual hiding property of commitments (since all commitments Compk(m) are
indistinguishable from a single distribution Fakesk()): in fact, this indistinguisha-
bility holds even if the distinguisher knows sk! Thus, binding and equivocation
are enough to argue the security of trapdoor commitment schemes.

We briefly give the rational of why we need such a strong equivocation prop-
erty. This is done for the purposes of composition. Indeed, we would like to

Mercurial Commitments: Minimal Assumptions and Efficient Constructions 129

argue that given several “real” pairs (c, d), we can replace all of them by the
corresponding “fake” pairs (c′, d′), without anybody “noticing”. However, the
standard left-to-right hybrid argument requires us to be able to generate not
only the “real left-pairs” (c, d), which we can do using pk, but also “fake right-
pairs” (c′, d′), and this we cannot do without the knowledge of sk. Requiring the
indistinguishability to hold even with the knowledge of sk resolves this problem,
and gives us all the natural composition properties.

Constructions. There are many constructions of trapdoor commitments (and
each of them also gives a regular commitment, of course). For example, efficient
trapdoor commitments exist based on a variety of number-theoretic assumptions:
factoring [27],[33], discrete log [3],[4]), RSA (combining [16],[24]), Paillier [5],[11].
In fact, some of these schemes (e.g., those based on discrete log and RSA) are
special cases of a beautiful general construction by Feige and Shamir [16]. This
construction efficiently transforms any Σ-protocol corresponding to a “hard”
language in NP into a trapdoor commitment scheme. In particular, since we
mentioned that all of NP has such Σ-protocols if one-way functions exists (see
Theorem 5), and the latter also imply that some languages in NP are “hard”
(at least, the the TP model), one can in principle construct a trapdoor com-
mitment scheme from any one-way function in the TP model (see sec. 4.9.2.3
of [20]). We note that the message space for the resulting trapdoor commitment
will be exactly the challenge space of the corresponding Σ-protocol, which, once
again, demonstrates why we want to construct challenge-efficient Σ-protocols.3

Quite interestingly, this construction of trapdoor commitments will be some-
what reminiscent to our main construction from trapdoor commitments (pos-
sessing a certain Σ-protocols; see Section 5), although this seems to be more of a
coincidence.4

We also mention another, less general construction [27] of trapdoor commit-
ments from claw-free permutation pairs [22]. This construction is only efficient
for bit trapdoor commitments (which, once again, are sufficient for us). Looking
at various known claw-free permutation constructions (e.g., see [14] for such a
list), we immediately get efficient bit trapdoor commitment constructions from
various assumptions, such as the already mentioned constructions from factoring
[27], Paillier [11] and the bit-version of the discrete log construction of [3],[4]. In
regards to discrete log, we finally mention the following “ad-hoc” construction of
trapdoor bit commitments. The public key consists of two random generators g
and h = gx of some prime order q cyclic group G, where the discrete log is hard
(here x is a random non-zero element of Zq), while the trapdoor key is x. To
commit to 0, one computes gr0 (for random non-zero r0 ∈ Zq), while to commit

3 Of course, since both of our generic mercurial commitment constructions only use bit
commitments, even binary Σ-protocols for hard languages suffice for our purpose.

4 Perhaps partially explained by the fact that mercurial commitment are trapdoor
commitments with several very special properties (see Section 2.3). Correspondingly,
in our main construction we will need “hard” languages also satisfying some special
properties. Somehow remarkably, though, these extra properties have more or less
led us to trapdoor commitments themselves! See Section 5.

130 D. Catalano, Y. Dodis, and I. Visconti

to 1 one similarly computes hr1 . The openings are r0 and r1, respectively. To
break binding one needs to satisfy gr0 = hr1 , which means that one can com-
pute x = r0r

−1
1 mod q (and this contradicts discrete log). On the other hand, if

x is known, it is trivial to open a “fake” commitment hr1 both to 1 (by simply
presenting r1) and to 0 (by presenting r1x mod q).

Hybrid trapdoor commitments. In [6] Catalano and Visconti presented the
notion of hybrid trapdoor commitment schemes (in the context of constructing
concurrent zero-knowledge proofs). Informally an hybrid trapdoor commitment
scheme is a general commitment primitive that allows for two commitment pa-
rameters generation algorithms HGen and HTGen. If the commitment parameters
are obtained as the output of HGen, then the resulting scheme is an uncondi-
tionally binding commitment scheme, while if the parameters are generated by
HTGen, the produced scheme is actually a trapdoor commitment scheme. More-
over, no polynomially bounded adversary, taking as input only the (public) com-
mitment parameters, should be able to tell the difference between parameters
generated from HGen and parameters produced by HTGen. In [6], the authors show
that 1) non-interactive hybrid trapdoor commitments can be constructed from
any one-way function in the SRS model; and 2) efficient non-interactive hybrid
trapdoor commitments can be constructed under standard number-theoretic as-
sumptions in both the SRS and the TP models.

2.3 Mercurial Commitments

We now define mercurial commitments introduced by Chase et al. [8]. Our def-
inition will be similar, but stronger than the definition from [8]. There are two
reasons for making the change. First, all the efficient constructions in [8] and
here will anyway satisfy the stronger definition. More importantly, by making
our definition stronger we will also make it noticeably simpler (and shorter!)
than the definition of [8]. More detailed comparison will be presented later.

Plain Mercurial Commitments. Such commitment schemes consist of seven
efficient algorithms: C = (MCom-Gen,HCom,HOpen,HVer,SCom,SOpen,SVer).
The first four algorithms (MCom-Gen,HCom,HOpen,HVer) follow the syntax
(and the functionality!) of regular commitment schemes (see Section 2.2). Namely,
generation algorithm MCom-Gen(1k), where k is the security parameter, outputs
a public mercurial commitment key mpk. Given a message M ∈ M, the hard-
commit algorithm HCommpk(M ;R) produces a hard-commitment string C for
M . We will sometimes write C ← HCommpk(M). Similarly, the hard-opening
algorithm HOpenmpk(M ;R) (which is supposed to be run using the same value
R as the hard-commit algorithm) produces a hard-decommitment value π for C.
Finally, the hard-verification algorithm HVermpk(M,C, π) accepts (i.e., outputs
1) if it thinks π proves that C is indeed a valid hard-commitment to M . We re-
quire that for all M ∈ M, HVermpk(m,HCommpk(M ;R),HOpenmpk(M ;R)) = 1
holds with all but negligible probability.

We now turn to the novel “soft algorithms”. The soft-commit algorithm
SCommpk(;R) produces a soft-commitment string C (to no message in

Mercurial Commitments: Minimal Assumptions and Efficient Constructions 131

particular). We will sometimes write C ← SCommpk(). The soft-opening algo-
rithm SOpenmpk(M, flag;R), where M ∈ M and flag ∈ {H,S} now produces a
soft-decommitment τ to M , which should say that “if the commitment produced
using R can be hard-opened at all, then it would open to M”. A bit more pre-
cisely, if flag = H, then τ is supposed to “correspond” to the hard-commitment
C = HCommpk(M ;R), and if flag = S, then τ is a fake soft-decommitment “cor-
responding” to the soft-commitment C = SCommpk(;R). Either one of these
cases is verified using the soft-verification algorithm SVermpk(M,C, τ), which
outputs 1 if it thinks that C could potentially be hard-opened to M in the fu-
ture (which, intuitively, should be the case only when τ was produced from a
hard-commitment). Specifically, we require that for all M ∈ M, SVermpk(M,
HCommpk(M ;R),SOpenmpk(M,H;R)) = 1 holds with all but negligible prob-
ability, and similarly SVermpk(M,SCommpk(;R),SOpenmpk(M,S;R)) = 1 holds
with all but negligible probability.

We notice that in many cases (including all our constructions) the soft-
decommitment τ to a hard-commitment C will consist of some proper part of
the hard-decommitment π, and, correspondingly, the soft-verification algorithm
will perform a proper subset of the tests performed by the hard-verification al-
gorithm. For a lack of better name, we call such natural mercurial commitments
proper.

Security. The binding property of plain mercurial commitments consists of
two requirements, stating that a valid hard- or soft-opening of C to some M
implies that C can not be then hard-opened to any other message M ′ �= M :

– Mercurial Binding: Having the knowledge of mpk, it is computation-
ally hard for the PPT adversary A to come up with C,M, π,M ′, π′ (resp.
C,M, τ,M ′, π′) such that π (respectively, τ) is a valid hard- (respectively
soft-) decommitment of C to M and π′ is a valid hard-decommitment of C
to M ′, but M �= M ′ (such a tuple is said to cause a hard (respectively soft)
collision). That is, A cannot find a value C which it can hard- or soft-open
in one way and then hard-open in a different way.

We remark that for proper mercurial commitments it suffices to prove that no
soft collisions can be found.

As for the analog of the hiding property, we require that not only hard-
commitments to some M look indistinguishable from soft-commitments (to
“nothing”), but this continues to hold even if they are both soft-opened to M
(notice that by the mercurial binding property, the hard-commitment to M can-
not be soft-opened to anything other than M).

– Mercurial Hiding. No PPT adversary (who knows mpk) can find M ∈
M for which it can distinguish a random “real” hard-commitment/soft-
decommitment tuple (M,HCommpk(M ;R),SOpenmpk(M,H;R)) from a ran-
dom “fake” soft-commitment/soft-decommitment tuple (M,SCommpk(;R),
SOpenpk(M,S;R)).

132 D. Catalano, Y. Dodis, and I. Visconti

(Trapdoor) Mercurial Commitments. Such commitment schemes consist of
ten efficient algorithms: C = (TrMCom-Gen,HCom,HOpen,HVer,SCom,SOpen,
SVer,MFake,HEquiv,SEquiv). The generation algorithm TrMCom-Gen(1k), where
k is the security parameter, outputs a public mercurial commitment keympk and
and a secret mercurial trapdoor keymsk. Oncempk is fixed, the meaning of HCom,
HOpen, HVer, SCom, SOpen and SVer is exactly the same as for plain mercurial
commitments. In particular, we will require that these algorithms satisfy the usual
mercurial hiding and binding properties of the plain mercurial commitment
schemes.

The trapdoor key msk is used in the algorithms MFake, HEquiv and SEquiv
to break the binding property of commitments. The algorithm MFakemsk(;R)
is somewhat similar in spirit to the soft-commitment algorithm SCommpk and
produces “fake” commitment C, initially not associated to any message M . The
meaning of the other two algorithms HEquivmsk(M ;R) and SEquivmsk(m;R)
is also similar to that of the corresponding algorithms HOpenmpk, SOpenmpk,
except they always operate on the fake commitments C not really associated
to any message. Specifically, HEquiv(M ;R) produces a supposedly valid hard-
opening π (called hard-fake) of the fake commitment C = MFake(;R) to M ,
while SEquiv(M ;R) produces a supposedly valid soft-opening τ (called soft-
fake) of the fake commitment C = MFake(;R) to M . In particular, we require
that for all M ∈ M, HVermpk(M,MFakempk(;R),HEquivmpk(M ;R)) = 1 holds
with all but negligible probability, and similarly SVermpk(M,MFakempk(;R),
SEquivmpk(M ;R)) = 1 holds with all but negligible probability. While the abil-
ity to soft-fake such bogus commitments is consistent with the previous ability
of soft-opening, the ability to hard-fake them certainly contradicts the bind-
ing property that we had, and this is exactly the function of the trapdoor
key msk!

Somewhat similar to the equivocation property of trapdoor commitments, we
require that trapdoor mercurial commitments satisfy three related equivocation
conditions. In each of them we say that no efficient distinguisher A can non-
negligibly tell apart the corresponding “real” from the corresponding “ideal”
game, even if it is given the trapdoor key msk at the beginning of each real or
ideal game. In the following, the value R is always random.

– HH Equivocation: The real game consists of A choosing M ∈ M and
getting back (M,HCommpk(M ;R),HOpenmpk(M ;R)); while the ideal game
consists of A choosing M ∈ M and getting back (M, MFakemsk(;R),
HEquivmsk(M ;R)).

– HS Equivocation: The real game consists of A choosing M ∈ M and get-
ting back (M,HCommpk(M ;R),SOpenmpk(M,S;R)); while the ideal game
consists of A choosing M ∈ M and getting back (M,
MFakemsk(;R),SEquivmsk(M ;R)).

– SS Equivocation: The real game consists of A getting the value C =
SCommpk(;R), then choosing M ∈ M, and finally getting SOpenmpk(M,
S;R); while ideal game consists of A getting the value C = MFakempk(;R),
then choosing M ∈ M, and finally getting SEquivmpk(M ;R).

Mercurial Commitments: Minimal Assumptions and Efficient Constructions 133

Notice that similar-looking SH condition does not make sense in the real
life (due to mercurial binding). Next, HS and SS Equivocations easily imply
the Mercurial Hiding property, so it does not need to be checked. Also, for
proper mercurial commitments it is easy to see that HH Equivocation implies
HS Equivocation, so it is enough to check only HH and SS Equivocations.

Relation to the Original Definition in [8]. The main difference from [8]
is in the equivocation property, which is considerably simpler to state and verify
in our case. Moreover, it is also stronger than the definition of [8]. Essentially,
the latter definition consists of playing an arbitrary composition of HH, HS and
SS Equivocation games either in the real, or in the ideal world,5 but where the
distinguisher A is not given the trapdoor key msk. In this scenario the usual
hybrid argument does not work (since A cannot simulate stuff in the ideal world
by himself), so one cannot reduce the composed game to the one of the three
atomic HH, SE or SS games. As a result, one has to build a full-fledged simulator,
and formally argue that it fools the distinguisher. In contrast, in our scenario
the hybrid argument easily works, so the security of our 3 atomic games easily
implies the security of the composed game even if the distinguisher knows msk.

Known Constructions. Chase et al. [8] gave several elegant constructions of
(trapdoor) mercurial commitments from the following assumptions:

– One-way functions. This construction works in the plain model but unfortu-
nately is interactive. All next constructions are non-interactive.

– Non-interactive zero-knowledge (NIZK) proofs for all of NP [2], [15] and
unconditionally-binding commitment schemes. However, this construction is
mainly of theoretical interest, since all known NIZK constructions (especially
for all of NP) are extremely inefficient. Interestingly, it also does not satisfy
our stronger definition. However, in the sequel we will provide more general
constructions (from one-way functions) which satisfy our stronger defini-
tion in the trusted parameters model and are still more efficient than this
construction.6

5 There is one other, more syntactic strengthening that we had to make in order
to simplify the definition. Namely, in the more general definition of [8] one could
have syntactically unrelated real and ideal experiments for generating mpk, so it did
not make sense to give msk to A in the real game. In contrast, we insist that the
public key generation even in the real world can be carried by generating both the
public and the trapdoor key. While slightly more restrictive, since (1) all our efficient
constructions in the trusted parameters model satisfy this restricted notion of key
generation and (2) it considerably simplifies (and also strengthens) the definition, we
feel it is very justified.

6 We remark, however, that the NIZK is in the SRS model, while our OWF-based
construction satisfying the stronger definition will be in the TP model. We can
make SRS-based constructions by either building trapdoor commitments in the SRS
model (which is known how to do from one-way permutations or specific number-
theoretic assumptions), or by using our technique from Section 4 (while reverting to
the weaker definition of [8]).

134 D. Catalano, Y. Dodis, and I. Visconti

– Claw-free permutations [22]. This construction give only bit mercurial com-
mitment, and will be a special case of our first general construction from bit
trapdoor commitments.

– Discrete log. This is a “distillation” of the original construction implicitly
used in [28]; it supports long messages and is pretty efficient. It will be a
special case of our second construction when used with the corresponding
discrete-log based bit trapdoor commitment.

– Factoring. This is a new construction which supports long messages and is
relatively efficient. It will be a special case of our second construction when
used with the corresponding factoring-based bit trapdoor commitment.

Implications to (Trapdoor) Commitments. It is simple to see that by “ig-
noring” all the “soft” algorithms of a secure plain/trapdoor commitment scheme,
we immediately get a plain/trapdoor regular commitment scheme. (Concentrat-
ing, for example, on a slightly more complicated “trapdoor case”, HCom plays
the role of Com, HOpen — of Open, HVer — of Ver, MFake — of Fake, and
HEquiv — of Equiv.) In the following, we show two simple constructions proving
that the converse of this statement is true as well.

3 General Construction from (Trapdoor) Bit
Commitments

As advocated in the introduction, we will first consider the construction of plain
mercurial bit commitments from regular bit commitments, and then argue that
the same construction extends to the trapdoor case as well.

Building Plain Mercurial Commitments. Assume C = (Com-Gen,Com,
Open,Ver) is a regular bit commitment scheme. Define plain mercurial com-
mitment C′ = (MCom-Gen,HCom,HOpen,HVer,SCom,SOpen,SVer) for a bit
b ∈ {0, 1} as follows (we set MCom-Gen = Com-Gen and let pk be the corre-
sponding public key):

– HCompk(b; (r0, r1)): output (c0, c1) = (Compk(b; r0),Compk(1 − b; r1)). No-
tice, commitment to 0 changes its place from left to right depending on b.

– HOpenpk(b; (r0, r1)): output (d0, d1) = (Open(b; r0),Open(1 − b; r1)).
– HVerpk(b, (c0, c1), (d0, d1)): accept if and only if Verpk(b, c0, d0) = Verpk(1 −
b, c1, d1) = 1.

– SCompk(; (r0, r1)): output (c0, c1) = (Compk(0; r0),Compk(0; r1)).
– SOpenpk(b, flag; (r0, r1)): irrespective of flag ∈ {H,S}, output d=Open(0; rb).
– SVerpk(b, (c0, c1), d): accept if and only if Verpk(0, cb, d) = 1.

The correctness of the scheme is obvious. Intuitively, mercurial commitment
to b = 0 looks (0, 1), to 1 — (1, 0), and the fake — (0, 0). Since the soft-opening
of the hard commitment only opens the corresponding left or right 0, the fake
commitment can indeed be soft-opened in both way, by honestly opening the
appropriate left of right 0. On the other hand, seeing a hard-opening of some

Mercurial Commitments: Minimal Assumptions and Efficient Constructions 135

commitment C = (c0, c1) (to some bit b) opens to 1 one of the two regular
commitments, while the subsequent soft-opening of C to (1−b) would then open
this regular commitment to 0, which contradicts binding. Below, we formalize
this is a straightforward manner.

Mercurial Binding. Since the mercurial commitment is proper, we only need
to rule out soft collisions. For that, assume the attacker can find a soft collision.
By symmetry, let us assume that 1 is the softly-opened message, and 0 is the
hardly-opened one). So we denote this collision by C = ((c0, c1), d0, d1, d

′
1) where

Ver(0, c0, d0) = Ver(1, c1, d1) = Ver(0, c1, d′1) = 1. But then c1 can be opened to
both 0 and 1, a contradiction to the binding property of C.

Mercurial Hiding. Assume first b = 0. Then, the “real” hard-commitment/
soft-decommitment tuple (HCom(0; (r0, r1)),SOpen(0,H; (r0, r1)) looks like
(Com(0; r0),Com(1; r1),Open(0; r0)), while the corresponding “fake” tuple
(Fake(; (r0, r1)),SOpen(0,S; (r0, r1)) looks like (Com(0; r0),Com(0; r1),Open(0;
r0)). Clearly, such distribution are indistinguishable if Com(0) cannot be dis-
tinguished from Com(1), which follows from the hiding property of C. A similar
argument holds for b = 1 as well.

Trapdoor Case. The extension to the trapdoor case is simple as well. We now
have additional algorithms Fake and Equiv for trapdoor commitments, and need
to build the corresponding algorithms MFake, HEquiv and SEquiv for mercurial
commitments.

– MFakesk(; (r0, r1)): output (Fakesk(; r0),Fakesk(; r1)).
– HEquivsk(b; (r0, r1)): output (Equivsk(b; r0),Equivsk(1 − b; r1)).
– SEquivsk(b; (r0, r1)): output Equivsk(0; rb).

Correctness is obvious from definition. As for hiding, we only need to ar-
gue HH and SS Equivocations (since this is a proper mercurial commitment).
Both are simple corollaries of the regular Equivocation properties of trapdoor
commitments.

HH Equivocation. Let us assume b = 0, since b = 1 is symmetric. Then
(HCom(0; (r0, r1)),HOpen(0; (r0, r1))) is equal to Dreal =(Com(0; r0),Com(1; r1),
Open(0; r0),Open(1; r1)), while (MFake(; (r0, r1)),HEquiv(0; (r0, r1))) is equal to
Dideal = (Fake(; r0),Fake(; r1),Equiv(0; r0),Equiv(1; r1)). Since r0 and r1 are in-
dependent, this amount to two independent applications of the regular Equivoca-
tion property to bits 0 and 1, respectively. Notice, though, already for this simple
hybrid argument we are using the fact that the attacker knows the trapdoor key
sk! To be precise, we must first consider a hybrid distribution Dhyb = (Fake(; r0),
Com(1; r1),Equiv(0; r0),Open(1; r1)), and then show Dreal ≈ Dhyb (here we only
need pk to sample (Com(1; r1),Open(1; r1))) and Dhyb ≈ Dideal (here we need
sk to sample (Fake(; r0),Equiv(0; r0))).

SSEquivocation. In the real experiment, the attacker is first getting (Com(0; r0),
Com(0; r1)), then he has to choose a bit b, after which he gets Open(0; rb). In the
ideal game, the attacker is getting (Fake(; r0),Fake(; r1)), then he has to choose a
bit b, after which he gets Equiv(0; rb). By symmetry, the choice of b does not mat-
ter here, so we can assume b = 0, so it suffices to argue (Com(0; r0),Com(0; r1),

136 D. Catalano, Y. Dodis, and I. Visconti

Open(0; r0)) ≈ (Fake(; r0),Fake(; r1),Equiv(0; r0)). Once again, this follow by
the hybrid argument, by considering an intermediate distribution (Fake(; r0),
Com(; r1),Equiv(0; r0)) and using the fact that in the second hybrid the attacker
can compute (Fake(; r0), Open(0; r0)).

Comparison to [8]. The above construction is a very simple generalization
of the one in [8], who used the following family of trapdoor bit commitments
[27] obtained from any family of claw-free permutations [22] (f0, f1). Informally,
recall that these are pairs of permutations where one cannot find a “claw” (r0, r1)
satisfying f0(r0) = f1(r1); also it is assumed that there exists a trapdoor f−1

0
allowing one to invert f0 (in our application, we will not need a similar trapdoor
for f1). Now, to trapdoor commit to a bit b we can sample fb(rb) (decommitment
is rb), while the knowledge of the trapdoor f−1

0 provides easy fake pairs: the
fake commitment c = f1(r1) (for random r1) can be opened to 0 by giving
r0 = f−1

0 (c)), and to 1 — by giving r1.
We remark, though, that the equivocality proof of our extension is indeed con-

siderably shorter, — which is what it should be for such a simple construction! —
than the corresponding proof [8]. Also, our construction implies mercurial com-
mitments from other bit commitments which are not necessarily induced by claw-
free permutations, such as the general construction of [16] from any Σ-protocol
for a hard language, the factoring construction of [33], the Paillier construction of
[5] or the ad hoc (gr0 , hr1)-construction mentioned in Section 2.2 (and, of course,
the one-way function construction from Theorem 5).

4 Mercurial Commitments from One-Way Functions in
the SRS Model

We now discuss a construction of a non-interactive bit trapdoor mercurial com-
mitment scheme in the SRS model which requires only a non-interactive bit
hybrid trapdoor commitment scheme as underlying building block. Since the
latter can be constructed from one-way functions [6], we have that the same
holds for the former. We stress that for this construction we use the original def-
inition of mercurial commitments given in [8] where the shared random string
used in the simulated game is computationally indistinguishable from the real
random string. For lack of space we omit the original definitions of mercurial
commitments given in [8] and of hybrid trapdoor commitments given in [6] (in
particular the reader is referred to [6] for details about the constructions of
hybrid trapdoor commitments).

Overview of the technique. In Section 3 we have shown a construction of
mercurial commitments that can be based on the trapdoor commitment scheme
proposed by Feige and Shamir [16]. This scheme needs, as common parameter,
an Hamiltonian graph for which it is hard to compute an Hamiltonian cycle, but
such that knowledge of a cycle allows one to equivocate. This can be realized in
the trusted parameters model by generating the required instance of the Hamil-
tonian cycle language from the hardness of inverting a one-way function. In the

Mercurial Commitments: Minimal Assumptions and Efficient Constructions 137

SRS model, this construction is known to work assuming that one-way permuta-
tions exist. In a nutshell, this is because a piece of the random string infers the
computationally infeasible problem of inverting a one-way permutation (that, in
turn, can be reduced to an instance of finding a cycle in an Hamiltonian graph),
and in order for this to work one needs to make sure that a corresponding inverse
actually exists.

In order to build a solution based on any one-way function in the SRS model,
we start from the following observation. Since the possibility of computing com-
mitments that can be equivocated is required by the simulator only (we stress
that we are now using the original definition of mercurial commitments given
in [8]), we could construct mercurial commitments by using regular (i.e., we do
not require the equivocal property) commitments in the SRS model for the real
game and trapdoor commitments in the trusted parameters model for the simu-
lated game. In order for this idea to work, however, we need a scheme that can
be used either as a trapdoor commitment in the trusted parameters model or as
a regular one in the SRS model, but it is infeasible for the adversarial receiver to
distinguish the two cases. In particular the trusted parameters of the simulated
game must be computationally indistinguishable from a random string.

Commitment schemes realizing this requirement have been recently studied,
defined and constructed by Catalano and Visconti [6] under the sole assumption
that one-way functions exist.

A construction of non-interactive bit trapdoor mercurial commitments on
top of a non-interactive bit hybrid trapdoor commitment scheme can be very
easily obtained from the construction shown in Section 3. Indeed, it suffices to
replace the algorithms of the regular non-interactive bit trapdoor commitment
scheme with the corresponding ones of the hybrid one. The only additional step
is that since the hybrid trapdoor commitment scheme has two algorithms for
the generation of the commitment parameters, one is used in the real game
and the other is used in the simulated game. In the SRS model, the former
simply outputs a random string (i.e., the parties can deterministically extract
the commitment parameters from a random string) while the latter outputs a
random/pseudorandom string along with a trapdoor.

5 Efficient Construction from (Trapdoor) Bit
Commitments with Σ-Protocols

The problem with the previous generic constructions is the fact that they only
allows one to commit to one bit. Of course, we can always commit to many bits
by following the “bit-by-bit” approach, but this is inefficient. Alternatively, we
can try to utilize a multi-bit plain/trapdoor commitment scheme in the previous
construction, but it is easy to see that the resulting length of the commitment will
be linearly proportional to the number of messages that we want to commit to.
This essentially means that setting this number to 2 — as we did in Section 3 —
and doing the bit-by-bit composition is the best we can do if we try to extend the
previous approach.

138 D. Catalano, Y. Dodis, and I. Visconti

Instead, in this section we present our main construction which will directly
transforms a plain/trapdoor bit commitment C into an efficient and (poten-
tially) multi-bit plain/mercurial commitment C′. However, we will need to as-
sume an extra property from C: there exists an efficient Σ-protocol Π proving
that one knows a witness d that a given commitment c can be opened to 0. In
this case, the message space of C′ will be the challenge space of the corresponding
Σ-protocol. Thus, if Π will be challenge-efficient, we would get a direct, large-
message mercurial commitment C′.

Construction. Let C = (Com-Gen,Com,Open,Ver) be a regular bit commit-
ment scheme which has a Σ-protocol Π = (Start,Finish,Extract,Simul) for the
relation (family) Rpk = {(c, d) | Verpk(0, c, d) = 1}. Recall, this means that the
verifier only gets a commitment c, and the prover also gets, as a witness, a valid
opening d of c to 0. Also, assume M is the challenge space for Π.

We then define plain mercurial commitment C′ = (MCom-Gen,HCom,HOpen,
HVer,SCom,SOpen,SVer) for message space M as follows (we set MCom-Gen =
Com-Gen and let pk be the corresponding public key):

– HCompk(m; (rs, r1)): let c1 = Compk(1; r1) be a commitment to 1, and
(a1, z1) = Simulpk(c1,m; rs) be a fake first and last messages of Π which
(here incorrectly) claim that c1 is a commitment to 0 on challenge m. Out-
put (c1, a1).

– HOpenpk(m; (rs, r1)): let c1 = Compk(1; r1) and (a1, z1) = Simulpk(c1,m; rs)
be as before. Set d1 = Openpk(1; r1) and output (d1, z1).

– HVerpk(m, (c1, a1), (d1, z1)): accept if and only if Verpk(1, c1, d1) = 1 (d1 is
correct decommitment to 1) and Checkpk(c1, a1,m, z1) = 1 (the fake tran-
script on challenge m that c1 is a commitment to 0 looks good).

– SCompk(; (rp, r0)): let c0 = Compk(0; r0) be a commitment to 0, and d0 =
Openpk(0; r0) be the corresponding opening, and a0 = Startpk(c0, d0; rp) be
a real first messages of Π which (correctly!) claims that c0 is a commitment
to 0.7 Output (c0, a0).

– SOpenpk(m,H; (rs, r1)): let c1 = Compk(1; r1) and (a1, z1)=Simulpk(c1,m; rs)
be the fake transcript on challenge m that c1 is a commitment to 0.
Output z1.

– SOpenpk(m,S; (rp, r0)): let c0 = Compk(0; r0), d0 = Openpk(0; r0), a0 =
Startpk(c0, d0; rp), and z0 = Finishpk(c0, d0,m; rp) be the correct last flow
to challenge m. Output z0.

– SVerpk(m, (c, a), z): accept if and only Checkpk(cb, a,m, z) = 1 (the transcript
(a,m, z) stating that c is a commitment to 0 is correct).

Intuitively, the honest hard-committer is supposed to send a commitment
c to 1, but fake the transcript that he in fact committed to 0. On the other
hand, a lying soft-committer can simply send a commitment c to 0, and now

7 Notice, here the prover actually knows the value r0, and not just d0. So for efficiency
reasons we might consider auxiliary-input Σ-protocols where P ’s witness is actually
r0 itself. We will return to this point later.

Mercurial Commitments: Minimal Assumptions and Efficient Constructions 139

can (honestly!) respond to any challenge/message m that he gets subsequently,
which allows him to soft-open the first flow to any message m.8 The binding
security of this scheme comes from the fact that a hard-opening of c to 1, cou-
pled with two soft-opening of the first flow a, must enable one to extract a legal
witness, which is the hard-opening of c to 0, contradicting the binding of C.
Similarly, the hiding property of C coupled with the zero-knowledge property of
Σ-protocols imply that, without the hard-opening of c (which will tell if c is a
commitment to 0 or 1), the real and fake behavior cannot be told apart. More
formally,

Mercurial Binding. Since our commitment is proper, we only need to rule our
soft collisions. This means that the attacker cannot find a commitment value
(c, a), a decommitment d1 proving that c is a commitment to 1, two messages
m �= m′, and two valid responses z and z′ claiming that c is a commitment
to 0. By the special soundness of the Σ-protocol, Extract(c, a,m, z,m′, z′) must
be equal to a valid decommitment d0 of c to 0. But then we found a way to
open c to both 0 and 1 (via d0 and d1), contradicting the binding property
of C.

Mercurial Hiding. Take any message/challenge m. Then, the “real” hard-
commitment/soft-decommitment tuple for m looks like is given by three values
(c = Com(1; r1), (a, z) = Simul(c,m; rs)). Since our commitment is hiding, and
Simul(c,m) is publicly computable, we get that the above distribution is indis-
tinguishable from (c = Com(0; r0), (a, z) = Simul(c,m; rs)). Now, since c has a
proper witness d0 = Open(0; r0), the special HVZK property of Π states that the
distribution on (a, z) looks indistinguishable than the one obtained by a running
a real protocol on input c, witness d0 and challenge m. But this means that the
above distribution is indistinguishable from (c = Com(0; r0), a = Start(c, d0; rp),
z = Finish(c, d0,m; rp)), which is exactly the triple corresponding to the “fake”
soft-commitment/soft-decommitment procedures.

Trapdoor Case. Recall, we now have additional algorithms Fake and Equiv
for trapdoor commitments, and need to build the corresponding algorithms
MFake, HEquiv and SEquiv for mercurial commitments. As a new technical prop-
erty about the Σ-protocol, however, we will have to assume that Π = Πpk

is strongly hiding w.r.t. a particular parameter generation procedure P (see
Section 2.1). The parameter generation procedure we will need generates ran-
dom keys (pk, sk) ← Com-Gen(1k), picks a random r, computes c = Fakesk(; r),
d0 = Equivsk(0; r), d1 = Equivsk(1; r), and sets the side information to (sk, d1),
the input to be c , and the witness to be d0. As explained in Section 2.1, this is
more of a technicality which seems to be always satisfied in any non-pathological
scenario arising in practice. We call this property (*), and can now describe the
claimed extension.

8 Is might appear peculiar that we require an honest party to cook-up a fake proof in
order to succeed, while having a dishonest party perform such a proof correctly! Here,
however, the primitive we build legally allows a dishonest party to look “slightly like
an honest party”. So the we force the honest party to do something slightly bad
which might be “matched” by a good action of a dishonest party.

140 D. Catalano, Y. Dodis, and I. Visconti

– MFakesk(; (rp, r)): let c=Fakesk(; r) be a fake commitment, d0 = Equivsk(0; r)
be its fake opening to 0, and a0 = Startpk(c, d0; rp) be a correct first flow of
the Σ-protocol. Output (c, a0).

– HEquivsk(m; (rp, r)): let c = Fakesk(; r), d0 = Equivsk(0; r), and a0 = Startpk

(c, d0; rp) be as before. Compute the fake opening d1 = Equivsk(1; r) of c to
1, and the correct last message z0 = Finishpk(c, d0,m; rp). Output (d1, z0).

– SEquivsk(m; (rp, r)): let c = Fakesk(; r), d0 = Equivsk(0; r), and a0 = Startpk

(c, d0; rp) be as before. Compute the correct last message z0 = Finishpk(c, d0,
m; rp) and output z0.

Correctness is obvious from definition. As for hiding, we only need to argue
HH and SS Equivocations (since this is a proper mercurial commitment).

HH Equivocation. Take any message m. Then (HCom(m; (rs, r1)),HOpen(m;
(rs, r1))) is equal to Dreal = (c1, d1, a1, z1), where c1 = Com(1; r1), d1 = Open(1;
r1), and (a1, z1) = Simul(c1,m; rs)). Since Simul(c1,m) is a public transforma-
tion, the Equivocality of C implies that the above distribution is indistinguishable
from (c = Fake(; r), d1 = Equiv(1; r), a1, z1), where (a1, z1) = Simul(c,m; rs). We
are almost done, except we need to replace the above (a1, z1) by (a0, z0) ob-
tained by running an honest execution of Π with witness d0 = Equiv(0; r). This
is almost exactly the HVZK property, except we formally need to use the strong
hiding property (*) described above. Indeed, in addition to the input c and
the public parameter pk, which are allowed in the usual HVZK property, here
the distinguisher also knows two extra pieces of information: the trapdoor key
sk (given to him at the beginning of the game) and the fake decommitment
d1 = Equiv(1; r). This is why we needed to to assume that this extra information
does not violate the HVZK property.

SS Equivocation. In the real soft-commit/soft-open experiment, the distin-
guisher (who knows sk) is first getting c0 = Com(0; r0) and the correct first
flow of the Σ-protocol showing that c0 is indeed a commitment to 0 (using wit-
ness d0 = Open(0; r0)). He then chooses a message m, and gets a correct third
flow to message m. To put differently, he simply plays the role of (malicious)
verifier in the honest run of the Σ-protocol on pair (c0, d0). Notice that the
distinguisher’s view can be perfectly simulated using some public probabilistic
procedure Ask(c0, d0). Using the equivocation property of C, the resulting dis-
tribution should be indistinguishable from Ask(c, d0), where c = Fake(; r) and
d0 = Equiv(0; r). But, once again, it is easy to see that this view is exactly what
the attacker gets in the ideal soft-commit/soft-open experiment.

Generalization. We already noticed in Footnote 7 that in the above definition
of soft-commitment, the Prover actually knows the entire randomness r0 and not
just a witness d0 = Open(0; r0). This, of course, is of any value only in a very
few schemes where r0 �= d0. However, it will come up in one of our examples
(see Section 5.1). To accommodate this extension, we can consider Σ-protocol’s
where the prover needs all of r0 for the completeness of the protocol (special
soundness is still only for d0). For plain mercurial commitments, this is all we
need to change. For the trapdoor variant, however, we will need an extra property
from our trapdoor commitment scheme in regards to equivocation. Namely, in

Mercurial Commitments: Minimal Assumptions and Efficient Constructions 141

the fake commitment algorithm we need to be able to equivocate c = Fake(; r)
to 0 by obtaining not only a good looking value d0, but the entire randomness
r0. Once this is ensured, we can easily support auxiliary input Σ-protocols.

5.1 Examples

Below we briefly give several efficient instantiations of our construction, by apply-
ing it to several efficient trapdoor commitment schemes with challenge-efficient
Σ-protocols. Our examples will cover all the previous efficient schemes, and sev-
eral more, all as part of one general framework. For each scheme we will just
briefly mention which trapdoor commitment and Σ-protocol to use, since the
remaining details are obvious and not very illuminating.

Discrete Log Construction from [8],[28]. We will consider the ad-hoc
scheme from Section 2.2, where Com(0; r0) = gr0 , Com(1; r1) = hr1 , and the
trapdoor sk = logg h (here r0, r1 �= 0). We need a Σ-protocol to prove the
knowledge of r0 = logg(c), where c is the claimed commitment to 0. Of course, a
natural thing to do is to take Schnorr protocol, but this will result in a slightly
different (but equally efficient) scheme than what we are after. Instead, we will
use a bit less esthetic but equally effective Σ-protocol. In the first flow the prover
sends a value T = gt (for random t), he gets challenge m, and responds with
z = (t − m)/r0 mod q (which is defined since r0 �= 0). The verifier checks if
gmcz = T (indeed, m+ r0z = t, as needed). It is simple to see that this is indeed
a Σ-protocol for the knowledge of the discrete log, and that by plugging it into
our construction we get exactly the discrete log construction from [8,28].

We also remark what we could use a better known discrete-log commitment
Com(0) = gr0 , Com(1) = hgr1 , coupled with either Schnorr Σ-protocol, or the
one presented above. We will get yet another (equally efficient) solution.

Factoring Construction from [8]. This scheme will use the generalization
of our constriction to use auxiliary inputs, as explained earlier. Let us start with
a well-known factoring-based trapdoor bit commitment from a corresponding
claw-free permutation pair: the public parameter is a random square U , and
Com(0; r0) = r20 mod n, Com(1; r1) = Ur21 mod n (the trapdoor is the square
root of U). Here we need a Σ-protocol for the knowledge of the square root. As we
mentioned in Section 2.1, using Fiat-Shamir protocol [18] is not communication-
or challenge-efficient. Instead, we use the auxiliary input Ong-Schnorr protocol
[30]. For that one need to know 2�-th square root of Com(0), so we modify
Com(0; r0) = r2

�

0 mod n (but leave Com(1; r1) = Ur21 mod n). We notice, that
although the decommitment to 0 is “only” the square root d0 = r2

�−1

0 , and not
r0 itself, the fake commitment should enable us to extract (using sk) the 2�-th
root from c0, and not just a mere square root. Of course, this is easy to achieve
by defining Fake(; r) = r2

�

, and “fully opening” it to 0 by giving r, and to 1 — by
giving r2

�−1
/
√
U . With these changes we get precisely the factoring construction

from [8]. We also notice that by using a different claw-free permutation (r20, 4r
2
1)

[22] defined over the so called Williams integers, we can slightly simplify the
scheme and set U = 4.

142 D. Catalano, Y. Dodis, and I. Visconti

New RSA-based Construction. Here we could use the RSA-based trapdoor
commitment Com(0; r0) = re

0 mod n, Com(1; r1) = yre
1 mod n, where y is a pub-

lic parameter, whose e-th root is the trapdoor key. Here we simply need the
Σ-protocol proof of knowledge of the e-th root, which is just the GQ protocol
[24]. To have the protocol to be challenge-efficient, though, we will need to use
a relatively large e.

Alternative Factoring Construction. We can use the following factoring-
based commitment of [33] (slightly modified for easier Σ-protocols and special-
ized to bits). The public key is n = p, q, where p = 2p′ + 1, q = 2q′ + 1 are
safe primes, and all the operations are performed in the subgroupQn of quadratic
residues whose generator g is also part of parameters. Notice, |Qn| = p′q′. Let C
be a large enough constant (anything larger than n will do). Then Com(0; r0) =
gC+r0 mod n, Com(1; r1) = gr1 mod n (here r0, r1 are random from 0 to n (which
is statistically close toϕ(n), which is the “true range” we are aiming for). The trap-
door is the value |Qn| = p′q′. In this case the Σ-protocol we need to again the one
of knowledge of discrete-log, but in the groups of unknown order. As mentioned
before, such (computationally sound) protocol is given by [19,9].

Paillier-based Scheme. Finally, we mention another trapdoor commitment
based on the hardness of finding n-th roots over Zn2 (where n is the the product
of two safe primes, for simplicity), which is implicit in [11]. Here the public
parameters will include a generator g in the subgroup S of n-th powers in Z∗

n2 ,
and the n-th root u of g will be the trapdoor. Next, Com(0; r0) = rn

0 mod n2,
Com(1; r1) = grn

1 mod n2 (here r0, r1 ∈ Z∗
n). This scheme is perfectly hiding and

computationally binding assuming it is hard to take n-th root over Zn2 , and
could be viewed as yet another claw-free based construction. The Σ-protocol
for commitment to 0 is simply the Σ-protocol for knowing the n-th root. This
protocol is very similar to the GQ protocol and is formally analyzed by [10].

6 Concluding Remarks

We believe that our results eludicate the notion of mercurial commitments, put
them in their place on the map of cryptographic assumptions, and better ex-
plain the rational following the previous constructions of [28],[8]. We hope that
mercurial commitments will find more interesting applications in the future.

This paper joins two independent papers that can be found at [7],[13].

Acknowledgments. The second author would like to thank Leonid Reyzin for
several insightful conversations about mercurial commitments, and Tal Malkin
for giving a talk inspiring this research. The work of the first and third authors
has been supported in part by the European Commission through the IST Pro-
gramme under Contract IST-2002-507932 ECRYPT. The work of the second
author was supported in part through NSF Career Award CCR-0133806 and
NSF grant CCR-0311095. The work of the third author is also supported in part
through the FP6 program under contract FP6-1596 AEOLUS.

Mercurial Commitments: Minimal Assumptions and Efficient Constructions 143

References

1. M. Abdalla and L. Reyzin. A new forward-secure digital signature scheme. In
T. Okamoto, editor, Advances in Cryptology—ASIACRYPT 2000, volume 1976 of
Lecture Notes in Computer Science, pages 116–129, Kyoto, Japan, 3–7 Dec. 2000.
Springer-Verlag. Full version available from the Cryptology ePrint Archive, record
2000/002, http://eprint.iacr.org/.

2. Manuel Blum, Alfredo De Santis, Silvio Micali, and Guiseppe Persiano. Non-
interactive zero-knowledge. SIAM Journal of Computing, 20(6), 1991.

3. Joan Boyar, S. A. Kurtz, Mark W. Krentel. A Discrete Logarithm Implementation
of Perfect Zero-Knowledge Blobs. In J. of Cryptology, 2(2):63–76, 1990.

4. G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences, 37(2):156–189, Oct. 1988.

5. Dario Catalano, Rosario Gennaro, Nick Howgrave-Graham, Phong Q. Nguyen.
Paillier’s cryptosystem revisited. In ACM Conference on Computer and Commu-
nications Security 2001, pp. 206–214.

6. D. Catalano and I. Visconti. Hybrid Trapdoor Commitments and Their Appli-
cations. In 32nd International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 05), volume 3580 of Lecture Notes in Computer Science, pages
298–310. Springer-Verlag, 2005.

7. D. Catalano and I. Visconti. Non-Interactive Mercurial Commitments from One-
Way Functions. Cryptology ePrint Archive, 2005.

8. Melissa Chase, Alexander Healy, Anna Lysysanskaya, Tal Malkin and Leonid
Reyzin. Mercurial Commitments with Applications to Zero-Knowledge Sets. In
Proc. of EUROCRYPT, pp. 422–439, 2005.

9. Ivan Damg̊ard, Eiichiro Fujisaki. A Statistically-Hiding Integer Commitment
Scheme Based on Groups with Hidden Order. In ASIACRYPT 2002, pp. 125–
142.

10. Ivan Damg̊ard, Mats Jurik. A Generalisation, a Simplification and Some Applica-
tions of Paillier’s Probabilistic Public-Key System. Public Key Cryptography 2001,
pp. 119–136.

11. I. Damg̊ard and J. B. Nielsen. Perfect hiding and perfect binding universally
composable commitment schemes with constant expansion factor. In M. Yung, ed-
itor, Advances in Cryptology—CRYPTO 2002, Lecture Notes in Computer Science.
Springer-Verlag, 18–22 Aug. 2002.

12. I. B. Damg̊ard, T. P. Pedersen, and B. Pfitzmann. On the existence of statistically
hiding bit commitment schemes and fail-stop signatures. Journal of Cryptology,
10(3):163–194, Summer 1997.

13. Y. Dodis. Minimal Assumptions for Efficient Mercurial Commitments. Cryptology
ePrint Archive, Report 2005/438.

14. Y. Dodis and L. Reyzin. On the power of claw-free permutations. In Conference
on Security in Communication Networks, 2002.

15. U. Feige, D. Lapidot, and A. Shamir. Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Computing, 29(1), 1999.

16. U. Feige and A. Shamir. Zero knowledge proofs of knowledge in two rounds.
In G. Brassard, editor, Advances in Cryptology—CRYPTO ’89, volume 435 of
Lecture Notes in Computer Science, pages 526–545. Springer-Verlag, 1990, 20–
24 Aug. 1989.

17. U. Feige and A. Shamir. Witness indistinguishability and witness hiding proto-
cols. In Proceedings of the Twenty Second Annual ACM Symposium on Theory of
Computing, pages 416–426, Baltimore, Maryland, 14–16 May 1990.

144 D. Catalano, Y. Dodis, and I. Visconti

18. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In A. M. Odlyzko, editor, Advances in Cryptology—
CRYPTO ’86, volume 263 of Lecture Notes in Computer Science, pages 186–194.
Springer-Verlag, 1987, 11–15 Aug. 1986.

19. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove mod-
ular polynomial relations. In B. S. Kaliski Jr., editor, Advances in Cryptology—
CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science, pages 16–30.
Springer-Verlag, 17–21 Aug. 1997.

20. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001.

21. S. Goldwasser, S. Micali, and C. Rackoff. Knowledge complexity of interactive
proofs. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of
Computing, pages 291–304, Providence, Rhode Island, 6–8 May 1985.

22. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computing, 17(2), 1988.

23. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the
ACM, 38(1):691–729, 1991.

24. L. C. Guillou and J.-J. Quisquater. A “paradoxical” identity-based signature
scheme resulting from zero-knowledge. In S. Goldwasser, editor, Advances in
Cryptology—CRYPTO ’88, volume 403 of Lecture Notes in Computer Science,
pages 216–231. Springer-Verlag, 1990, 21–25 Aug. 1988.

25. S. Halevi and S. Micali. Practical and provably-secure commitment schemes
from collision-free hashing. In N. Koblitz, editor, Advances in Cryptology—
CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science, pages 201–215.
Springer-Verlag, 18–22 Aug. 1996.

26. J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM J. Computing, 28(4), 1999.

27. H. Krawczyk and T. Rabin. Chameleon signatures. In Network and Distributed
System Security Symposium, pages 143–154. The Internet Society, 2000.

28. Silvio Micali, Michael Rabin, and Joe Kilian. Zero-knowledge sets. In Proc. 44th
IEEE Symposium on Foundations of Computer Science (FOCS), 2003.

29. Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):51–158, 1991.

30. H. Ong and C. P. Schnorr. Fast signature generation with a Fiat Shamir-like
scheme. In I. B. Damg̊ard, editor, Advances in Cryptology—EUROCRYPT 90,
volume 473 of Lecture Notes in Computer Science, pages 432–440. Springer-Verlag,
1991, 21–24 May 1990.

31. R. Ostrovsky, C. Rackoff, and A. Smith. Efficient consistency proofs for generalized
queries on a committed database. In 31st International Colloquium on Automata,
Languages, and Programming (ICALP 04), volume 3142 of Lecture Notes in Com-
puter Science, pages 1041–1053. Springer-Verlag, 2004.

32. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, Advances in Cryptology—EUROCRYPT ’99, volume 1592 of
Lecture Notes in Computer Science. Springer-Verlag, 2–6 May 1999.

33. A. Shamir and Y. Tauman. Improved online/offline signature schemes. In J. Kilian,
editor, Advances in Cryptology—CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 355–367. Springer-Verlag, 19–23 Aug. 2001.

34. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

Efficient Collision-Resistant Hashing from
Worst-Case Assumptions on Cyclic Lattices�

Chris Peikert1 and Alon Rosen2

1 MIT Computer Science and AI Laboratory (CSAIL), Cambridge, MA
2 DEAS, Harvard, Cambridge, MA

Abstract. The generalized knapsack function is defined as fa(x) =∑
i ai · xi, where a = (a1, . . . , am) consists of m elements from some

ring R, and x = (x1, . . . , xm) consists of m coefficients from a specified
subset S ⊆ R. Micciancio (FOCS 2002) proposed a specific choice of the
ring R and subset S for which inverting this function (for random a,x) is
at least as hard as solving certain worst-case problems on cyclic lattices.

We show that for a different choice of S ⊂ R, the generalized knapsack
function is in fact collision-resistant, assuming it is infeasible to approx-
imate the shortest vector in n-dimensional cyclic lattices up to factors
Õ(n). For slightly larger factors, we even get collision-resistance for any
m ≥ 2. This yields very efficient collision-resistant hash functions having
key size and time complexity almost linear in the security parameter n.
We also show that altering S is necessary, in the sense that Micciancio’s
original function is not collision-resistant (nor even universal one-way).

Our results exploit an intimate connection between the linear algebra
of n-dimensional cyclic lattices and the ring Z[α]/(αn − 1), and cru-
cially depend on the factorization of αn − 1 into irreducible cyclotomic
polynomials. We also establish a new bound on the discrete Gaussian
distribution over general lattices, employing techniques introduced by
Micciancio and Regev (FOCS 2004) and also used by Micciancio in his
study of compact knapsacks.

1 Introduction

A function family {fa}a∈A is said to be collision-resistant if given a uniformly
chosen a ∈ A, it is infeasible to find elements x1 �= x2 so that fa(x1) = fa(x2).
Collision-resistant hash functions are one of the most widely-employed crypto-
graphic primitives. Their applications include integrity checking, user and mes-
sage authentication, commitment protocols, and more.

Many of the applications of collision-resistant hashing tend to invoke the hash
function only a small number of times. Thus, the efficiency of the function has a
direct effect on the efficiency of the application that uses it. This is in contrast
to primitives such as one-way functions, which typically must be invoked many
times in their applications (at least when used in a black-box way) [9].

� Part of this work done while at MIT CSAIL.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 145–166, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

146 C. Peikert and A. Rosen

Collision-resistance can be obtained from many well-studied complexity as-
sumptions, but the resulting hash functions are not efficient enough for practical
use. Instead, faster heuristic constructions such as MD5 and SHA-1 are often
employed. Unfortunately, recent cryptanalytic analysis of many popular hash
functions casts doubt on the heuristic approach [22,21]. This presents the the-
oretical community with a great opportunity and challenge: propose a practical
hash function with rigorous security guarantees.

In this paper we present an efficient collision-resistant hash function whose
security is based on a well-defined and plausible complexity assumption.

1.1 Generalized Knapsacks

Our constructions are based on a generalization of the well-known knapsack
function. For a ring R, key a = (a1, . . . , am) ∈ Rm, and input x = (x1, . . . , xm),
the generalized knapsack function is defined as

fa(x) =
m∑

i=1

ai · xi,

where each xi is restricted to some large subset S ⊆ R. This generalization was
proposed by Micciancio, who suggested a specific choice of the ring R and subset
S for which inverting the function (for random a,x) is at least as hard as solving
certain worst-case problems on cyclic lattices [14].

Knapsacks have a long and infamous history in cryptography; we refer the
interested reader to Micciancio’s account of various knapsack proposals and their
cryptanalysis [14]. The bottom line is that even though many knapsack systems
have been broken heuristically, there is still no asymptotically-efficient attack on
the general function.

Micciancio’s result might be viewed as an indication that knapsack functions
(or at least, some version of them) are secure after all. In this paper, we continue
Micciancio’s line of study, and show that, for a different choice of S ⊂ R, the
generalized knapsack function can enjoy even stronger cryptographic properties.

1.2 Lattices, Hardness, and Cryptography

Lattices are a great source of cryptographic hardness. First of all, lattices have
been subject to hundreds of years of mathematical scrutiny, which lends support
to conjectures on the computational hardness of problems related to lattices.
Indeed, many lattice problems are NP-hard to approximate for small factors,
e.g. the closest vector [20,4,7] and shortest vector problems [2,5,15,12].

Secondly, lattices admit worst-case to average-case reductions. In his ground-
breaking result, Ajtai first constructed a one-way function [1], which was later
observed to also be collision-resistant [10]. Public-key cryptosystems [11,3,18,19]
soon followed, based on presumably stronger worst-case assumptions. As a bonus,
these constructions tended to be asymptotically more efficient than those based
on, e.g., modular exponentiation.

Efficient Collision-Resistant Hashing from Worst-Case Assumptions 147

An interesting special case is presented by cyclic lattices. A lattice Λ is said
to be cyclic if for any vector x ∈ Λ, its cyclic rotation also belongs to Λ. The
cyclic rotation of x = (x0, . . . , xn−1)T ∈ Rn is defined as (xn−1, x0, . . . , xn−2)T .

Micciancio’s work [14] opened the door to the use of cyclic lattices as a new
source of hardness assumptions, and motivates their study from a computational
perspective. Currently no hardness results are known for problems on cyclic
lattices (even in their exact versions), and the additional structure may indeed
reduce the underlying hardness.

However, state-of-the-art lattice algorithms appear not to benefit from cyclic-
ity, and it seems reasonable to conjecture that standard problems on cyclic lat-
tices are intractable, at least for small approximation factors.

1.3 Our Results

Our main result is that certain instantiations of the generalized knapsack func-
tion are collision-resistant, assuming it is infeasible to approximate the shortest
vector in cyclic lattices up to factors Õ(n) almost linear in the dimension n.

Assuming hardness for slightly larger approximation factors n1+ε, our func-
tions remain secure even when m is taken to be a constant. The functions have
key size almost linear in the security parameter n and can be evaluated with m
Fast Fourier Transform operations, making them potentially practical. To mo-
tivate our choice of knapsack function, we also show that Micciancio’s original
one-way function is not collision-resistant, nor even universal one-way.

In the course of proving our main results, we formulate special worst-case
problems on cyclic lattices, and relate them to the more standard lattice prob-
lems. Most interestingly, we demonstrate that for cyclic lattices of prime dimen-
sion n, the short independent vectors problem SIVP reduces to (a slight variant
of) the shortest vector problem SVP with only a factor of 2 loss in approxima-
tion factor. For general lattices, the best known reduction loses a

√
n factor [16];

furthermore, that reduction performs manipulations on its input lattice that
can destroy the cyclicity property. Hence our reduction can be seen as the first
connection between SIVP and SVP on cyclic lattices.

Finally, in using the Gaussian techniques of [17], we also establish a new
bound on the discrete Gaussian distribution over general lattices, which may be
of independent interest.

1.4 Techniques and Ideas

The overarching theme of our paper is the tight relationship shared by cyclic
lattices, the algebra of polynomials modulo (αn−1), and linear algebra in Rn.

Cyclic lattices are closed under cyclic convolution with integer vectors. Fur-
thermore, the lattice points naturally correspond to polynomials in Z[α]/(αn−1).
Because convolution is equivalent to polynomial multiplication in Z[α]/
(αn − 1), this implies that integer cyclic lattices are isomorphic to ideals in
Z[α]/(αn − 1).

The divisors of (αn − 1) in Z[α] correspond to special cyclotomic linear sub-
spaces of Rn. These subspaces admit a natural partitioning into complementary

148 C. Peikert and A. Rosen

pairs of orthogonal subspaces. Even more importantly, the subspaces are closed
under cyclic rotation of vector coordinates, and under certain other conditions,
these rotations are linearly independent. These facts imply a new connection
between the SIVP and SVP problems in cyclic lattices.

The security of our knapsack function comes from using all this structure to
impose an algebraic restriction on the function domain. Looking ahead to the
security reduction, this restriction ensures that collisions in the function are very
likely to yield “useful” and short lattice points in a desired subspace.

1.5 Comparison with Related Work

This work takes its inspiration from, and is most similar to, Micciancio’s work
on cyclic lattices [14]. However, while our knapsack function is very similar to
Micciancio’s, the reduction used to establish collision-resistance differs in many
significant ways. First of all, Micciancio’s function is proven to be one-way, while
ours is collision-resistant. On the other hand, Micciancio relies on a presumably
weaker worst-case assumption than we do. Our stronger assumption, combined
with our algebraic view of cyclic lattices, makes our security reduction tighter
and conceptually simpler.

Figure 1 gives a comparison of our work with other major results in worst-case
to average-case reductions, in chronological order. Important considerations in
these works include: provable security properties of the cryptographic function,
efficiency of that function, class of lattice on which the function is based, type of
worst-case problem that is assumed to be hard for that class of lattice, and its
hardness of approximation factor. Our work compares very favorably in many
of these considerations, at the cost of a qualitatively stronger assumption.

Security Efficiency Lattice Class Assumption Approx. Factor

Ajtai [1] CRHF O(n2) General SVP etc. poly(n)

Cai, Nerurkar [6] CRHF O(n2) General SVP etc. n4+ε

Micciancio [14] OWF Õ(n) Cyclic GDD n1+ε

Micciancio, Regev [17] CRHF O(n2) General SVP etc. Õ(n)

This work CRHF Õ(n) Cyclic SVP etc. Õ(n)

Fig. 1. Comparison of results in lattice-based cryptographic functions with worst-case
to average-case security reductions, to date. “Efficiency” means the key size and compu-
tation time, as a function of the lattice dimension n. “Security” denotes the function’s
main cryptographic property.

The actual worst-case assumption underlying our hash function is that SVP is
hard on cyclic lattices for all sufficiently large prime dimensions n. Therefore, the
discovery of an efficient algorithm for SVP on, say, all even dimensions would
have no immediate effect on the security of our hash function. Conveniently,
the concrete hardness of the cyclic lattice problems we study appears to be

Efficient Collision-Resistant Hashing from Worst-Case Assumptions 149

greatest when the dimension is prime! More specifically: problems in composite
dimensions n seem to reduce to problems in the smaller prime (or prime-power)
dimensions dividing n.

In an independent and concurrent work, Lyubashevsky and Micciancio [13]
have obtained exceedingly similar results, but expressed in different mathemat-
ical language. In particular, by making many of the same algebraic insights,
they construct collision-resistant hash functions with nearly identical parame-
ters, based on a worst-case hardness assumption that can be shown to be equiva-
lent to ours. They also present a more general algebraic framework for construct-
ing hash functions, which can be related to problems in algebraic number theory.
Due to its generality, their framework may have the potential to admit better
constructions, though its current best application essentially matches ours.

2 Preliminaries

In this section we present basic definitions and results about statistical distance,
hash functions, cyclic lattices, cyclotomic polynomials and Gaussian probability
distributions. In many places we follow [17] almost verbatim.

For any real a ≥ 0, �a� denotes the largest integer not greater than a and �a�
denotes the closest integer to a (i.e., �a� = �a + 1/2�). For any reals a, b ≥ 0,
[a, b) denotes the set of all reals a ≤ r < b. The uniform probability distribution
over a set S is denoted U(S). We let I denote U([0, 1)). A function f(n) is said
to be negligible (denoted f(n) = n−ω(1)) if for every c > 0 there exists an n0
such that |f(n)| < 1/nc for all n > n0.

The set of real numbers is denoted by R, and the quotient ring of integers
modulo a positive integer p is denoted by Zp. For a value v ∈ Zp, |v| denotes
the absolute value of the unique integer r ∈ (−p/2, p/2] representing v’s residue
class. We use bold lower case letters (e.g., x) to denote vectors and bold upper
case letters (e.g., A) to denote matrices. Vectors are represented as columns
and we use (·)T to denote matrix transposition. We adopt the convention that
vector indices are zero-based, i.e. for x ∈ Rn we write x = (x0, . . . , xn−1)T . The
ith coordinate of x is denoted xi or (x)i, depending on context. The Euclidean
norm of a vector x (in either Rn or Zn

p) is the quantity ‖x‖ = (
∑

i |xi|2)1/2. The
Euclidean norm of a matrix S = (s1, . . . , st) is ‖S‖ = maxi ‖si‖. Other norms
used in this paper (for vectors in either Rn or Zn

p) are the �1 norm ‖x‖1 =
∑

i |xi|
and the �∞ norm ‖x‖∞ = maxi |xi|, which are similarly extended to matrices.
These norms are related through the following inequalities, valid for any n-
dimensional vector x ∈ Rn:

‖x‖ ≤ ‖x‖1 ≤
√
n‖x‖

‖x‖∞ ≤ ‖x‖ ≤
√
n‖x‖∞

We use standard definitions of statistical distance Δ(X,Y) between two random
(discrete or continuous) variables X, Y . We also use the standard notions of one-
wayness, universal one-wayness, and collision-resistance for function ensembles.

150 C. Peikert and A. Rosen

2.1 Lattices

A lattice in Rn is the set of all integer combinations

Λ =

{
d∑

i=1

cibi | ci ∈ Z for 1 ≤ i ≤ d

}
of d linearly independent vectors b1, . . . ,bd ∈ Rn. We say that the lattice spans
the d-dimensional subspace of Rn generated by b1, . . . ,bd. The set of vectors
b1, . . . ,bd is called a basis for the lattice, which can be written in matrix form
as B = [b1| · · · |bd] with the basis vectors as columns. The lattice generated by
B is denoted L(B). For any basis B, we define the fundamental parallelepiped
P(B) = {B · x : ∀ i, 0 ≤ xi < 1}.

The minimum distance λ1(Λ) of a lattice Λ is the length of the shortest
nonzero lattice vector: λ1(Λ) = min0 �=x∈Λ ‖x‖. More generally, the ith successive
minimum λi(Λ) is the smallest radius r such that the closed ball B(r) = {x :
‖x‖ ≤ r} contains i linearly independent lattice vectors.

Let H be a subspace of Rn and let Λ be a lattice that spans H. Then we
define the dual lattice Λ∗ = {x ∈ H | ∀ v ∈ Λ, 〈x,v〉 ∈ Z}.

Cyclic lattices and convolution. For any x = (x0, . . . , xn−1)T ∈ Rn, define the
rotation of x, denoted as rot(x), to be the vector (xn−1, x0, . . . , xn−2)T ; similarly
roti(x) = rot(· · · rot(x) · · ·) is defined to be the rotation of x, taken i times. A
lattice Λ is cyclic if for all x ∈ Λ, rot(x) ∈ Λ. For any integer d ≥ 1, define the
rotation matrix Rotd(x) to be the matrix [x|rot(x)| · · · |rotd−1(x)]. (Rotn(x) is
known as the circulant matrix of x.)

For any ring R, the (cyclic) convolution product of x,y ∈ Rn is the vector
x ⊗ y = Rotn(x) · y, with entries

(x ⊗ y)k =
∑

i+j=k mod n

xi · yj .

Observe that in a cyclic lattice Λ, the convolution of any x ∈ Λ with any integer
vector y ∈ Zn is also in the lattice: x ⊗ y ∈ Λ. This is because all the columns
of Rotn(x) are in Λ, and any integer combination of points in Λ is also in Λ.

The convolution product is commutative, associative, and distributive over
vector addition; also, it satisfies the following inequalities, valid for any n-
dimensional vectors x,y ∈ Rn:

‖x ⊗ y‖∞ ≤ ‖x‖ · ‖y‖
‖x ⊗ y‖∞ ≤ ‖x‖1 · ‖y‖∞

2.2 Polynomial Rings and Linear Algebra

Convolution and polynomial multiplication are intimately related. Specifically,
for any ring R, we identify an element (x0, . . . , xn−1) = x ∈ Rn with the poly-
nomial x(α) ∈ R[α]/(αn − 1) defined as x(α) = x0 + x1α + . . . + xn−1α

n−1.

Efficient Collision-Resistant Hashing from Worst-Case Assumptions 151

Then it is easy to show that for any x,y ∈ Rn, x ⊗ y is identified with
x(α) · y(α) ∈ R[α]/(αn − 1). In words, convolution of two vectors is equiva-
lent to taking the product of their polynomials modulo αn − 1. Throughout the
paper, we will switch between vector and polynomial notation as is convenient.

In the following lemma, we relate the algebra of R[α]/(αn − 1) to the linear
algebra of Rn.

Lemma 2.1. Let a,b ∈ Rn with a(α) ·b(α) = 0 mod (αn−1). Then 〈a,b〉 = 0.

Proof. Let F be the n× n matrix with (zero-indexed) entries given by

(F)j,k =
e2πijk/n

√
n

=
ωjk

√
n
,

where ω is the principal nth root of unity (F is known as a Fourier matrix). It
is well-known that F is a unitary matrix, so 〈a,b〉 = 〈Fa,Fb〉. By definition,
(Fa)i = a(ωi)/

√
n and (Fb)i = b(ωi)/

√
n. Now because a(α)b(α) is divisible

by αn − 1, then a(ωi) · b(ωi) = 0 (in C) for every i. Therefore

〈a,b〉 = 〈Fa,Fb〉 =
1
n

n∑
i=1

a(ωi)b(ωi) = 0.

In the polynomial ring Z[α], (αn − 1) has a special structure: it uniquely
factors into the product of cyclotomic polynomials (see e.g. [8] for a detailed
treatment). For integer k ≥ 1, the kth cyclotomic polynomial Φk(α) is defined:

Φk(α) =
∏

1≤c≤k
(c,k)=1

(α− e2πic/k),

where (c, k) denotes the greatest common divisor of c and k. The cyclotomic
polynomial Φk(α) is irreducible in Z[α], has integer coefficients, and has degree
φ(k) (where φ denotes Euler’s totient function). The factorization of αn − 1 in
Z[α] is: αn − 1 =

∏
k | n
k≥1

Φk(α).
In the following lemmas, we establish connections between cyclotomic poly-

nomials and the linear algebra of integer cyclic lattices:

Lemma 2.2. Let c ∈ Zn, and suppose Φ(α) ∈ Z[α] divides (αn − 1) and is
coprime to c(α). Then c, rot(c), . . . , rotdeg(Φ)−1(c) are linearly independent.

Proof. Suppose that there exist t0, . . . , tdeg(Φ)−1∈R such that
∑deg(Φ)−1

i=0 tiroti(c)
= 0. Define t = (t0, t1, · · · , tdeg(Φ)−1, 0, · · · , 0)T , so c ⊗ t = 0 (where the convo-
lution is performed in Rn). Therefore in R[α], (αn − 1) divides c(α)t(α).

We recall two basic facts from field theory (see, e.g., [8, Proposition 9, Chapter
13]): first, Φk(α) is the minimal polynomial1 of any primitive kth root of unity,
1 The minimal polynomial of an algebraic number ζ is the unique irreducible monic

(i.e., with leading coefficient 1) polynomial p(α) ∈ Q[α] of minimum degree such
that p(ζ) = 0.

152 C. Peikert and A. Rosen

and has exactly the primitive kth roots of unity as its roots. Second, the minimal
polynomial of any algebraic number ζ divides any polynomial p(α) ∈ Q[α] such
that p(ζ) = 0.

Now, because Φ(α) | (αn − 1), Φ(α) is a product of cyclotomic polynomials.
Because Φ(α) is coprime to c(α) and c(α) ∈ Z[α] ⊂ Q[α], none of the roots of
Φ(α) are roots of c(α). Therefore all the roots of Φ(α) must be roots of t(α).
Because deg(t(α)) < deg(Φ), we must have t = 0. ��

Suppose Φ(α) ∈ Z[α] divides αn − 1, i.e. Φ(α) is a product of cyclotomic poly-
nomials. We define the cyclotomic subspace

HΦ = {x ∈ Rn : Φ(α) divides x(α) in R[α]}.

Lemma 2.3. HΦ is closed under rot: that is, if c ∈ HΦ, then rot(c) ∈ HΦ.

Proof. Observe that the vector rot(c) is identified with the residue α · c(α) mod
(αn − 1). Let α · c(α) = Q(α) · (αn − 1) + R(α), for Q(α), R(α) ∈ R[α], where
deg(R(α)) < n. Then because Φ(α) |α · c(α) and Φ(α) |Q(α) · (αn − 1), it must
be that Φ(α) |R(α). Therefore Φ(α) divides rot(c)(α) in R[α], as desired. ��

Lemma 2.4. HΦ is a linear subspace of Rn of dimension n− deg(Φ).

Proof. It is evident that HΦ is closed under addition and scalar multiplication, so
it is a linear subspace. To establish the dimension, define Φ(α) = (αn −1)/Φ(α).
By Lemma 2.1, because Φ(α)·Φ(α) = 0 mod (αn−1), HΦ and HΦ are orthogonal
subspaces. Therefore dim(HΦ) + dim(HΦ) ≤ n.

By Lemma 2.2, the vectors Φ, rot(Φ), . . . , rotdeg(Φ)−1(Φ) are linearly inde-
pendent. By Lemma 2.3, they all lie in HΦ. Therefore dim(HΦ) ≥ deg(Φ) =
n− deg(Φ). Symmetrically, dim(HΦ) ≥ n− deg(Φ). All three inequalities can be
satisfied only with equality, hence dim(HΦ) = n− deg(Φ). ��

2.3 Gaussian Distributions

For any d-dimensional subspace H of Rn, any c ∈ H and any s > 0, define

ρH,s,c(x) =
{

exp(−π‖(x − c)/s‖2) if x ∈ H
0 if x �∈ H

to be the Gaussian function (overH) centered at c, with radius s. By normalizing
ρs,c by its total measure

∫
x∈H

ρs,c(x)dx = sd, we get a continuous distribution
with density function

DH,s,c(x) =
ρH,s,c(x)

sd
.

The center c is taken to be zero when not explicitly specified.
Given an orthonormal basis (consisting of d vectors in Rn) for H, DH,s,c can

be written as the sum of d orthogonal 1-dimensional Gaussian distributions, each
along one of the basis vectors. Therefore sampling from DH,s,c can be efficiently
approximated. For simplicity we will assume that our algorithms can work with
infinite-precision real numbers and sample from Gaussians exactly.

Efficient Collision-Resistant Hashing from Worst-Case Assumptions 153

The Fourier transform. For a d-dimensional subspace H of Rn, the Fourier
transform (over H) of a function h : H → C is a function ĥ : H → C, defined as
ĥ(w) =

∫
x∈H

h(x)e−2πi〈x,w〉 dx. It follows directly from the definition that if, for
all x ∈ H, h satisfies h(x) ≡ g(x+v) for some v ∈ H and some function g : H →
R, then ĥ(w) = e2πi〈v,w〉ĝ(w). The Fourier transform of a Gaussian function
(over H, centered at 0) is another Gaussian (also centered at 0); specifically,
ρ̂H,s = sd · ρH,1/s.

2.4 Gaussian Measures on Lattices

For any countable set S and any function f , define f(S) =
∑

x∈S f(x). For a
lattice Λ ⊂ H that spans H and for any x ∈ Λ, define

DΛ,s,c(x) =
DH,s,c(x)
DH,s,c(Λ)

to be the conditional probability of x sampled from DH,s,c, given x ∈ Λ.
One fact connecting lattices and the Fourier transform is the Poisson summa-

tion formula:

Lemma 2.5. Let H be a subspace of Rn. For any lattice Λ ⊂ H that spans
H and any “well-behaved”2 function f , f(Λ) = det(Λ∗)f̂(Λ∗), where f̂ is the
Fourier transform (over H) of f .

The smoothing parameter. Micciancio and Regev [17] defined a new lattice pa-
rameter related to Gaussian measures, called the smoothing parameter. The fol-
lowing is a generalization of their definition to lattices of possibly less than full
rank:

Definition 2.1 (Smoothing parameter). Let H be a subspace of Rn. For a
lattice Λ ⊂ H that spans H and positive real ε > 0, the smoothing parameter
ηε(Λ) is defined to be the smallest s such that ρH,1/s(Λ∗\{0}) ≤ ε.

The name “smoothing parameter” is justified by the following fact (stated for-
mally in Lemma 2.6): if random noise chosen from a Gaussian distribution of
radius ηε(Λ) is added to a lattice Λ that spans H, the resulting distribution is
almost uniform over H.

Lemma 2.6 ([17], Lemma 4.1, generalized to subspaces). For any sub-
space H of Rn, lattice L(B) that spans H, c ∈ H, and s ≥ ηε(L(B)), we have

Δ(DH,s,c mod P(B), U(P(B))) ≤ ε/2.

Micciancio and Regev also establish relationships between ηε and other standard
lattice parameters like λn. Here we generalize to lattices of possibly less than
full rank:
2 The precise condition is technical, but all functions we consider are well-behaved.

154 C. Peikert and A. Rosen

Lemma 2.7 ([17], Lemma 3.3, generalized to subspaces). For any super-
logarithmic function f(n) = ω(log n), there exists a negligible function ε(n) such
that: for any d-dimensional subspace H of Rn and lattice Λ that spans H, ηε(Λ) ≤√
f(n) · λd(Λ).

Finally, we will need to bound the norm of the convolution of two vectors, where
one of the vectors is chosen from a discrete Gaussian distribution.

Lemma 2.8 ([14], Lemma 3.2, generalized to subspaces). For any d-
dimensional subspace H of Rn, lattice Λ that spans H, positive reals ε ≤ 1/3,
s ≥ 2ηε(Λ) and vectors c,x ∈ H,

Ev∼DΛ,s,c

[
‖(v − c) ⊗ x‖2] ≤ s2 · d · ‖x‖2.

2.5 A New Lemma on Gaussian Distributions over Lattices

In [17] it is shown that, for a full-rank lattice Λ and large enough s, DΛ,s,c

behaves very much like DRn,s,c, i.e. their moments are similar. In this work, we
will need a different fact about DΛ,s,c, specifically, a bound on its maximum
value over all points in Λ.

In order to prove such a bound, we need a lemma which is implicit in [17]:

Lemma 2.9 ([17]). Let H be a d-dimensional subspace of Rn, and Λ be a lattice
that spans H. For any s ≥ ηε(Λ) and any c ∈ H:

sd det(Λ∗) · (1 − ε) ≤ ρH,s,c(Λ) ≤ sd det(Λ∗) · (1 + ε).

Now we are ready to bound the maximum value of DΛ,s,c(·):

Lemma 2.10. Let H be a d-dimensional subspace of Rn and let Λ be a lattice
that spans H. For any ε > 0, s ≥ 2 · ηε(Λ), y ∈ Λ, and c ∈ H,

DΛ,s,c(y) ≤ 2−d · 1 + ε

1 − ε
.

Proof. First, observe

DΛ,s,c(y) =
ρH,s,c(y)
ρH,s,c(Λ)

≤ 1
sd det(Λ∗) · (1 − ε)

,

because ρH,s,c(y) ≤ 1 and by Lemma 2.9. Now we also have

1 ≤ ρH,s/2(Λ) ≤ (s/2)d det(Λ∗) · (1 + ε),

again by Lemma 2.9 and because s/2 ≥ ηε(Λ). Combining the inequalities, we
get the result. ��

Efficient Collision-Resistant Hashing from Worst-Case Assumptions 155

3 Worst-Case Problems on Cyclic Lattices

In this section we introduce a variety of worst-case computational problems on
cyclic lattices, and exhibit some (worst-case to worst-case) reductions among
them. We specify these problems in their search versions, rather than as de-
cisional problems. Due to the algebraic nature of cyclic lattices and our hash
function, we will find it useful to formulate problems that ask for short lattice
vectors within a specified cyclotomic subspace of Rn; as a group, we call these
cyclotomic problems. After defining these problems, we show that certain cyclo-
tomic problems are as hard as the more standard problems on cyclic lattices.

When formulating computational lattice problems it is customary to assume
that the input basis contains integer entries (and we do so implicitly in all the
problem definitions below). This restriction is without loss of generality, because
rational entries can always be multiplied by their least common denominator,
which just scales the lattice by some constant.

For generality, the problems below are parameterized by some arbitrary func-
tion ζ of the input lattice, and the quality of a solution is measured relative to
ζ. Typically, ζ will be some appropriate lattice parameter, e.g. λ1 or the lattice’s
smoothing parameter.

3.1 Definitions

Definition 3.1 (SubSIVP). The cyclotomic (generalized) short independent
vectors problem, SubSIVPζ

γ , given an n-dimensional full-rank cyclic lattice basis
B and an integer polynomial Φ(α) �= 0 mod (αn − 1) that divides αn − 1, asks
for a set of dim(HΦ) linearly independent (sub)lattice vectors S ⊂ L(B) ∩ HΦ

such that ‖S‖ ≤ γ(n) · ζ(L(B) ∩HΦ).

Definition 3.2 (SubSVP). The cyclotomic (generalized) short vector prob-
lem, SubSVPζ

γ , given an n-dimensional full-rank cyclic lattice basis B and
an integer polynomial Φ(α) �= 0 mod (αn − 1) that divides αn − 1, asks for a
(sub)lattice vector c ∈ L(B) ∩HΦ such that ‖c‖ ≤ γ(n) · ζ(L(B) ∩HΦ).

Definition 3.3 (SubIncSVP). The cyclotomic incremental (generalized) short
vector problem, SubIncSVPζ

γ , given an n-dimensional full-rank cyclic lattice ba-
sis B, an integer polynomial Φ(α) �= 0 mod (αn − 1) that divides to αn − 1, and a
nonzero (sub)lattice vector c ∈ L(B) ∩HΦ such that ‖c‖ > γ(n) · ζ(L(B) ∩HΦ),
asks for a nonzero (sub)lattice vector ‖c′‖ ∈ L(B) ∩HΦ such that ‖c′‖ ≤ ‖c‖/2.

Note that Definitions 3.2 and 3.3 are slightly more general than the standard
(incremental) shortest vector problems, because their approximation factors are
relative to an arbitrary function ζ of the sublattice, rather than λ1.

The standard well-studied lattice problems (on cyclic lattices) are simply spe-
cial cases of the above problems. For example, the shortest vector problem SVPγ is
simply SubSVPζ

γ with ζ = λ1 and Φ(α) = 1. The generalized independent vectors
problem GIVPζ

γ , as described by Micciancio, is simply SubSIVPζ
γ with Φ(α) = 1.

The shortest independent vectors problem SIVPγ is GIVPζ
γ with ζ = λn.

156 C. Peikert and A. Rosen

3.2 Reductions Among Problems

In this section we give some standard (worst-case to worst-case) reductions
among the the cyclotomic problems defined above, and the more standard lattice
problems from the literature.

Micciancio coined the term lattice-preserving to describe a reduction from
problem A to problem B which invokes its B-oracle only on the lattice specified
in the instance of problem A. Following in this vein, we define a sublattice-
preserving reduction between two cyclotomic problems to have the property that
all calls to the B oracle are on the same cyclic lattice and cyclotomic subspace
as specified in the problem A instance.

Proposition 3.1. For any ζ, γ(n), there is a deterministic, polynomial-time
sublattice-preserving reduction from SubSVPζ

γ to SubIncSVPζ
γ .

Proof. Given an instance (B, Φ(α)) of SubSVPζ
γ , we will use the following ba-

sic strategy: starting from some (possibly very long) nonzero c ∈ L(B) ∩ HΦ,
iteratively reduce the length of c by invoking the oracle for SubIncSVPζ

γ on
(B, Φ(α), c) until the oracle fails, which indicates that ‖c‖ ≤ γ(n)·ζ(L(B)∩HΦ).

It now suffices to show how to find such an initial c and bound its norm (and
hence, the number of iterations). We claim that for some i, c(α)=bi(α)Φ(α) mod
(αn − 1) is nonzero. For suppose not: then by Lemma 2.1, Φ �= 0 is orthogonal
to bi for every i, so the space spanned by B is not full-dimensional, which
contradicts the assumption that B is full-rank.

Now, because Φ(α) divides αn − 1, it is the product of cyclotomic factors of
αn − 1. All such factors are computable in time poly(n), and there are at most
n such factors, so any Φ(α) has coefficients of length poly(n). This implies that
‖c‖ ≤ 2poly(n), so the number of iterations in the reduction is poly(n). ��

The following lemma will help us reduce problems asking for many linearly in-
dependent vectors to problems asking for a single vector :

Lemma 3.1. Let Φ(α) ∈ Z[α] equal (αn − 1)/Φk(α) for some k |n. Then for
any cyclic lattice Λ ⊆ Zn and any nonzero c ∈ Λ ∩HΦ, vectors

c, rot(c), . . . , rotdeg(Φk)−1(c)

are linearly independent. As a consequence,

λ1(Λ ∩HΦ) = · · · = λdim(HΦ)(Λ ∩HΦ).

Proof. Because c �= 0, c(α) ∈ Z[α], and Φ(α) | c(α), c(α) is not divisible by
Φk(α). Then by Lemma 2.2, the rotations of c are linearly independent. Now let
c ∈ Λ∩HΦ be such that ‖c‖ = λ1(Λ∩HΦ). By Lemma 2.4, dim(HΦ) = deg(Φk).
Because ‖roti(c)‖ = ‖c‖ for any i, the result follows. ��

Corollary 3.1. For any ζ, γ(n), there exists a deterministic, polynomial-time
sublattice-preserving reduction from SubSIVPζ

γ instances (B, Φ(α))where Φ(α)=
(αn−1)/Φk(α) for some k |n to SubSVPζ

γ , which makes exactly one oracle call.

Efficient Collision-Resistant Hashing from Worst-Case Assumptions 157

When the dimension n of a cyclic lattice is prime, αn−1 factors as Φn(α) ·Φ1(α).
In this case, there is a very tight connection between SIVP and SVP (in an
appropriate subspace):

Proposition 3.2. For any γ(n), there is a deterministic, polynomial-time lattice-
preserving reduction from SIVPmax(n,2γ) on a cyclic lattice of prime dimension n
to SubSVPλ1

γ . The reduction makes exactly one oracle call, on an instance for
which Φ(α) = Φ1(α) = α− 1.

Proof. The main idea behind the proof is as follows: first, we use the SubSVP
oracle to find a short vector in L(B)∩HΦ1 , then rotate it to yield n− 1 linearly
independent vectors. For the nth vector, we take the shortest vector in L(B) ∩
HΦn

, which can be found efficiently; furthermore, it is an n-approximation to
the shortest vector in L(B)\HΦ1 .

We now give the full proof. Given an integer lattice basis B of a cyclic lattice
of prime dimension n, invoke the SubSVP oracle on (B, Φ1(α)), yielding a lattice
vector c ∈ L(B) ∩HΦ1 such that ‖c‖ ≤ γ(n) · λ1(L(B) ∩HΦ1). Looking ahead,
the rotations of c will provide n− 1 linearly independent vectors of length ‖c‖,
however we will need one more vector (outside HΦ1) to solve SIVP.

Now let si =
∑n

j=1(bi)j = bi(1) for i = 1, . . . n. Because α− 1 cannot divide
every bi(α) (otherwise L(B) ⊂ HΦ1 , so L(B) would not be full-rank), some si

must be non-zero. Let g = gcd(s1, . . . , sn) �= 0, and let g = (g, g, . . . , g). Output
the vectors S = (c, rot(c), . . . , rotn−2(c),g).

To prove correctness of the reduction, we first show that g ∈ L(B). Note that
for every i, si = bi ⊗ (1, 1, . . . , 1) = (si, si, . . . , si) ∈ L(B). By the extended
Euclidean algorithm, g is an integer combination of the si vectors, hence g ∈
L(B).

Claim. The vectors in S are linearly independent.

Proof. Because n is prime, (αn − 1)/Φ1(α) = Φn(α) is irreducible in Z[α], so
by Lemma 3.1 the n − 1 rotations of c in S are linearly independent. Further,
g �∈ HΦ1 while roti(c) ∈ HΦ1 for every i (Lemma 2.3), so S consists of n linearly
independent vectors from L(B). ��

We now analyze the approximation factor of the reduction. First, we bound
λn(L(B)):

Claim.

λn(L(B)) ≥ max
(

g√
n
,
λ1(L(B) ∩HΦ1)

2

)
.

Proof. Let T be some full-rank set of nonzero vectors in L(B) such that ‖T‖ =
λn(L(B)). Then T must contain some u ∈ L(B)\HΦ1 , because dim(HΦ1) = n−1.
Let u =

∑n
i=1 aibi for integers a1, . . . , an. Because Φ1(α) does not divide u(α),

u(1) =
∑n

j=1 uj �= 0. Further, u(1) =
∑n

i=1 aibi(1), so g divides u(1). Therefore
‖u‖1 ≥ |u(1)| ≥ g, which implies λn(L(B)) = ‖T‖ ≥ ‖u‖ ≥ ‖u‖1/

√
n ≥ g/

√
n.

158 C. Peikert and A. Rosen

Furthermore, T must contain some v ∈ L(B)\HΦn
, because dim(HΦn

) = 1.
Now v′ = rot(v)−v is identified with the polynomial (α−1) ·v(α) mod (αn−1),
so 0 �= v′ ∈ L(B) ∩HΦ1 . Then by the triangle inequality we have

λ1(L(B) ∩HΦ1) ≤ ‖v′‖ ≤ 2‖v‖ ≤ 2‖T‖ = 2λn(L(B)).

Now, ‖S‖ = max(g
√
n, γ(n) ·λ1(L(B)∩HΦ1)). By taking both cases of ‖S‖ and

invoking Claim 3.2 with each, we get

‖S‖
λn(L(B))

≤ max(n, 2γ(n)).

We also have, for arbitrary (not necessarily prime) n, a reduction from SVP
to SubSVP:

Proposition 3.3. For any γ(n), there is a deterministic, polynomial-time lattice-
preserving reduction from SVPmax(n,γ) to SubSVPλ1

γ . The reduction calls the or-
acle exactly once, on an instance for which Φ(α) = Φ1(α) = α− 1.

Proof. The reduction and proof of correctness are very similar to the one from
the proof of Proposition 3.2: on input B, call the SubSVP oracle on (B, Φ1(α)),
yielding a vector c ∈ L(B) ∩ HΦ1 such that ‖c‖ ≤ γ(n) · λ1(L(B) ∩ HΦ1).
Additionally, construct the vector g as above, and output the shorter of c and g.

Using reasoning as above, we can show that λ1(L(B)) ≥ min(g/
√
n, λ1(L(B)∩

HΦ1)). Then by considering both cases of λ1(L(B)), we can show that

min(‖g‖, ‖c‖)
λ1(L(B))

≤ max(n, γ(n)).

4 Generalized Compact Knapsacks

Definition 4.1 ([14], Definition 4.1). For any ring R, subset S ⊂ R and
integer m ≥ 1, the generalized knapsack function family H(R,S,m) = {fa :
Sm → R}a∈Rm is defined by

fa(x) =
m∑

i=1

xi · ai.

In our knapsack function for security parameter n, R is the ring R=(Zn
p ,+,⊗)

of n-dimensional vectors over Zp, where p = nO(1) but need not be prime, with
vector addition and convolution product ⊗.

This choice of ring admits very efficient implementations of the knapsack
function: using a Fast Fourier Transform algorithm (which works for any n),
convolution can be performed in O(n log n) operations in Zp, and addition of
two vectors takes time O(n log p) = O(n log n). Furthermore, by choosing a p
such that Zp has an element of multiplicative order n, we can compute the
Fourier transform mod p using modular (rather than floating-point) arithmetic.
The resulting time complexity of the function is O(m · n · poly(logn)), with key
size O(m · n log n).

Efficient Collision-Resistant Hashing from Worst-Case Assumptions 159

4.1 How to Find Collisions

Here we show how to find collisions in the compact knapsack function when S =
[0, D]n for some D = pΘ(1), for which Micciancio proved that the function was
one-way (under suitable assumptions). Our attacks actually do more than just
find arbitrary collisions; in fact, they find second preimages for many elements
of the domain, thereby violating the definition of universal one-wayness as well.
In the following we write X ∈ Sm ⊂ Zn×m

p as an element of the domain, and
A ∈ Rm = Zn×m

p as a uniformly-chosen key.
First observe that fA is linear: fA(X)+fA(X′) = fA(X+X′). Therefore, for

any fixed X′ such that ‖X′‖∞ < D and a random key A, to find a collision with
X′ it suffices to find a nonzero X ∈ Sm such that fA(X) = 0 and ‖X‖∞ = 1. In
fact, our attack will be even stronger: we demonstrate a fixed X �= 0, oblivious
to the key A, for which fA(X) = 0 with non-negligible probability (over the
choice of A).

WedefineXby its representation as anm-tuple of polynomials in the ringZp[α]/
(αn − 1). In this polynomial representation, fA(X) corresponds to

∑m
i=1 xi(α) ·

ai(α) mod (αn −1). For any small positive integer divisor q of n (including q = 1),
we can define X = (x1, . . . ,xm) as follows: let

x1(α) =
αn − 1
αq − 1

= αn−q + αn−2q + · · · + 1,

and let xj(α) = 0 for all j �= 1. Then X ∈ Sm, ‖X‖∞ = 1, and fA(X) corresponds
to a1(α) · x1(α). Now suppose a1(α) is divisible by αq − 1, which happens with
probability 1/pq over the uniform choice of A. Then fA(X) = 0 because (αn − 1)
divides a1(α) · · ·x1(α).

4.2 How to Achieve Collision-Resistance

The essential fact enabling the above attack is that (αn −1) is not irreducible in
Zp[α], so Zp[α]/(αn − 1) is not an integral domain. That is, for many non-zero
a(α), it is easy to find non-zero x(α) (having small coefficients) such that a(α) ·
x(α) = 0 mod (αn−1). In particular, when we examine a(α),x(α) mod (αn−1)
in their Chinese remainder representations, each of the components is zero for
either a(α) or x(α) (or both).

To circumvent our particular attack, we can enforce an algebraic constraint on
X. Informally, we require every xi(α) to be divisible over Z[α] by αn−1

Φk(α) for some
fixed k |n. Then in the Chinese remainder representation, all but one component
of xi(α) is zero, so the evaluation of fA(X) is essentially performed mod Φk(α).

Note that while Φk(α) is irreducible over Z[α], it may still be reducible over
Zp[α]. Therefore constraining X in the above way may not necessarily place the
calculation of fA(X) in an integral domain. Furthermore, the constraint is crafted
specifically to prevent our attack, but not to prevent any other potential attacks
on the function that may remain undiscovered. Nevertheless (and perhaps quite
surprisingly), it proves to be exactly what is needed to attain collision-resistance,
as our security reduction will demonstrate.

160 C. Peikert and A. Rosen

Formally, we consider the generalized compact knapsack function where the
set S = SD,Φ ⊂ Zn

p for some bound D on the max-norm of X (recall that
‖x‖∞ ∈ [0, p/2] for any x ∈ Zn

p), and Φ(α) = αn−1
Φk(α) for some k |n. For a value

v ∈ Zp, define vZ to be the unique integer in the range (−p/2, p/2] representing
v as a residue, and for a vector x ∈ Zn

p define the vector xZ ∈ Zn similarly. Now
we define SD,Φ as:

SD,Φ = {x ∈ Zn
p : ‖x‖∞ ≤ D and Φ(α) divides xZ(α) in Z[α]}. (1)

4.3 How to Get a (Useful) Hash Function

In order to verify that our knapsack is a hash function, we must compare the
size of the domain Sm

D,Φ to the size of the function’s range. In addition, practical
usage requires efficient one-to-one encodings of bit strings into elements of the
domain, and of range elements back to bit strings.

Both tasks are most easily done when n is prime and Φ(α) = α − 1. Given
a string w ∈ {0, 1}�, where � = m · (n − 1) · �logD�, encode w in the following
way: first, break w into m chunks representing vectors wi ∈ [0, D − 1]n−1 for
i = 1, . . . ,m. For each i, and for j = 0, . . . , n − 2, let (xi)j = ±(wi)j , where
the signs are iteratively chosen to satisfy the invariant that every partial sum∑j

k=0(xi)k ∈ [−D,D]. Finally, for every i let (xi)n−1 = −
∑n−2

j=0 (xi)j ∈ [−D,D],
so that xi(1) =

∑n−1
j=0 (xi)j = 0, hence α− 1 divides xi(α) and ‖xi‖∞ ≤ D.

To encode the output, first notice that α− 1 divides y(α), where y = fA(X).
Therefore it is sufficient to write (y)j in binary for j = 0, . . . , n− 2. This can be
done using (n − 1) · $log p� bits. Therefore, the function shrinks its input by a
factor of m�log D

�log p� , which for appropriate choices of parameters is larger than 1.

5 The Main Reduction

Due to the reductions among worst-case problems on cyclic lattices explored in
Section 3.2, the security of our hash function can be established by reducing
the worst-case problem SubIncSVPηε

γ to finding collisions in H(Zn
p , SD,Φ,m).

Because collision-resistance is meaningful even for functions that do not shrink
their input, we exhibit a general reduction in Theorem 5.1, then consider special
cases of hash functions in the corollaries that follow.

Theorem 5.1. For any polynomially-bounded functions D(n), m(n), p(n) and
negligible function ε(n) such that p(n) ≥ 8n2.5 · m(n)D(n) and γ(n) ≥ 16n ·
m(n)D(n), there is a probabilistic polynomial-time reduction from SubIncSVPηε

γ

instances (B, Φ(α), c) where αn−1
Φ(α) = Φk(α) for some k |n to finding collisions in

H(Zn
p(n), SD(n),Φ,m(n)).

Roadmap to the proof. First we describe a reduction that, given a collision-
finding oracle F , attempts to solve SubIncSVP. The remainder of the proof is
a series of claims that establish the correctness of the reduction. Claim 5 shows

Efficient Collision-Resistant Hashing from Worst-Case Assumptions 161

that the reduction feeds F a properly-distributed input. Claim 5 establishes that
the reduction’s output vector is in the proper sublattice. Claims 5 and 5 show
that, with good likelihood, the output is both nonzero and significantly shorter
than the input lattice vector (respectively).

Proof. Assume that F finds collisions in the specified hash family, for infinitely
many n and Φ(α), with probability at least 1/q(n) for some polynomial q(·).
For shorthand, we will abbreviate H = HΦ and let d = dim(H) throughout the
proof. We assume wlog that d ≥ 3, because efficient algorithms are known for
SVP when d = 1, 2 (we omit details).

Our reduction proceeds as follows: on input (B, c) where c ∈ L(B) ∩H,

1. For i = 1 to m,
– Generate uniform vi ∈ L(B)∩H ∩P(Rotd(c)). (See [16] for algorithms.)
– Generate noise yi ∈ H according to DH,s for s = 2‖c‖/γ(n). Let y′

i =
yi mod B.

– Choose bi (as described below) so that Rotn(c) · b = vi + y′
i, and let

ai = �bi · p�.
Choosing bi is done by breaking it into two parts: b1

i = ((bi)0, . . . ,
(bi)d−1)T , and b2

i = ((bi)d, . . . , (bi)n−1)T . First, pick b2
i according to

In−d = U([0, 1))n−d. Then solve for b1
i as follows: let G ∈ Rd×n be

such that G · Rotd(c) = Id, the d× d identity matrix. (Such a G exists
because Rotd(c) has column rank d, and it can be found via Gaussian
elimination.) Then b1

i = G · (vi + y′
i − wi), where wi = Rotn(c) ·

(0, . . . , 0, (bi)d, . . . , (bi)n−1)T .
2. Give A = (a1 mod p, . . . ,am mod p) to the collision-finding oracle F . Get

a collision X �= X′ such that ‖X‖∞, ‖X′‖∞ ≤ D, and Φ(α) divides every
xi(α),x′

i(α). Let Z = X − X′, and note that ‖Z‖∞ ≤ 2D and Φ(α) divides
every zi(α).

3. Output the vector

c′ =
m∑

i=1

(vi + y′
i − yi) ⊗ zi − c ⊗

∑m
i=1 ai ⊗ zi

p
(2)

=
m∑

i=1

(vi + y′
i − yi −

c ⊗ ai

p
) ⊗ zi. (3)

The following claim follows from Lemma 2.6 and straightforward manipula-
tions of statistical distance:

Claim. The probability that F outputs a valid collision is non-negligible:

Pr[(X,X′) is a valid collision] ≥ 1/q(n) −m(n) · ε(n)/2.

Proof. It suffices to bound the statistical distance Δ(A, U(Znm
p)) by mε/2. Each

ai is independently generated, so by the triangle inequality, Δ(A, U(Znm
p)) ≤ m·

Δ(ai mod p, U(Zn
p)). Now ai mod p = �(bi mod 1) ·p�, so Δ(ai mod p, U(Zn

p)) ≤
Δ(bi mod 1, In).

162 C. Peikert and A. Rosen

Let b1
i = ((bi)0, . . . , (bi)d−1)T , and b2

i = ((bi)d, . . . , (bi)n−1)T . By construc-
tion, b2

i is uniform over [0, 1)n−d. Additionally, we have

b1
i = G · (vi + y′

i − wi) = G · (vi + y′
i) − G · wi, (4)

where wi is a function of b2
i . Notice that y′

i is distributed according to DH,s mod
P(B), so by Lemma 2.6,

Δ(y′
i, U(P(B))) ≤ ε/2.

Because vi is uniform over L(B) ∩H ∩ P(Rotd(c)), we get

Δ(vi + y′
i mod Rotd(c), U(P(Rotd(c)))) ≤ ε/2,

which by definition of G implies

Δ(G · (vi + y′
i) mod 1, Id) ≤ ε/2.

By Equation (4), we have that conditioned on any value v ∈ [0, 1)n−d,

Δ({b1
i mod 1 | b2

i = v}, Id) ≤ ε/2.

Using standard manipulations of statistical distance, we conclude that Δ(bi mod
1, In) ≤ ε/2, as desired. ��

Claim. If F outputs a valid collision, c′ ∈ L(B) ∩H.

Proof. First observe that L(B)∩H is a sublattice of L(B). We now examine the
terms in Equation (2). By construction, vi + y′

i − yi ∈ L(B) ∩H, and zi ∈ Zn,
so the first summation is in L(B) ∩ H. Next, fA(Z) =

∑
i ai ⊗ zi = 0 mod p

by the assumption that F outputs a valid collision, so
∑

i ai⊗zi

p ∈ Zn. Since
c ∈ L(B) ∩H, the second term of Equation (2) is also in L(B) ∩H. ��

Claim. Conditioned on F outputting a collision, Pr[c′ �= 0] ≥ 3/4.

Proof. The main idea: because c′ ∈ H, c′ = 0 iff Φk(α) divides c′(α). Because
Φk(α) is irreducible, we can show that c′(α) = 0 mod Φk(α) only when a sample
from DL(B)∩H,s,−y′

1
hits a certain target lattice point exactly. By Lemma 2.10,

the probability of this event is small.
Throughout the proof we implicitly condition all probabilities on the event

that F outputs a collision. Because Φ(α) divides c′(α) and Φ(α) ·Φk(α) = (αn −
1), by Equation (3) we get

c′ = 0 ⇐⇒
m∑

i=1

(
vi(α) + y′

i(α) − yi(α) +
c(α)ai(α)

p

)
· zi(α) = 0 mod Φk(α).

Since Z �= 0, there exists i such that zi �= 0; assume without loss of generality
that i = 1. Then let h(α) =

∑
i>1(vi(α) +y′

i(α)−yi(α) + c(α)·ai(α)
p) · zi(α) and

rearrange terms, yielding(
v1(α) + y′

1(α) − y1(α) +
c(α) · a1(α)

p

)
· z1(α) = −h(α) mod Φk(α). (5)

Efficient Collision-Resistant Hashing from Worst-Case Assumptions 163

Now because z1 �= 0 and Φ(α) divides z1(α), it must be that z1(α) �= 0 mod
Φk(α). Since Z[α]/Φk(α) is an integral domain, there exists at most one element
w(α) ∈ Z[α]/Φk(α) such that w(α) ·z1(α) = −h(α) mod Φk(α). If no such w(α)
exists, then c′ �= 0 always, and we’re done. If such a w(α) exists, then c′ = 0
only when the multiplicand of z1(α) in Equation (5) equals w(α). Then c′ = 0
only if:

(y′
1 − y1)(α) = w(α) − c(α) · a1(α)

p
− v1(α) mod Φk(α).

Now, y1 is independent of v1 and the coins of F . Furthermore, conditioned on
y′

1, y1 is independent of h, z1, and a1, because these variables depend only on
y′

1 and other independent coins. Therefore by averaging over these variables, it
suffices to bound

M = max
h′(α)

Pr [(y′
1 − y1)(α) = h′(α) mod Φk(α) | y′

1] .

Because Φ(α) divides (y′
1 − y1)(α),

M = max
h′(α)

Pr [(y′
1 − y1)(α) = h′(α) mod (αn − 1) | y′

1] .

Now given y′
1, y1 − y′

1 is distributed according to DL(B)∩HΦ,s,−y′
1

because y1 −
y′

1L(B) ∩HΦ. By Lemma 2.10 and because d ≥ 3,

M ≤ 2−d · 1 + ε

1 − ε
≤ 1/4

for sufficiently large n. ��

Claim. Conditioned on F outputting a collision, Pr
[
‖c′‖ ≤ ‖c‖

2

]
≥ 1/2.

Proof. Throughout the proof we implicitly condition all probabilities on the
event that F outputs a collision. First, it is sufficient to establish the bound
E[‖c′‖] ≤ ‖c‖

4 , because by Markov’s inequality, this implies Pr
[
‖c′‖ > ‖c‖

2

]
≤

1/2. Now by Equation (2) and the triangle inequality,

‖c′‖ ≤
m∑

i=1

∥∥∥∥(vi + y′
i −

c ⊗ ai

p
) ⊗ zi

∥∥∥∥ +
m∑

i=1

‖yi ⊗ zi‖. (6)

Now using the fact that Rotn(c) · bi = vi + y′
i, we get

vi + y′
i −

c ⊗ ai

p
=

Rotn(c) · bi · p− Rotn(c) · ai

p
=

Rotn(c)(bi · p− ai)
p

.

Since ‖bi · p− ai‖∞ ≤ 1/2, we get∥∥∥∥vi + y′
i −

c ⊗ ai

p

∥∥∥∥
∞

≤ n‖c‖
2p

.

164 C. Peikert and A. Rosen

Now we use the fact that ‖zi‖1 ≤ 2n ·D, yielding∥∥∥∥(vi + y′
i −

c ⊗ ai

p
) ⊗ zi

∥∥∥∥
∞

≤
∥∥∥∥vi + y′

i −
c ⊗ ai

p

∥∥∥∥
∞

· ‖zi‖1 ≤ n2‖c‖D
p

.

Finally, using the fact that ‖w‖ ≤
√
n‖w‖∞ for any n-dimensional vector w and

summing over i = 1, . . . ,m, we get that the first summation in Equation (6) is
at most mn2.5‖c‖D

p .
Next we analyze the second term of Equation (6). Conditioned on y′

i, the
distribution of yi −y′

i ∈ L(B)∩H is DL(B)∩H,s,−y′
i
, and is independent of A,Z,

and the coins of F . Recall that s = 2‖c‖/γ(n) > 2ηε(L(B)∩H), by assumption
on the input to SubIncSVP. Also recall that yi is chosen according to DH,s,
and that zi ∈ H. So by Lemma 2.8,

E
[
‖yi ⊗ zi‖2 | y′

i

]
= E(yi−y′

i)←DL(B)∩H,s,−y′
i

[
‖((yi − y′

i) − (−y′
i)) ⊗ zi‖2]

≤ s2‖zi‖2 · d
≤ s2n2D2.

Because Var[X] = E[X2] − E[X]2 ≥ 0 for any random variable X, it must be
that E [‖yi ⊗ zi‖ | y′

i] ≤ n · s ·D. Adding up and averaging over all y′
i, we get

m∑
i=1

E [‖yi ⊗ zi‖] ≤ m · n · s ·D =
2m · n · ‖c‖ ·D

γ(n)
.

Combining everything, we get:

E[‖c′‖] ≤ m · n2.5 · ‖c‖ ·D
p

+
2m · n · ‖c‖ ·D

γ(n)

= ‖c‖ ·
(
m · n2.5 ·D

p
+

2m · n ·D
γ(n)

)
.

Using the hypotheses p ≥ 8mn2.5D and γ(n) ≥ 16mnD, we get E[‖c′‖] ≤ ‖c‖/4,
as desired. ��
Then by the two claims and the union bound, we get that (conditioned on F
producing a collision) the probability that c′ is a solution to the SubIncSVP
instance is at least 1/4. By Claim 5, the reduction solves SubIncSVP in the
worst case with non-negligible probability, which can be amplified to high prob-
ability by standard repetition techniques. This completes the proof. ��

Putting it all together. Using the relationship between ηε and λn−1, restricting n
to be prime, and setting the knapsack parameters appropriately, we get collision-
resistant hash functions:

Corollary 5.1. For any m(n) = Θ(log n), there exist D(n) = Θ(1) and p(n) =
n2.5+Θ(1) such that: H(Zn

p(n), SD(n),Φ1(α),m(n)) is a hash function ensemble for
which finding collisions for infinitely many prime n is at least as hard as solving
SVPγ with high probability in the worst case for infinitely many prime n within
a factor γ(n) = n · poly(logn).

Efficient Collision-Resistant Hashing from Worst-Case Assumptions 165

Proof. We can choose D(n) and p(n) such that m(n) log D(n)
log p(n) = Θ(1) is greater

than 1 (yielding a hash function) and satisfying the hypothesis of Theorem 5.1.
Because n is prime, (αn−1)/Φn(α) = Φ1(α), so by Theorem 5.1 and Lemma 3.1
we have an algorithm for SubSVPηε(n)

Θ(n log n) in HΦ1 . By Lemma 2.7, this is an al-

gorithm for SubSVPλn−1

n·poly(log n) in HΦ1 . Again because n is prime, by Lemma 3.1
we have λn−1 = λ1 on L(B) ∩ HΦ1 , so (finally) by Proposition 3.3 we get an
algorithm for SVPn·poly(log n). ��

Corollary 5.2. For any constant δ > 0, there exist D(n) = nΘ(1), p(n) =
n2.5+Θ(1), and m(n) = Θ(1) such that: H(Zn

p(n), SD(n),Φ1(α),m(n)) is a hash
function ensemble for which finding collisions for infinitely many prime n is at
least as hard as solving SVPγ with high probability in the worst case for infinitely
many prime n within a factor γ(n) = n1+δ.

Proof. We can choose D(n) = Θ(nδ/2) and a large enough m(n) = Θ(1) so
that m(n) log D(n)

log p(n) > 1. The chain of reductions is the same as in the proof of
Corollary 5.1, yielding an SVP algorithm with approximation factor n ·m(n) ·
D(n) · poly(logn) ≤ n1+δ. ��

Acknowledgements

We thank the anonymous reviewers for their helpful and thorough comments,
and especially for a simplified proof of Lemma 2.10.

References

1. M. Ajtai. Generating hard instances of lattice problems (extended abstract). In
Proc. 28th Annual ACM Symposium on Theory of Computing (STOC 1996), pages
99–108, 1996.

2. M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized reduc-
tions (extended abstract). In Proc. 30th Annual ACM Symposium on Theory of
Computing (STOC 1998), pages 10–19, 1998.

3. M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case
equivalence. In Proc. 29th Annual ACM Symposium on Theory of Computing
(STOC 1997), pages 284–293, 1997.

4. S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate op-
tima in lattices, codes, and systems of linear equations. J. Computer and System
Sciences, 54(2):317–331, 1997.

5. J.-Y. Cai and A. Nerurkar. Approximating the SVP to within a factor (1+1/dimε)
is NP-hard under randomized reductions. Jounal of Computer and System Sci-
ences, 59(2):221–239, 1999.

6. J.-Y. Cai and A. P. Nerurkar. An improved worst-case to average-case connection
for lattice problems. In Proc. 38th Annual Symposium on Foundations of Computer
Science (FOCS 1997), page 468, 1997.

7. I. Dinur, G. Kindler, and S. Safra. Approximating-CVP to within almost-
polynomial factors is NP-hard. In Proc. 39th Annual Symposium on Foundations
of Computer Science (FOCS 1998), pages 99–111. IEEE Computer Society, 1998.

166 C. Peikert and A. Rosen

8. D. S. Dummit and R. M. Foote. Abstract Algebra. Prentice Hall, Upper Saddle
River, NJ, USA, second edition, 1999.

9. R. Genarro, Y. Gertner, J. Katz, and L. Trevisan. Bounds on the efficiency of
generic cryptographic constructions. SIAM J. Computing, 35(1):217–246, 2005.

10. O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice
problems. Electronic Colloquium on Computational Complexity (ECCC) Report
TR96-042, 1996.

11. O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from lattice
reduction problems. In Proc. 17th Annual Conference on Advances in Cryptology
(CRYPTO 1997), pages 112–131. Springer-Verlag, 1997.

12. S. Khot. Hardness of approximating the shortest vector problem in lattices. In
Proc. 45th Symposium on Foundations of Computer Science (FOCS 2004), pages
126–135. IEEE Computer Society, 2004.

13. V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are collision
resistant. Electronic Colloquium on Computational Complexity (ECCC) Report
TR05-142, 2005.

14. D. Micciancio. Generalized compact knapsaks, cyclic lattices, and efficient one-
way functions from worst-case complexity assumptions. In Proc. 43rd Annual
Symposium on Foundations of Computer Science (FOCS 2002).

15. D. Micciancio. The shortest vector problem is NP-hard to approximate to within
some constant. SIAM J. Computing, 30(6):2008–2035, Mar. 2001.

16. D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic
perspective, volume 671 of The Kluwer International Series in Engineering and
Computer Science. Kluwer Academic Publishers, Boston, Massachusetts, 2002.

17. D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaus-
sian measure. pages 371–381.

18. O. Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899–942,
2004.

19. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Proc. 37th Annual ACM Symposium on Theory of Computing (STOC 2005),
pages 84–93, 2005.

20. P. van Emde Boas. Another NP-complete problem and the complexity of computing
short vectors in a lattice. Technical Report 81-04, University of Amsterdam, 1981.

21. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In CRYPTO,
2005.

22. X. Wang and H. Yu. How to break MD5 and other hash functions. In EURO-
CRYPT, pages 19–35, 2005.

On Error Correction in the Exponent

Chris Peikert

MIT CSAIL, 32 Vassar St, Cambridge, MA, 02139
cpeikert@theory.csail.mit.edu

Abstract. Given a corrupted word w = (w1, . . . , wn) from a Reed-
Solomon code of distance d, there are many ways to efficiently find and
correct its errors. But what if we are instead given (gw1 , . . . , gwn) where
g generates some large cyclic group — can the errors still be corrected
efficiently? This problem is called error correction in the exponent, and
though it arises naturally in many areas of cryptography, it has received
little attention.

We first show that unique decoding and list decoding in the exponent
are no harder than the computational Diffie-Hellman (CDH) problem in
the same group. The remainder of our results are negative:

– Under mild assumptions on the parameters, we show that bounded-
distance decoding in the exponent, under e = d − k1−ε errors for
any ε > 0, is as hard as the discrete logarithm problem in the same
group.

– For generic algorithms (as defined by Shoup, Eurocrypt 1997) that
treat the group as a “black-box,” we show lower bounds for decoding
that exactly match known algorithms.

Our generic lower bounds also extend to decisional variants of the de-
coding problem, and to groups in which the decisional Diffie-Hellman
(DDH) problem is easy. This suggests that hardness of decoding in the
exponent is a qualitatively new assumption that lies “between” the DDH
and CDH assumptions.

1 Introduction

Reed-Solomon codes and cryptography. The Reed-Solomon (RS) family of error-
correcting codes [19] has proven incredibly useful throughout several areas of
theoretical computer science and in many real-world applications. They are very
simple to define: for any field Fq of size q, any message length k and code
length n such that k ≤ n ≤ q, and any evaluation set of n distinct points
E = {α1, . . . , αn} ⊆ Fq, the Reed-Solomon (RS) code RSq(E , k) is the set of all
codewords (p(α1), . . . , p(αn)), where p(x) ∈ Fq[x], deg(p) < k.

In addition to their elegant definition and many beautiful combinatorial prop-
erties, Reed-Solomon codes also admit efficient algorithms for correcting errors.
The algorithm of Berlekamp and Welch [1] corrects up to d/2 = (n − k + 1)/2
errors in any codeword w ∈ RSq(E , k), while the list-decoding algorithm of Gu-
ruswami and Sudan [12] (building on groundbreaking work by Sudan [23]) can
find all codewords within Hamming distance n−

√
nk of a given word.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 167–183, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

168 C. Peikert

Reed-Solomon codes also play a fundamental role in modern cryptography, but
are often known by a different name: Shamir (or polynomial) secret-sharing [21].
McEliece and Sarwate first observed [15] that sharing a secret using Shamir’s
scheme is equivalent to encoding the secret under an RS code: a random low-
degree polynomial p is chosen so that p(α0) is the value of the secret, and the
shares are the evaluations of p at many other distinct points α1, . . . , αn. More-
over, reconstructing the secret when players withhold or mis-report their shares is
equivalent to decoding a codeword that has been corrupted with erasures or errors
(respectively).

Placing shares in the exponent. Many cryptographic schemes rely on the pre-
sumed hardness of computing discrete logs in some cyclic group G of prime order
q generated by an element g. In constructing threshold versions of such schemes,
distributing trust over many players often involves distributing the secret key via
polynomial secret sharing/RS encoding (where the alphabet is the field Zq). To
perform the cryptographic task, typically the players must collectively compute
some value of the form gw, where w depends on the secret key and must remain
secret. For example, to decrypt an ElGamal [10] ciphertext (c, d) = (gr,m · yr)
where y = gx and x is the secret key, the players must collectively compute the
value cx = gxr without revealing their individual shares of x.

The basic protocol for computing gw usually works as follows:

1. Player i uses its share of the secret key to compute gwi , where wi = p(αi)
is a share of the secret value w = p(α0) under a polynomial p of degree less
than k.

2. The players broadcast their respective values of gwi , for i = 1, . . . , n.
3. The broadcast values are (efficiently) “interpolated in the exponent”1 to re-

cover gw.
Specifically, for any S ⊂ {1, . . . , n} such that |S| = k, given the values
gwi = gp(αi) for i ∈ S, each player locally computes

gw = gp(α0) = g i∈S λS
i p(αi) =

∏
i∈S

(gwi)λS
i

using appropriate Lagrange coefficients λS
i :

λS
i =

∏
j∈S,j �=i

αj − α0

αj − αi
mod q.

In Step 3 above, notice that any subset S of size k suffices, and that the
values from players outside S are unused in the interpolation formula. Therefore
interpolation in the exponent is robust against a “halting” adversary — i.e.,
one that may refuse to broadcast some shares, but always correctly reports the
values of those shares it does broadcast.
1 Using the language of coding theory, we might call this “erasure-decoding in the

exponent.”

On Error Correction in the Exponent 169

Introducing errors in the exponent. A malicious adversary, on the other hand,
may lie about its shares. This introduces errors in the exponent, instead of
erasures. Without a way to separate correct shares from incorrect shares, the
interpolation formula may produce different results depending on which shares
are used.

This motivates the natural question of whether it is possible to efficiently cor-
rect errors “in the exponent.” More specifically: if a vector x = (x1, . . . , xn) dif-
fers from some RS codeword w = (w1, . . . , wn) in at most e positions, then given
gx = (gx1 , . . . , gxn), is it possible to efficiently recover gw = (gw1 , . . . , gwn)?

The goal of this paper is to investigate the computational complexity of er-
ror correction in the exponent, and to relate it to well-known computational
problems in cyclic groups (such as discrete log and Diffie-Hellman).

Relationships among parameters. Error correction in the exponent involves sev-
eral different parameters, and its complexity depends upon the relationships
among these parameters. For analyzing asymptotic behavior, all these parame-
ters (q, n, k, e) will be seen as functions of a single security parameter �. We
will focus our attention on those parameter values which are most common in
cryptographic settings:

– Complexity of algorithms will always be measured relative to the security
parameter �. An efficient algorithm is one that runs in time polynomial in
the security parameter. A function is said to be negligible if it asymptotically
decreases faster than the inverse of any fixed polynomial in �; otherwise it is
said to be non-negligible.

– The alphabet size q is exponential in �; that is, q = 2O(�).
– The codeword length n (which often corresponds to the number of players

in a protocol) may be an arbitrary polynomial in �. Therefore n is some
polynomial in log q.

– The message length k (which often corresponds to the number of “curious”
— i.e., semi-honest — players) is at most n.

– The number of errors e (which often corresponds to the number of malicious
players) is at most n.

In protocols, often it is assumed that either e = 0 (corresponding to an honest-
but-curious adversary) or e = k − 1 (corresponding to a fully-malicious adver-
sary). In order to understand the problem more generally, we will consider e and
k independently.

1.1 Applications

While error correction in the exponent is a very interesting problem in its own
right, it is also heavily motivated by existing work.

In the positive direction, an error correction algorithm would be highly de-
sirable, because it would lead to improvements in robustness (i.e., correctness
in the presence of cheating players) and efficiency of many multiparty cryp-
tographic protocols. Currently, these protocols often require either expensive
zero-knowledge proofs of correct operation, or more efficient tools like verifiable

170 C. Peikert

secret sharing. In either case, these steps cost extra rounds of communication
and computation, which could be avoided by instead having the parties perform
local error correction (with the side-effect of also identifying cheating parties).

There are many concrete cryptographic systems in the literature which would
benefit from error correction in the exponent, including (but not limited to):
threshold DSS key generation and signature protocols [11], threshold ElGamal
protocols [17], protocols for multiplication of shared secrets in the exponent [18],
distributed pseudorandom generators, functions, and verifiable random func-
tions [16, 9, 6], traitor-tracing schemes [2], and others. The last example of a
traitor-tracing scheme is interesting because, unlike the others, it is not a thresh-
old cryptographic protocol. This indicates that error correction in the exponent
may have relevance in many other areas of cryptography as well.

On the other hand, if in our study of this problem we discover that it appears
to be hard, then it can be used as a basis for new assumptions that may provide
a foundation for new kinds of cryptographic schemes, or improved constructions
of existing primitives.

1.2 Our Results

We consider the problem of correcting errors in the exponent for the (family of)
codes RSq(E , k), defined over the field Zq for prime q.

First we observe that unique decoding and list decoding in the exponent,
when the number of errors e does not exceed the classical error bounds for those
problems, is no harder than the computational Diffie-Hellman (CDH) problem [8]
in the same group. The remainder of our results are negative:

– Under mild assumptions on the parameters, we show that bounded-distance
decoding in the exponent under e = d−k1−ε errors is as hard as the discrete
logarithm problem in the same group, for any constant ε > 0.

– For generic algorithms (as defined by Shoup [22]) that only perform “black-
box” group operations, we show lower bounds for decoding that exactly
match known algorithms.

Our generic lower bounds also extend to decisional variants of the decoding
problem, and to groups in which the decisional Diffie-Hellman (DDH) problem
is easy. This suggests that hardness of decoding in the exponent is a qualitatively
new assumption that lies “between” the DDH and CDH assumptions.

Taken together, our positive and negative results may also hint at new con-
nections between other popular problems on cyclic groups (e.g., discrete log and
Diffie-Hellman), which may be illuminated by further study of error correction
in the exponent.

1.3 Related Work

We are aware of only one work which directly addresses error correction in the
exponent: Canetti and Goldwasser [4] gave a simple, efficient decoding algorithm
which works when e+1 = k = O(

√
n). (See Proposition 2.1 for a generalization.)

On Error Correction in the Exponent 171

This provides an inexpensive way to achieve mild robustness in their threshold
version of the Cramer-Shoup cryptosystem [7].

A few recent works have investigated the hardness of various “plain” (i.e., not
in the exponent) decoding tasks for Reed-Solomon codes. Cheng and Wan [5],
somewhat surprisingly, showed that (under an appropriate number of errors)
certain list- and bounded-distance decoding problems are as hard as computing
discrete logs. However, their setting differs from ours in many important ways:
in their work, q is necessarily small (polynomial in n), and list-decoding is re-
lated to the discrete log problem in the field Fqh for a somewhat large h. In
contrast, we are concerned mainly with unique decoding and bounded-distance
decoding as they relate to computational problems in groups of order q, where
q is exponentially large in n.

Guruswami and Vardy [13] resolved a long-standing open problem, showing
that maximum-likelihood decoding (i.e., finding the nearest codeword) of Reed-
Solomon codes is NP-hard. More specifically, they showed that it is hard to
distinguish whether a word is at distance n − k or n − k − 1 from a Reed-
Solomon code. Of course, the problem remains NP-hard when placed “in the
exponent.” However, their results are also incomparable to ours: they show a
stronger form of hardness, but only in the worst case, for a very large number of
errors, and for a carefully-crafted evaluation set E . In contrast, we show weaker
forms of hardness, but in the average case, under many fewer errors, and for
any E .

We again stress that both of the above works [5, 13] are concerned with the
hardness of plain decoding (not in the exponent).

Notation. We denote a vector x in boldface and its value at index i by xi.
For two vectors x,y of the same length, define Δ(x,y) to be the Hamming
distance between x and y, i.e. the number of indices i for which xi �= yi. Define
wt(x) = Δ(0,x). For a code C and a vector x, define Δ(x,C) = miny∈CΔ(x,y).
Denote {1, . . . , n} by [n].

2 Initial Observations and Upper Bounds

Unique decoding with a Diffie-Hellman oracle. Clearly, unique decoding in the
exponent under e < (n − k + 1)/2 errors is no harder than the discrete log
problem: given (gx1 , . . . , gxn), taking discrete logs yields (x1, . . . , xn), which can
be corrected using the standard algorithms [1]. However, this approach is ac-
tually overkill: it is, in fact, enough to have an oracle for the (computational)
Diffie-Hellman problem in G. The main ingredient of the Berlekamp-Welch al-
gorithm is simply a linear system, which can be solved in the exponent if we
have a way to perform multiplication and inversion mod q (in the exponent).
Multiplication is immediately provided by the Diffie-Hellman oracle: on ga, gb,
the oracle gives us gab. Inversion can be implemented as follows: on input ga,
compute ga−1 mod q = gaq−1 mod q by repeated squaring in the exponent. (Note
that this approach requires that q be known.)

172 C. Peikert

Unique decoding by enumeration. Another approach to unique decoding (under
e < (n − k + 1)/2 errors) is to merely enumerate over all subsets of size k of
received shares. For each subset K, interpolate the shares (in the exponent) to
each point in E , counting the number of points in E for which the interpolated
value disagrees with the received share. It is easy to show that when the number
of disagreements is at most e, the shares in K are all correct, and the entire
codeword can be recovered from them. Unfortunately, this approach takes time(
n
k

)
, which in general is not polynomial in the security parameter.
A similar, but more efficient randomized approach was given in [4] for the

case e+ 1 = k = O(
√
n). Here we generalize it to arbitrary e,k:

Proposition 2.1. For any e, k < n such that e < (n− k+ 1)/2, there is an algo-
rithm for unique decoding in the exponent which performsO

(
nk(log q) ·

(
n
k

)
/
(
n−e

k

))
group operations and succeeds with all but negligible (in n) probability. When ek =
O(n log n), the algorithm performs poly(n) ·O(log q) group operations.

Proof. The algorithm works exactly the same as the enumeration algorithm, ex-
cept with an independent, random subset K for each iteration, for some suitable
number of attempts.

Correctness of the algorithm immediately follows from the distance property
of RSq(E , k). We now analyze the runtime: each iteration requires O(nk log q)
group operations, using repeated squaring to exponentiate each share to its ap-
propriate Lagrange coefficient. An iteration succeeds if and only if all k of the
chosen shares are correct, and the probability of this event is:(

n−e
k

)(
n
k

) =
(n− e)!(n− k)!
(n)!(n− e− k)!

.

There are two ways to bound this quantity from below: we can write (n−e)!
n! ≥ n−e

and (n−k)!
(n−e−k)! ≥ (n − e − k)e, or we can write (n−k)!

n! ≥ n−k and (n−e)!
(n−e−k)! ≥

(n− e− k)k. Taking the best of the two options, we get a bound of:(
1 − e+ k

n

)min(e,k)

= exp(−O(min(e, k)(e+ k)/n)) = exp(−O(ek/n)),

which is 1/poly(n). Therefore the algorithm can be made to run in poly(n) time
and succeed with high probability. ��

Taking the best of all the above approaches, we see that the complexity of
unique decoding in the exponent is upper-bounded by the complexity of the
CDH problem and by nk · (log q) ·

(
n
k

)
/
(
n−e

k

)
.

List decoding. When the number of errors is larger than the unique decoding
radius (i.e., half the distance of the code), the technique of list decoding can still
be used to recover all codewords within a given radius of the received word. For
example, the list decoding algorithm of Guruswami and Sudan [12] for Reed-
Solomon codes can recover all codewords within a radius of n−

√
nk (which is

always at least as large as the unique decoding radius (n− k + 1)/2).

On Error Correction in the Exponent 173

The list decoding algorithm of [12] performs operations which are much more
sophisticated than those of the Berlekamp-Welch unique decoding algorithm [1].
(For example, the list decoding algorithm needs to compute polynomial GCDs,
perform Hensel liftings, and factor univariate polynomials.) However, it turns out
that all these operations can still be performed “in the exponent” with the aid
of a CDH oracle. Therefore, correcting significantly more errors (i.e., n−

√
nk)

in the exponent also reduces to the CDH problem. (We thank abhi shelat for his
assistance with these observations.)

The remainder of this paper will be devoted to establishing hardness results
and lower bounds.

3 Bounded-Distance Decoding in the Exponent

In this section, we show that bounded-distance decoding (a relaxation of unique
decoding) in the exponent, under a large number of errors, is as hard as the
discrete log problem. We define the following code for a generator g of a cyclic
group G of order q: Cq(E , k, g) = {(gw1 , . . . , gwn) : w ∈ RSq(E , k)}. Note that
this code’s alphabet is the group G. The Hamming distance Δ is defined over
Gn as it is for any other alphabet.

Problem: Bounded-distance decoding of Cq(E , k, g) under e errors. We
denote this problem by BDDE-RSq,E,k,e.

Instance: A generator g of G, and x such that Δ(x,Cq(E , k, g)) ≤ e.
Output: Any codeword p ∈ Cq(E , k, g) such that Δ(p,x) ≤ e.

We will relate BDDE-RS to the problem of finding a non-trivial representation
of the identity element relative to a random base, as proposed by Brands [3]:

Problem: Finding a nontrivial representation of the identity element
1 ∈ G, with respect to a uniform base of n elements. We denote this
problem FIND-REP.

Instance: A base (x1, . . . , xn) ∈ Gn, chosen uniformly.
Output: Any nontrivial (a1, . . . , an) ∈ Zn

q such that
∏n

i=1 x
ai

i = 1.

Brands showed that solving FIND-REP in G is as hard as computing discrete
logs in G. For completeness, we briefly recall the result and its proof.

Proposition 3.1 ([3], Proposition 3). If there exists an efficient randomized
algorithm to solve FIND-REP in G with non-negligible probability, then there
exists an efficient randomized algorithm which, on input (g, y = gz) for any
generator g ∈ G and uniform z ∈ Zq, outputs z with overwhelming probability.

Proof. Suppose algorithm B solves FIND-REP in G with non-negligible probabil-
ity. We construct the following algorithm to solve the discrete log problem in G:
on input (g, y) where logg y is desired, choose (r1, . . . , rn) and (s1, . . . , sn) from
Zn

q uniformly and independently, and let xi = griysi . Run B on (x1, . . . , xn),
receiving correct output (a1, . . . , an) with non-negligible probability. If

∑
siai �=

0 mod q, output − riai

siai
mod q.

174 C. Peikert

The analysis is straightforward: first observe that the constructed (x1, . . . , xn)
is uniform over Gn, because g is a generator of prime order. Furthermore, the
si are independent of xi, so they are independent of B’s output. Therefore if
(a1, . . . , an) is nontrivial, Pr[

∑
siai = 0 mod q] = 1/q, which is negligible. Now

suppose z = logg y. Then 1 =
∏
xai

i =
∏
gai(ri+zsi), which implies

∑
ai(ri +

zsi) = 0 mod q. Solving for z, we see that the algorithm’s output is correct.
Finally, because the discrete log problem is random self-reducible, an efficient

algorithm that solves discrete log with non-negligible probability can be con-
verted into one which succeeds with overwhelming probability. ��

3.1 Our Reduction

Our reduction from FIND-REP to BDDE-RS relies chiefly on the following tech-
nical lemma, which bounds the probability that a random word in Gn (i.e.,
an instance of FIND-REP) is very far from an RS codeword (in the exponent).
This lemma may be of independent interest, and any improvements to it will
automatically reduce the error bound in our discrete log reduction.

Lemma 3.1. For any positive integer c ≤ n− k, and any code Cq(E , k, g),

Pr
x

[Δ(x,Cq(E , k, g)) > n− k − c] ≤ qc · n2c(
n

k+c

) ,

where the probability is taken over the uniform choice of x from Gn.

Proof. It is apparent that Δ(x,Cq(E , k, g)) ≤ n − k − c if (and only if) there
exists some set of indices S ⊆ [n], |S| = k+ c, satisfying the following condition,
which we call the “low-degree” condition for the set S:

The points {(αi, logg xi)}i∈S lie on a polynomial of degree < k.

Define S = {S ⊆ [n] : |S| = k + c}. For every S ∈ S, define XS to be the 0-1
random variable indicating whether S satisfies the low degree condition, taken
over the random choice of x. Let X =

∑
S∈S XS .

Now for allS ∈ S, Prx[XS = 1] = q−c, because any k points of {(αi, logg xi)}i∈S

define a unique polynomial of degree at most k, and the remaining c points inde-
pendently lie on that polynomial each with probability 1/q. Then by linearity of
expectation, E[X] =

(
n

k+c

)
/qc. Now by Chebyshev’s inequality,

Pr[Δ(x,Cq(E , k, g)) > n− k − c] = Pr[X = 0]
≤ Pr [|X − E[X]| ≥ E[X]]

≤ σ2
X

E[X]2
,

where σ2
Z denotes the variance of a random variable Z.

It remains to analyze σ2
X = E[X2]−E[X]2. The central observation is that for

a large fraction of S, S′ ∈ S, XS and XS′ are independent, hence they contribute

On Error Correction in the Exponent 175

little to the variance. In particular, if |S∩S′| ≤ k, then E[XS |XS′ = 1] = E[XS],
i.e. XS and XS′ are independent and E[XSXS′] = E[XS]E[XS′].

For all other distinct pairs S, S′ such that |S ∩S′| > k, E[XSXS′] ≤ E[XS] ≤
1/qc. The number of such pairs can be bounded (from above) as follows: we have(

n
k+c

)
choices for S, then

(
k+c
k+1

)
choices of some k + 1 elements of S to include

in S′, then
(
n−k−1

c−1

)
remaining arbitrary values to complete the choice of S′. So

the total number of pairs is at most
(

n
k+c

)(
k+c
k+1

)(
n−k−1

c−1

)
.

Putting these observations together, we obtain the following bound on σ2
X :

σ2
X =

∑
S∈S

(
E[X2

S] − E[XS]2
)

+
∑

S,S′∈S
S �=S′

(E[XSXS′] − E[XS]E[XS′])

≤
∑
S∈S

E[XS] +
∑

S,S′∈S
S �=S′

(E[XSXS′] − E[XS]E[XS′])

≤ E[X] +
∑

S,S′∈S
|S∩S′|>k

E[XSXS′] ≤ E[X]
[
1 +

(
k + c

c+ 1

)(
n− k − 1
c− 1

)]
.

Since k + c ≤ n, we may apply the (very loose) bound of
(
n
y

)
≤ ny to the two

binomial coefficients to get σ2
X ≤ E[X] · n2c, and the claim follows. ��

Theorem 3.1. For any n, k, c and q such that
(

n
k+c

)
≥ 2qcn2c, if an efficient

randomized algorithm exists to solve BDDE-RSq,E,k,n−k−c with non-negligible
probability (over a uniform instance and the randomness of the algorithm), then
an efficient randomized algorithm exists to solve the discrete log problem in G.

The following corollary gives concrete relationships among n, k, q, and decoding
radius for which the theorem applies.

Corollary 3.1. For any constant ε > 0, δ ∈ (0, 1], and any q = 2O(�) expo-
nential in the security parameter �, for any polynomial n(�) = ω(�1/δε), any
k = Ω(nδ), k ≤ (1 − Ω(1)) · n and any c ≤ k1−ε, the discrete log problem in
cyclic groups of order q reduces to BDDE-RSq,E,k,n−k−c.

Example 3.1. For k = n/2 and c = k0.99, we certainly have k ≤ (1−Ω(1))·n and
k = Ω(n1). Then a poly-time algorithm for bounded-distance decoding in the
exponent for RS words of length n = �100 under n/2−k0.99 errors would imply a
poly-time algorithm for discrete log in groups of size about q = 2�. In contrast,
the unique decoding radius of this code is n/4 = n/2−k/2, and the list decoding
radius is n −

√
nk ≈ n/2 − k · 0.414; both are close to the bounded-distance

radius above. Because RS codes can efficiently be uniquely- and list-decoded in
the exponent using an oracle for the Diffie-Hellman problem, the error radius
of our reduction comes tantalizingly close to providing a reduction from the
discrete log problem to the Diffie-Hellman problem. (We thank abhi shelat for
this interpretation of the result.)

176 C. Peikert

Proof (of Corollary 3.1). Because
(

n
k+c

)
≥ (n

k+c)k+c and qc ≥ 2n2c for suffi-
ciently large �, then by Theorem 3.1, it suffices to establish that for n = ω(�1/δε)
and sufficiently large �,(

n

k + c

)k+c

≥ q2c ⇐⇒ (k + c) log
n

k + c
≥ 2c log q.

We will establish the second inequality by bounding the left side from below
by Ω(k), and bounding the right side from above by o(k), which suffices.

First we analyze the left term: because c = k1−ε,

lim
�→∞

n

k + c
=
n

k
≥ 1 +Ω(1),

so log n
k+c = Ω(1). Therefore the left term is Ω(k).

On the right, we have 2c log q = c·O(�). Because c ≤ k1−ε and n = ω(�1/δε) ⇐⇒
� = o(nδε), the right side is k1−ε ·o(nδε). Finally nδ = O(k), so we get k1−ε ·o(kε) =
o(k), as desired. ��

Proof (of Theorem 3.1). Suppose that algorithm D solves BDDE-RSq,E,k,n−k−c

with non-negligible probability. By Proposition 3.1, it will suffice to construct
an algorithm A that solves FIND-REP in G with non-negligible probability.

A works as follows: on input x = (x1, . . . , xn), where x is uniform overGn, im-
mediately runD(g,x). By Lemma 3.1, (g,x) is an instance of BDDE-RSq,E,k,n−k−c

with probability at least 1/2. Then conditioned on this event, the instance is uni-
form, and with non-negligible probability D outputs some p = (p1, . . . , pn) where
Δ(p,x) ≤ n− k − c. Take any k + 1 indices E ⊆ [n] such that xi = pi for i ∈ E.
Then any k of the xi linearly interpolate (in the exponent) to the remaining xi.
That is, we can compute non-trivial Lagrange coefficients λi for all i ∈ E such
that

∏
i∈E xλi

i = 1. Let λi = 0 for all i �∈ E, and output (λ1, . . . , λn), which is a
solution to FIND-REP. ��

4 Generic Algorithms for Noisy Polynomial Interpolation

Generic algorithms. Shoup proposed the generic algorithms framework [22] for
computational problems in groups. Informally, a generic algorithm only performs
group operations in a black-box manner; it does not use any particular property
of the representation of group elements.

Formally, we consider a group G, an arbitrary set S ⊂ {0, 1}∗ with |S| ≥ |G|,
and a random injective encoding function σ : G → S. We are only concerned
with cyclic groups G of prime order q, independent of their representation. Such
group are all isomorphic to Zq under addition, so we will assume without loss of
generality that G = Zq under group operation +.

A generic algorithm A has access to an encoding list (σ(x1), . . . , σ(xt)) of
elements x1, . . . , xt ∈ Zq. A can make unit-time queries of the form xi ± xj to
a group oracle by specifying the operation and the indices i, j into the encoding

On Error Correction in the Exponent 177

list; the answer σ(xt+1), where xt+1 = xi±xj , is appended to the list. The query
complexity of a generic algorithm is the number of elements in its encoding list
(including any provided as input) when it terminates.

The probability space of an execution of A consists of the random choice
of input, the random function σ, and the coins of A. If we bound the success
probability of A over this space, then it follows that for some encoding function
σ, the same bound applies when the probability is taken only over the input
and A’s coins. Therefore any algorithm which uses the group in a “black-box”
manner is subject to the bound.

We remark that most general-purpose algorithms for discrete log and related
problems are indeed generic. One exception is the index calculus method, which
requires a notion of “smoothness” in the group G. Thus far, index calculus
methods have not been successfully applied to groups over the kinds of elliptic
curves that are typically used in cryptography.

Schwartz’s lemma. A key tool in the analysis of generic algorithms is Schwartz’s
Lemma, which bounds the probability that a multivariate nonzero polynomial,
defined over a finite field, is zero at a random point.

Lemma 4.1 ([20]). For any nonzero polynomial f ∈ Fq[X1, . . . , Xt] of total
degree d,

Pr[f(x1, . . . , xt) = 0] ≤ d/q,

where the probability is taken over a uniform choice of (x1, . . . , xt) ∈ Ft
q.

Noisy polynomial interpolation. We now consider a problem which we call “noisy
polynomial interpolation,” which is closely related to decoding for Reed-Solomon
codes. (See Remark 4.1 below for details on this relationship.) This is exactly
the problem which tends to appear in many multiparty cryptographic protocols.

Problem: Generic noisy polynomial interpolation at a fixed point α0 �∈
E under e < (n − k + 1)/2 errors. We denote this problem by
GNPIq,E,α0,k,e.

Instance: An initial encoding list (σ(P (α1) + e1), . . . , σ(P (αn) + en),
σ(1)) for a random P (x) ∈ Zq[x], deg(P) < k, and a random e ∈ Zn

q

such that wt(e) = e.
Output: σ(P (α0)).

Remark 4.1. GNPI is potentially a strictly easier problem than full decoding: it
could be the case that interpolating a noisy polynomial at some specific, rare
point α0 is easier than recovering the entire codeword (i.e., interpolating at
all points α1, . . . , αn). Conversely, recovering the entire codeword would permit
generic Lagrange interpolation of the polynomial at any point α0. Therefore, the
bound for GNPI provided by Theorem 4.1 is potentially stronger than one which
might be provided for the full-decoding task.

Theorem 4.1. A generic algorithm for GNPIq,E,α0,k,e making m queries suc-

ceeds with probability at most (m+ 1)2
(
1/q +

(
n−k

e

)
/
(
n
e

))
.

178 C. Peikert

Corollary 4.1. If ek = ω(n logn), then no efficient generic algorithm solves
GNPIq,E,α0,k,e, except with probability negligible in the security parameter. In
particular, the algorithm of Canetti and Goldwasser [4] (described in Section 2)
is optimal.

Proof (of Corollary 4.1). First,
(
n−k

e

)
/
(
n
e

)
≤

(
n−k

n

)e
= (1−k/n)e = exp(−Ω(ek

/n)), which is negligible in n, and hence in the security parameter. Since 1/q is
negligible as well, the total success probability is negligible. ��

Proof (of Theorem 4.1). We can write the real interaction between a generic algo-
rithm A and its oracle as a game, which proceeds as follows: let P0, . . . , Pk−1 and
E1, . . . , En be indeterminants. First, the game chooses p = (p0, . . . , pk−1) ← Zk

q

ande ∈ Zn
q uniformly, such thatwt(e) = e.While interactingwithA, the gamewill

maintain a list of linear polynomials F1, . . . , Ft ∈ Zq[P0, . . . , Pk−1, E1, . . . , En].
Concurrently,A will have an encoding list (σ(x1), . . . , σ(xt)) where xj = Fj(p, e).
Furthermore, the game defines an “output polynomial” F0, which corresponds to
the correct output.

Initially, t = n + 1, Fj = Ej +
∑k−1

i=0 Piα
i
j for j ∈ [n], and Fn+1 = 1. The

output polynomial is F0 =
∑k−1

i=0 Piα
i
0.

Whenever A makes a query for xi ± xj , the game computes Ft+1 = Fi ±
Fj , xt+1 = Ft+1(p, e), σt+1 = σ(xt+1), and appends σt+1 to A’s encoding list.
When A terminates, we may assume that it always outputs some σj it received
from the oracle (otherwise A only succeeds with probability at most 1

q−m). Then
A succeeds iff σj = σ(F0(p, e)).

The ideal game. We now consider an “ideal game” between A and a different
oracle, in which each distinct polynomial Fj is mapped to a distinct, random σj ,
independent of the value Fj(p, e). More formally, the game proceeds as follows:
initially, (σ1, . . . , σn+1) is just a list of distinct random elements of S correspond-
ing to polynomials F1, . . . , Fn+1 defined above. Whenever A asks for xi ± xj as
its (t+1)st query, the game computes Ft+1 = Fi±Fj . If Ft+1 = F� for any � ≤ t,
the game sets σt+1 = σ�, otherwise it chooses σt+1 to be a random element of
S − {σ1, . . . , σt}. Finally, when A terminates, the game chooses a random value
σ0 from S−{σ1, . . . , σm}, corresponding to F0. A succeeds in this game if it out-
puts σ0; since A only produces output from {σ1, . . . , σm}, the success probability
in the ideal game is zero.

It is easy to see that A’s success probability in the real game is identical to
its success probability in the ideal game, conditioned on a “failure event” F not
occurring. The event F is that Fi(p, e) = Fi′(p, e) for some Fi �= Fi′ , where
i, i′ ∈ {0, . . . ,m}, and the probability is taken over p, e.

Analysis of the games. We now analyze Pr[F]: for any Fi �= Fi′ , consider F =
(Fi − Fi′) ∈ Zq[P0, . . . , Pk−1, E1, . . . , En]. Suppose that in e, the values ej for
indices j ∈ M = {m1, . . . ,me} are chosen uniformly, while the others are zero.
Then we can consider a polynomial F ′ in the indeterminants P0, . . . , Pk−1 and
Em1 , . . . , Eme , where F ′ is simply F with zero substituted for each Ej , j �∈ M .

On Error Correction in the Exponent 179

Let e′ = (em1 , . . . , eme). We are then interested in Prp,e′ [F ′(p, e′) = 0]. There
are two cases: if F ′ is nontrivial, then this probability is 1/q by Lemma 4.1, because
p and e′ are chosen uniformly. Therefore it remains to bound Prp,e[F ′ = 0].

In order to have F ′ = 0, the constant term and all the coefficients of P� must
be zero in F ′, and hence also in F . By its construction, F is a nontrivial linear
combination of F0, . . . , Fn, and Fn+1 = 1: i.e., there exist c = (c0, . . . , cn) ∈ Zn+1

q

and d ∈ Zq such that

F = d+
n∑

j=0

cjFj = d+
n∑

j=1

cjEj +
k−1∑
�=0

P� ·
n∑

j=0

cjα
�
j .

Therefore we have d = 0 and Ac = 0, where A is a Vandermonde matrix with
A�+1,j+1 = α�

j for j = 0, . . . , n and � = 0, . . . , k − 1. Because any k columns of
A are linearly independent and F is nontrivial, we have wt(c) ≥ k + 1. In order
for F ′ = 0, it must be that cj = 0 for every j ∈M . Because the set M is chosen
independently of c, the probability of this event is at most

(
n−k

e

)
/
(
n
e

)
. Finally,

by a union bound over all pairs Fi �= Fi′ , we obtain the result. ��

4.1 Relation to the DDH Problem

In this section, we show evidence that the noisy polynomial interpolation prob-
lem in G is not as easy as the Decisional Diffie-Hellman (DDH) problem in G.
Specifically, for the GNPI problem, we show lower bounds for generic algorithms
that are augmented with a DDH oracle.

Such lower bounds imply that, even in groups in which the DDH problem
is easy, noisy polynomial interpolation may still be hard. Such a scenario is
not just idle speculation: there are reasonable instances of so-called “gap Diffie-
Hellman” groups [14], in which the DDH problem is known to be easy, but the
computational Diffie-Hellman problem is believed to be hard. Recalling from
Section 2 that GNPI is no harder than the CDH problem, this suggests that
GNPI may be a problem of intermediate hardness, located strictly between the
(easy) DDH problem and the (assumed hard) CDH problem.

Augmented generic algorithms. We augment a generic algorithm A with a DDH
oracle as follows: at any time, A can submit to the DDH oracle a triple (a, b, z)
of indices into its encoding list. The oracle replies whether xa · xb = xz mod q.

Theorem 4.2. A generic algorithm for GNPIq,E,α0,k,e, augmented with a DDH
oracle, making mG queries to its group oracle and mD queries to its DDH oracle
succeeds with probability at most

(
(mG + 1)2 + 2mD

) (
1/q +

(
n−k

e

)
/
(
n
e

))
.

Corollary 4.2. If ek = ω(n logn), no efficient generic algorithm augmented
with a DDH oracle solves GNPIq,E,α0,k,e, except with probability negligible in the
security parameter.

Proof (Sketch of Theorem 4.2). As in the proof of Theorem 4.1, we consider
“real” and “ideal” games, and bound the probability of a failure event.

180 C. Peikert

Both games proceed much in the same way: they maintain a list of polynomials
Fi and answer queries to the group oracle as before. The games answer DDH
queries (a, b, z) in the following way:

– In the real game, respond “yes” if Fa(p, e) · Fb(p, e) = Fz(p, e), where the
multiplication is done in Zq.

– In the ideal game, respond “yes” if Fa ·Fb = Fz , where the multiplication is
of formal polynomials in Zq[P0, . . . , Pk−1, E1, . . . , En]. (Because every Fi is
linear, the ideal game will only respond “yes” when at least one of Fa, Fb is
a constant.)

The failure event F is the union of the old failure event (from the proof of
Theorem 4.1) with the event that, for some query (a, b, z) to the DDH oracle,
Fa(p, e) · Fb(p, e) − Fz(p, e) = 0 when Fa · Fb − Fz �= 0.

As before, suppose M = {m1, . . . ,me} is the set of indices such that {ej}j∈M

are chosen uniformly, while the others are zero, and let e′ = (em1 , . . . , eme).
For a particular query (a, b, z) such that F = Fa · Fb − Fz �= 0, consider the
polynomial F ′ ∈ Zq[P0, . . . , Pk−1, Em1 , . . . , Eme] which is defined to be F with
zero substituted for all Ej , j �∈M . Define F ′

a, F
′
b, F

′
z similarly, so F ′ = F ′

aF
′
b−F ′

z .
Certainly the total degree of F ′ is at most 2. If F ′ �= 0, then by Lemma 4.1,
Pr[F ′(p, e′) = 0] ≤ 2/q.

It remains to bound Pre[F ′ = 0 | F �= 0]. In order to have F �= 0 and F ′ = 0,
we consider two mutually exclusive cases: (1) Fa or Fb (or both) is a constant
polynomial, or (2) Fa, Fb are both non-constant polynomials, i.e. of positive
degree.

In case (1), F is nonzero, linear, and is a linear combination of F1, . . . , Fn+1.
As argued in the proof of Theorem 4.1, Pr[F ′ = 0 | F �= 0] ≤

(
n−k

e

)
/
(
n
e

)
.

For case (2), we first introduce some notation: for a polynomial H and a
monomial Z, define coeffZ(H) to be the coefficient of Z in H . We claim that
for either i = a or i = b, F ′

i is a constant polynomial. Suppose not: then there
exist two indeterminants X,Y such that coeffX(F ′

a) �= 0 and coeffY (F ′
b) �= 0. If

X = Y , we see that coeffX2(F ′) �= 0, a contradiction. If X �= Y , we have

coeffXY (F ′) = coeffX(F ′
a)coeffY (F ′

b) + coeffX(F ′
b)coeffY (F ′

a) = 0.

Then coeffX(Fb) �= 0, which implies that coeffX2(F ′) �= 0, a contradiction.
Using reasoning as in the proof of Theorem 4.1, we see that

Pr[F ′
a or F ′

b is constant | Fa, Fb are non-constant] ≤ 2
(
n− k

e

)
/

(
n

e

)
.

Taking a union bound over all queries to the DDH oracle, we get the claimed
result. ��

4.2 Decisional Variants

Certain decisional versions of the noisy polynomial interpolation problem are
also hard for generic algorithms. Here, in addition to the noisy points of the

On Error Correction in the Exponent 181

polynomial, the algorithm is given the correct value P (α0) and a truly random
value (in random order), and simply must decide which is which. We denote this
problem by DGNPIq,E,α0,k,e. The hardness of DGNPI implies that P (α0) “looks
random,” given the noisy values of the polynomial.

Problem: Decisional generic noisy polynomial interpolation at a fixed
point α0 �∈ E under e < (n−k+1)/2 errors. We denote this problem
by DGNPIq,E,α0,k,e.

Instance: Encoding list (σ(P (α1)+ e1), . . . , σ(P (αn)+ en), σ(1), σ(z0),
σ(z1)) for a random P (x) ∈ Zq[x], deg(P) < k, a random e ∈ Zn

q

such that wt(e) = e, and a random bit b where zb = P (α0) and z1−b

is random.
Output: The bit b.

Theorem 4.3. A generic algorithm for DGNPIq,E,α0,k,e making m queries suc-

ceeds with probability at most 1
2 + 2m2

(
1/q +

(
n−k

e

)
/
(
n
e

))
.

Proof (Sketch). The proof is very similar to the proof of Theorem 4.1. We
again imagine a game which maintains a list of polynomials Fi in the inde-
terminants P0, . . . , Pk−1, E1, . . . , En, and two new indeterminants Z0, Z1. In the
ideal game, the two input polynomials corresponding to z0 and z1 are just Z0
and Z1, respectively. In the ideal game, every distinct polynomial is mapped
to a different string, and the algorithm succeeds with probability 1/2 because
its view is independent of b. The failure event is that for some Fi �= Fi′ , either
F (p, e,

∑k−1
j=0 pjα

j
0, z) = 0 or F (p, e, z,

∑k−1
j=0 pjα

j
0) = 0 where F = Fi − Fi′ and

z is chosen at random. From here, the analysis proceeds as in Theorem 4.1. ��

In fact, we can extend the definition of DGNPI instances to include the value of
the polynomial P at several distinct points β0, . . . , βr �∈ E , instead of just at α0.
These evaluations “look random” to generic algorithms, with a distinguishing
advantage bounded by 2m2

(
1/q +

(
n−(k−r)

e

)
/
(
n
e

))
. Also, as in Section 4.1, we

can prove that DGNPI is hard for generic algorithms that are augmented with a
DDH oracle. We defer the details to the full version.

5 Conclusions and Open Problems

We have shown evidence that error correction (of Reed-Solomon codes) in the
exponent is hard, and that its hardness seems to be qualitatively different than
that of the Diffie-Hellman problems. We can think of several related open prob-
lems, including:

– Find some other family of codes which admits an efficient (preferably generic)
algorithm for decoding in the exponent, and which can be used as the ba-
sis of a secret-sharing scheme — or show that the two goals are mutually
incompatible.

182 C. Peikert

– Demonstrate a non-generic decoding algorithm for a specific class of cyclic
groups with performance better than the generic bounds (perhaps using ideas
from index calculus methods).

– Provide new constructions of standard (or new) cryptographic primitives,
assuming error correction in the exponent is hard. Such constructions would
be useful both as a hedge against possible attacks on other (stronger) as-
sumptions, and for any unique functionality properties they may have.

– Show new connections between the discrete log and Diffie-Hellman problems,
using the fact that decoding is often easy with a CDH oracle.

In addition, the general idea of correcting errors in “partially hidden” data (i.e.,
data that has been obscured by some one-way function) seems ripe with inter-
esting problems.

Acknowledgements

The author gratefully thanks Shafi Goldwasser, Ran Canetti, Alon Rosen, Adam
Smith, Tal Rabin, and abhi shelat for helpful comments and discussions, and the
anonymous reviewers for their valuable and constructive suggestions.

References

1. E. Berlekamp and L. Welch. Error correction of algebraic block codes. US Patent
Number 4,633,470, 1986.

2. D. Boneh and M. K. Franklin. An efficient public key traitor tracing scheme. In
CRYPTO ’99: Proceedings of the 19th Annual International Cryptology Conference
on Advances in Cryptology, pages 338–353, London, UK, 1999. Springer-Verlag.

3. S. Brands. Untraceable off-line cash in wallet with observers. In CRYPTO ’93:
Proceedings of the 13th annual international cryptology conference on Advances in
cryptology, pages 302–318, New York, NY, USA, 1994. Springer-Verlag New York,
Inc.

4. R. Canetti and S. Goldwasser. An efficient threshold public key cryptosystem se-
cure against chosen ciphertext attack. In Advances in Cryptology — EUROCRYPT
’99, volume 1592, pages 90–106. Springer-Verlag, 1999.

5. Q. Cheng and D. Wan. On the list and bounded distance decodability of the Reed-
Solomon codes. In Proc. FOCS 2004, pages 335–341. IEEE Computer Society,
2004.

6. R. Cramer and I. Damg̊ard. Secret-key zero-knowlegde and non-interactive verifi-
able exponentiation. In 1st TCC, pages 223–237, 2004.

7. R. Cramer and V. Shoup. A practical public key cryptosystem provably se-
cure against adaptive chosen ciphertext attack. In Advances in Cryptology —
CRYPTO’98, 1998.

8. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6):644–654, 1976.

9. Y. Dodis. Efficient construction of (distributed) verifiable random functions. In
6th PKC, pages 1–17, 2003.

10. T. E. Gamal. A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

On Error Correction in the Exponent 183

11. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold dss signa-
tures. In Advances in Cryptology — Eurocrypt ’96, pages 354–371, 1996.

12. V. Guruswami and M. Sudan. Improved decoding of reed-solomon and algebraic-
geometric codes. In IEEE Symposium on Foundations of Computer Science, pages
28–39, 1998.

13. V. Guruswami and A. Vardy. Maximum-likelihood decoding of Reed-Solomon
codes is NP-hard. In SODA, 2005.

14. A. Joux and K. Nguyen. Separating decision Diffie-Hellman from computational
Diffie-Hellman in cryptographic groups. J. Cryptology, 16(4):239–247, 2003.

15. R. J. McEliece and D. V. Sarwate. On sharing secrets and Reed-Solomon codes.
Comm. ACM, 24(9):583–584, 1981.

16. M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and
kdcs. In Advances in Cryptology — Eurocrypt ’99, pages 327–346, 1999.

17. C. Park and K. Kurosawa. New ElGamal type threshold digital signature scheme.
IEICE Trans. Fundamentals, E79-A(1):86–93, January 1996.

18. M. D. Raimondo and R. Gennaro. Secure multiplication of shared secrets in the
exponent. Cryptology ePrint Archive, Report 2003/057, 2003.

19. I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. J. SIAM,
8(2):300–304, June 1960.

20. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM, 27(4):701–717, 1980.

21. A. Shamir. How to share a secret. Comm. ACM, 22(11):612–613, 1979.
22. V. Shoup. Lower bounds for discrete logarithms and related problems. In Proc.

Eurocrypt ’97, pages 256–266, 1997.
23. M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound.

Journal of Complexity, 13(1):180–193, 1997.

On the Relation Between the Ideal Cipher and
the Random Oracle Models

Yevgeniy Dodis� and Prashant Puniya

Courant Institute of Mathematical Sciences,
New York University

{dodis, puniya}@cs.nyu.edu

Abstract. The Random Oracle Model and the Ideal Cipher Model are
two of the most popular idealized models in cryptography. It is a fun-
damentally important practical and theoretical problem to compare the
relative strengths of these models and to see how they relate to each
other. Recently, Coron et al. [8] proved that one can securely instantiate
a random oracle in the ideal cipher model. In this paper, we investigate
if it is possible to instantiate an ideal block cipher in the random oracle
model, which is a considerably more challenging question. We conjec-
ture that the Luby-Rackoff construction [19] with a sufficient number of
rounds should suffice to show this implication. This does not follow from
the famous Luby-Rackoff result [19] showing that 4 rounds are enough to
turn a pseudorandom function into a pseudorandom permutation, since
the results of the intermediate rounds are known to everybody. As a
partial step toward resolving this conjecture, we show that random or-
acles imply ideal ciphers in the honest-but-curious model, where all the
participants are assumed to follow the protocol, but keep all their in-
termediate results. Namely, we show that the Luby-Rackoff construction
with a superlogarithmic number of rounds can be used to instantiate
the ideal block cipher in any honest-but-curious cryptosystem, and re-
sult in a similar honest-but-curious cryptosystem in the random oracle
model. We also show that securely instantiating the ideal cipher using
the Luby Rackoff construction with upto a logarithmic number of rounds
is equivalent in the honest-but-curious and malicious models.

1 Introduction

Designing provably secure as well as efficient cryptographic protocols is never
an easy task. When one tries to achieve provable security without making any
assumptions, it often comes at the expense of simplicity and efficiency of the
design. On the other hand, practical and efficient schemes are often based on
heuristics that cannot be justified with a formal proof. In the late 1990s, this
problem was addressed and several ideas were proposed to strike a balance be-
tween these two conflicting requirements.

Random Oracle Model. One of these was the formalization of the well known
Random Oracle Model (ROM) by Bellare and Rogaway [3]. In this model, we
� Supported in part by NSF career award CCR-0133806 and NSF grant CCR-0311095.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 184–206, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Relation Between the Ideal Cipher and the Random Oracle Models 185

assume the existence of a publicly accessible ideal random function and prove
protocol security based on this assumption. As was shown by a huge body of
literature (for a small set of representative examples, see [3,6,4,15,24,25]), the
ROM often allows one to design very simple, intuitive and efficient protocols
for many tasks, while simultaneously providing a seemingly convincing security
guarantee for such practical constructions. Of course, in practice an ideal ran-
dom function is instantiated by a concrete, “heuristically-secure” hash function,
such as one of the SHA functions. The hope of the security of such a substitution
comes from the optimistic belief that, — although no security proof is currently
found with the heuristic hash function, — the only way such composition can
fail is if some unexpected inter-dependency between a protocol and the code of
a concrete hash function is found. For practical protocols and real-life, “messy”
hash functions, it seems unlikely that such unexpected inter-dependency should
be found, at least not without directly attacking a carefully-designed heuristic
hash function, which is also considered unlikely. On the other side, in theory
such security proofs in the ROM have came under scrutiny, after a series of
results showed artificial schemes that are provably secure in the ROM, but are
uninstantiable in the standard model [10,22,16,11,2]. Still, none of these results
directly attack any of the widely used cryptographic schemes, such as OAEP
[6] or PSS [4], that rely on secure hash functions. In particular, all the practi-
cal applications of the random oracle methodology still appear to be “plausibly
secure”. Additionally, in some cases the protocols in the ROM came before and
influenced the first (often slower) solutions in the standard model, and in some
other cases the ROM solutions are still the only known solutions. To summa-
rize, the random oracle model remains a useful and popular tool in the protocol
design.

Ideal Cipher Model. Another example of such an ideal assumption model
is the Ideal Cipher Model (ICM) (also known as the “Shannon Model”). In this
model, we assume the existence of a publicly accessible Ideal Block Cipher. This
is a block cipher, with a k bit key and a n bit input, that is chosen uniformly
from all block ciphers of this form. All parties in the ICM can make both forward
(encryption) or inverse (decryption) queries to the ideal block cipher. One proves
the security of a cryptosystem under this assumption, and then instantiates
the ideal block cipher with a practical block cipher construction, such as AES.
Although the ICM is not as popular as the random oracle model, there are still
several examples of schemes where this model has been used [5,13,14,17,18].

Several questions have been raised regarding security in the ideal cipher
model. Existing block cipher constructions, such as DES, AES etc. are vulner-
able to related key attacks and have distinguishing patterns that are unlikely
to occur in a random permutation. Hence it may not be entirely secure to use
these constructions to instantiate the ideal block cipher. As in the case of the
random oracle model, uninstantiable schemes that are secure in the ideal cipher
model have also been presented (see [1]). But, all these problems withstanding,
the ideal cipher model does provide security against generic attacks that do not
exploit weaknesses of the underlying block cipher.

186 Y. Dodis and P. Puniya

Comparing The Models. From a theoretical viewpoint, it is interesting to
compare different ideal assumption models (such as ROM and ICM). That is,
compare two ideal assumption models to see which one provides a better secu-
rity guarantee. There was no satisfactory definition that captured this idea until
recently. In TCC 2004, Maurer et al [20] proposed an extension of the classi-
cal notion of indistinguishability, called indifferentiability. Based on this notion
of indifferentiability, Coron et al [8] gave the definition of an “indifferentiable
construction” of one ideal primitive (F) using another (G). If a construction
satisfies this definition, then any application that is provably secure in the for-
mer ideal model (F) remains provably secure in the latter model (G) as well,
when instantiated using this construction.

It is an interesting question to analyze the relationship between the Random
Oracle Model and the Ideal Cipher Model using this notion of indifferentiability.
It had been believed for quite some time that it should be possible to instantiate
a random oracle in the ideal cipher model. This is because an ideal block cipher
seems to be a much stronger primitive than a random oracle, as it seems plausible
that one can construct “unstructured” functions from permutations. In [8], a
formal proof of this conjecture was given. The authors analyzed the Merkle-
Damg̊ard construction [12,21] for extending the domain of a random function in
the indifferentiability scenario. The Merkle-Damg̊ard construction is the basis of
almost all practical hash functions, such as SHA or MD5. It was shown in [8] that,
although the plain Merkle-Damg̊ard construction does not work in extending
the domain of a random oracle in the indifferentiability model, several slight
(and easily implementable) modifications of this construction formally satisfy the
indifferentiability requirement. In fact, they also extended these constructions to
the ideal cipher model and showed that, by using the Davies Meyer hash function
[26] in place of a “fixed-size” random oracle, any of these modified constructions
still satisfy the indifferentiability definition. This result, in turn, implies that a
random oracle can be securely instantiated in the ideal cipher model.

What about the other direction of this question? Can one securely instanti-
ate an ideal cipher in the random oracle model? This direction seems much more
difficult to tackle. Actually, it is widely believed that a positive answer holds in
this direction too [9]. In fact, it is conjectured that, with a sufficient number of
rounds, the Luby-Rackoff (LR) construction [19] (with independent random ora-
cles, indexed by the ideal cipher key and the round number, as round functions)
is a secure construction of an ideal block cipher in the random oracle model.1 In
spite of this, there has not been much progress in getting a formal proof of this
conjecture.

Our Main Result. In this paper, we take a step toward finding such a proof.
Namely, we will show that the Luby-Rackoff construction works in the honest-
but-curious model, where all the participants are assumed to follow the pre-

1 We notice that the famous Luby-Rackoff result [19], showing that 4 rounds are
enough to turn a pseudorandom function into a pseudorandom permutation, is not
applicable here, since it crucially relies on the secrecy of the intermediate round
values, while in our setting such intermediate round values are public.

On the Relation Between the Ideal Cipher and the Random Oracle Models 187

scribed protocols, but keep all the intermediate results (such as the intermediate
round values in the LR construction). Namely, we show that the LR-construction
(with a superlogarithmic number of rounds in the security parameter) can be
used to instantiate the ideal block cipher in any honest-but-curious cryptosys-
tem, and result in a similar honest-but-curious cryptosystem in the random
oracle model. While weaker than a result in the malicious model, we stress that
the conclusion works for any application in the honest-but-curious model, even
a “maliciously chosen one”. In essence, we are using the honest-but-curious as-
pect only in assuming that the participants will not use the random oracle for
purposes other than honestly evaluating the LR construction on adversarially
chosen points. We now describe our results in more detail.

1.1 Our Results in More Detail

We will start by recalling the definition of indifferentiability of a construction of
an ideal primitive. This is the same definition as described in [8]. We will then
describe what it means to implement an ideal primitiveG using an ideal primitive
F in the “honest-but-curious model”. We will present a restricted version of the
definition of general indifferentiability that captures this notion, which we will
call indifferentiability in the honest-but-curious model. This definition is weaker
than general indifferentiability, but is considerably stronger than the classical
notion of indistinguishability (see below). We will also describe special types of
constructions, which we call transparent constructions, for which this restricted
definition is equivalent to general indifferentiability.

Once we have a suitable definition, we will describe the random permutation
model where we assume the existence of a publicly accessible random permuta-
tion π (and its inverse π−1). Note that this can be thought of as a very special
case of the ideal block cipher, where the key space has a single element. We will
show that if we can find an indifferentiable construction of a random permuta-
tion from a random oracle, it can be easily extended to get an indifferentiable
construction of an ideal block cipher from a random oracle. This is simply done
by prepending the key to the block cipher to the input of the random oracle.
Thus, it is (necessary and) sufficient to study constructions of a single random
permutation from a random oracle.

We will then describe a construction of a random permutation from a random
oracle: namely, the LR-construction described above, where we derive the round
functions from the random oracle (indexed by the round number). We conjecture
that the LR-construction is indifferentiable from a random permutation, with a
sufficient number of rounds. As we said, though, we will not be able to prove this
result in general. Our main result, however, will prove this implication in the
honest-but-curious model, as long as the number of rounds is super-logarithmic
in the security parameter λ. The proof of this theorem is quite non-trivial,
and will essentially show that any distinguisher needs to make an exponential
number of queries to have a non-negligible chance of telling apart this
construction from a true random permutation in the honest-but-curious indif-
ferentiability scenario.

188 Y. Dodis and P. Puniya

We conjecture that our result is sub-optimal in a sense that the LR con-
struction seems to be secure even with a “large enough” constant number of
rounds (see below on what large enough could be), and even in the malicious
model. However, we show its “optimality” in the following sense: we prove that
for upto a logarithmic number of rounds the LR-construction is a transparent
construction. Thus, short of resolving our conjecture in the malicious model, any
improvement in the number of rounds even in the honest-but-curious model will
right away imply the same result in the malicious model as well. From a positive
spin, for upto logarithmic number of rounds one can without loss of generality
concentrate on the honest-but-curious model (although we have no indication if
such proof will be any simpler). From a negative side, we show that for super-
logarithmic number of rounds the LR-construction is provably not transparent,
which means that our positive result in the honest-but-curious model does not
trivially imply the same result in the malicious model.

Finally, we mention that for any less than 6 rounds, the LR-construction is
not an indifferentiable construction of a random permutation. (The same will
also hold in the honest-but-curious model since for less than 6 rounds the LR-
construction is a transparent construction.) Aside from showing that at least
6 rounds are needed, this result can be seen as a separation between indiffer-
entiability, even in the honest-but-curious model, and the classical notion of
indistinguishability. This is because, in [19], Luby and Rackoff proved that for
≥ 4 rounds this construction is indistinguishable from a random permutation.
To put it differently, even in the context of the LR-construction the ability to
observe “intermediate results” gives a noticeable edge to the adversary, partially
explaining why the indifferentiability result seems to be much harder to get.

2 Definitions

In this section, we introduce the main notations and definitions that we will
use henceforth. An ideal primitive is an algorithmic entity that receives a query
from one of the parties and responds to the querying party immediately, and
which implements some functionality in an ideal fashion. The ideal primitives
we will consider in this paper are random oracles and ideal ciphers. A random
oracle is an ideal implementation of a function that assigns a uniformly random
value (chosen from a prespecified range) to each input. An ideal cipher is an
ideal implementation of a block cipher E : {0, 1}κ ×{0, 1}n → {0, 1}n. Each key
k ∈ {0, 1}κ to the block cipher E defines a random permutation Ek = E(k, ·) on
{0, 1}n. The ideal cipher E accepts both forward queries (E) as well as inverse
queries (E−1) ((0, k,m) or (1, k, c) resp.).

2.1 Preliminaries

Let us first establish some basic notation that we will be using. We denote the
set of all functions {0, 1}n → {0, 1}n by Fn and the set of all permutations on
{0, 1}n by Pn (clearly, Pn ∈ Fn). For a bit string x, x|

L
and x|

R
denote the left

and right halves of x, respectively. ⊕ denotes bit by bit XOR of two bit strings.

On the Relation Between the Ideal Cipher and the Random Oracle Models 189

Definition 1 (Feistel Permutation). Given a function f ∈ Fn, the Feistel
permutation Ψf is a permutation in P2n that outputs x|

R
‖ x|

L
⊕ f(x|

R
) where

x|
L

and x|
R

are the left and right halves of the 2n bit input x, respectively.

It is easy to see that Ψf is a permutation in P2n for any function f ∈ Fn. In fact,
it is really easy to invert the Feistel permutation as well. Indeed, Ψ−1

f (S ‖ T) =
(f(S) ⊕ T) ‖ S.

Luby and Rackoff [19] define pseudorandom permutation ensembles (PPE)
to be distributions of permutations that are indistinguishable from the uniform
distribution for any efficient distinguisher. When the distinguisher has access to
both the forward and inverse permutation, it is called a strong pseudorandom
permutation ensemble (SPPE). It was proven in [19], that a 3 (4 resp.) round
application of the Feistel permutation, with independent round functions in each
round is a PPE (SPPE resp.)

2.2 Indifferentiability and the Honest-But-Curious Model

We will use the notion of indifferentiability introduced by Maurer et al [20] to
define a secure implementation of an ideal primitive. The ideal primitive that
we will attempt to implement is an ideal cipher. In [8], the notion of indifferen-
tiability was used to define the security of hash functions (as random oracles).
Thus the treatment in [8] is suitable for our problem as well. We now briefly
recall the main definitions involved here:

Definition 2. A Turing machine CG with oracle access to an ideal primitive F
is said to be (tD, tS , q, ε) indifferentiable from an ideal primitive G if there exists
a simulator S, such that for any distinguisher D it holds that |Pr[DCG ,F = 1]
−Pr[DG,S = 1]| < ε. The simulator has oracle access to the ideal primitive G
and runs in time tS. The distinguisher runs in time at most tD and makes at
most q queries.

It is shown in [20] that if CF
G is indifferentiable from G, the CF

G can replace G in
any cryptosystem, and the resulting cryptosystem will be at least as secure in
the F model as in the G model. See [8] for more details.

The above definition works for any malicious adversary. We will now present
a relaxed version of this notion that we will refer to as indifferentiability in
the honest-but-curious model for reasons that will be clear soon. In the new
definition, the distinguisher effectively has active access to only one oracle. To
illustrate this, in the F model the distinguisher can only query the G construction
CF

G , and not the F oracle. In addition, it also has access to the queries made by
the construction CG to F , which we will denote as the communication transcript
TCG↔F . Thus the role of the simulator S in the G model changes from trying to
simulate F in the general indifferentiability (defn. 2), to trying to simulate the
communication transcript TCG↔F in G model. When the distinguisher has access
to CG and F , its queries can be divided into two types. Those for which it does
not observe the queries of CG , and those for which it does. In the G mode, the
former queries are sent directly to the G oracle and the responses of G are sent
back. While the latter queries are made through the simulator S, which forwards

190 Y. Dodis and P. Puniya

FCG

D

F model G model

G

TSTCG↔F

S

Fig. 1. Indifferentiability in honest-but-curious model: The distinguisher D either in-
teracts with CG and gets the transcript TCG↔F or it interacts with G and gets the
simulated transcript TS

the same query to the G oracle. But apart from sending back G’s response to the
distinguisher, it also sends a simulated communication transcript TS . These two
views of the distinguisher are depicted in figure 1.

Definition 3. A Turing machine CG (with oracle access to F) is said to be
(tD, tS , q, ε) indifferentiable from an ideal primitive G in the honest-but-curious
model if there exists a simulator S such that for any distinguisher D it holds
that: ∣∣Pr [DCG ,TCG↔F = 1

]
− Pr

[
DG,TS = 1

]∣∣ < ε

The simulator S simulates the transcript TS for queries made by the distinguisher
to it and runs in time tS. The distinguisher D runs in time at most tD and makes
at most q queries to its oracle. The distinguishing advantage ε is a negligible
function of the security parameter λ. If tS and q are both polynomial in λ then
the construction CG is said to be polynomially indifferentiable from G in the
honest-but-curious model.

Note that the simulator S does not make any extra queries to G apart from
forwarding the queries made by the distinguisher D. This fact is crucial since
we want the property that the distinguisher should not learn anything from
observing the internal functioning of CG (i.e. queries made to F), that it cannot
learn from an ideal G itself.

Consider a construction CG that is (polynomially) indifferentiable from G in
the honest-but-curious model. Our new definition guarantees that any cryptosys-
tem P, possibly involving honest-but-curious parties, that uses the construction
CG in the F model behaves in exactly the same way as it does in the G model.
This fact is formally stated in the following lemma.

Lemma 1. If a construction CG using F is indifferentiable from G in the honest-
but-curious model, as stated in definition 3, then any cryptographic protocol P
(involving honest-but-curious parties possibly) using CG in the F model behaves
exactly the same way as in the G model.

Proof: [also see figure 2] Say there exists a protocol P = (Phon,Pcur) that
behaves differently when using CG in F model. Phon represents the conventional
honest parties of the protocol, and Pcur represents the curious ones. We claim
that the curious parties Pcur do not gain any extra information when using the

On the Relation Between the Ideal Cipher and the Random Oracle Models 191

CG F

G modelF model

Distinguisher D

PhonPcur PcurPhon

G S

TSTCG↔F

new curious
parties in G model

Fig. 2. An idea of the proof of lemma 1. The conventional honest parties Phon along
with the curious ones Pcur can be seen together as a distinguisher D.

construction CG . We will prove this by simulating the view of all parties in P
in the F model, in the G model as well. But this is exactly what definition
3 guarantees. We simply replace the construction CG with G. And we use the
simulator S guaranteed by our definition to simulate the transcript TCG↔F for
the curious parties Pcur. Thus the queries made by the curious parties Pcur are
directed through the simulator S, which along with the response of G adds a
fake transcript TS for the curious parties. The conventional honest parties Phon

are given direct access to the ideal primitive G. And the indistinguishability of
the two scenarios (CG , TCG↔F) and (G, TS) implies that the views of all parties
in the protocol remains the same.

We note here that the notion of “indifferentiability of CG from G in the honest
but curious model” is at least as strong as (in fact, as we shall see later, strictly
stronger than) the notion of “indistinguishability of CG and G”. Clearly, a dis-
tinguisher in the indistinguishability scenario will work in the former scenario
(def. 3) simply by ignoring the transcripts TCG↔F (or TS).

2.3 Transparent Constructions

Even though general indifferentiability (definition 2) seems to be much stronger
than indifferentiability in the honest-but-curious model (definition 3), we now
show that for certain types of constructions these two definitions are, in fact,
equivalent.

Definition 4 (Transparent Constructions). A construction CG of G (using
oracle access to F) is a (tE , qE) transparent construction if there exists a Turing
machine E (called an “extracting algorithm”) such that for any x ∈ dom(F) it
is the case that ECF

G ,TCG↔F (x) = F(x). Here TCG↔F denotes the transcript of
all the communication between CG and F . E runs in time tE and makes at most
qE queries to CF

G for any input x, while dom(F) represents the domain of F .
And |x|, tD and qE are polynomial in the security parameter λ.

Thus a transparent construction CF
G is such that it is possible to efficiently

compute F(x) at any input x by making a polynomial number of queries to CG
and observing the communication between CG and its oracle F .

192 Y. Dodis and P. Puniya

Lemma 2. If a transparent construction CG (using F) is (polynomially) in-
differentiable from G in the honest-but-curious model (defn. 3) then it is also
(polynomially) indifferentiable from G (defn. 2).

Proof: Say that a construction CG is indifferentiable from ideal primitive G in
the honest-but-curious model. Then we have a simulator Shon that successfully
fakes the transcript TCG↔F (with TShon

) in the G model.
First, we will design a simulator Smal for general indifferentiability using the

simulator Shon. The simulator Smal needs to simulate the ideal primitive F in
G model. On getting a query x ∈ dom(F), Smal uses the extracting algorithm E
(for CG) to compute F(x). The extracting algorithm needs oracle access to the
construction CG and the communication transcript TCG↔F . The simulator Smal

replaces the construction CG with the ideal G oracle, which it has access to. And
it uses the “honest-but-curious” simulator Shon to produce a fake transcript for
E. By definition 3 the extracting algorithm E has no way to tell that it has
oracle access to (G, TShon

) instead of (CG , TCG↔F). This simulator conversion is
illustrated in figure 3a.

Now we will show that the simulator Smal designed above actually works. To
the contrary, say there is a distinguisher Dmal with non-negligible advantage in
the general indifferentiability game. Then we will design a distinguisher Dhon for
the honest-but-curious indifferentiability scenario. Dhon simply runs the “mali-
cious” distinguisher Dmal and uses the extracting algorithm E to simulate the
F oracle for Dmal. Note that it is easy for Dhon to run the extracting algo-
rithm E, which needs the exact same oracles that Dhon has access to. The new
distinguisher is illustrated in figure 3b.

Say CG is a (tE , qE) transparent construction. Then if the simulator Shon runs
in time tShon

for every query, then Smal runs in time O(tShon
· qE + tE). And

if Dmal makes qDmal
queries and runs in time tDmal

then Dhon makes at most
O(qDmal

· qE) queries and runs in time O(tDmal
· tE).

Dmal

E

FCG

Dhon

TCG↔F

E

G

S ′

a〉 Simulator Conversion b〉 Distinguisher Conversion
depicted in F model

TS
S

Fig. 3. a. Conversion of the simulator S in honest-but-curious model to simulator S′

in general indifferentiability. b. Conversion of the malicious distinguisher Dmal into an
honest-but-curious distinguisher Dcur.

On the Relation Between the Ideal Cipher and the Random Oracle Models 193

This theorem essentially implies that if one is able to find a transparent con-
struction CG for an ideal primitive G and prove its indifferentiability in the
honest-but-curious model. This will also imply the general indifferentiability of
the construction CG .

3 The Luby-Rackoff Construction

In this section, we will give a construction of an ideal cipher E : {0, 1}κ ×
{0, 1}2n → {0, 1}2n from a random oracle H : {0, 1}∗ → {0, 1}n. Note that it
suffices to give a construction Cπ of a single random permutation π : {0, 1}2n →
{0, 1}2n using H. Similar to the ideal cipher oracle, the random permutation
oracle π accepts both forward and inverse queries, but it has a key space of
cardinality 1. On input (0, x) the oracle outputs y = π(x) and on input (1, y)
it outputs x such that π(x) = y. A construction for the ideal cipher E can be
easily derived from this random permutation construction by prepending the key
of the ideal cipher to every query Cπ makes to H.

We will now concentrate on getting an indifferentiable construction of a ran-
dom permutation from a random oracle, and all our results can be carried over
to the ideal cipher model using the technique suggested above.

The Random Permutation Construction. We first note that the con-
structions in [19,23] etc. are not necessarily indifferentiable from a random per-
mutation, since all these results are proven in the classical indistinguishability
model. Here we will give an indifferentiable construction of random permutation
(RP) from the random oracle (RO) H : {0, 1}∗ → {0, 1}n. Similar to [19,23], our
construction is based on multiple rounds of the Feistel permutation. However,
our proofs will be in the indifferentiability model. We first formally define a “k
round LR-construction”.

Definition 5 (k round LR-construction). Given functions hi ∈ Fn : i =
1 . . . k, the k round LR-construction Ψh1,...,hk

is essentially the composition of k
rounds of Feistel permutation, Ψhk

◦ Ψhk−1 ◦ . . . ◦ Ψh1 .

We will basically use a k round LR-construction (with sufficiently large k) to get
a random permutation π : {0, 1}2n → {0, 1}2n. We will use independent random
functions hi for each round of the k round LR-construction Ψh1,...,hk

. Note that
it is easy to get these independent random functions hi ∈ Fn from the random
oracle H. These can be simply defined as hi(x) = H(〈i〉 ‖ x) for i = 1 . . . k.
Here 〈i〉 represents the log(k)-bit binary representation of i. The k round LR
construction with round functions derived in this fashion is denoted as Cπ,k.
We conjecture that for sufficient number of rounds k this is an indifferentiable
construction of RP from RO.

Conjecture 1. For a sufficient number of rounds k, the k round construction
Cπ,k (using a random oracle H : {0, 1}∗ → {0, 1}n) is an indifferentiable con-
struction of a random permutation π : {0, 1}2n → {0, 1}2n.

194 Y. Dodis and P. Puniya

Even though we believe this conjecture to hold, we have been unable to prove
it formally. However, we will formally show that the k round LR construction is
indifferentiable from a random permutation in the honest-but-curious scenario
with a sufficient number of rounds k.

3.1 Transparency for O(log λ) Rounds

The question now is how many rounds should suffice to prove indifferentiabil-
ity in the honest-but-curious model? We first show that for upto a logarithmic
(in security parameter λ) number of rounds proving indifferentiability of the
LR-construction in the honest-but-curious model is no simpler than proving its
indifferentiability in general. Recall from section 2 that a transparent construc-
tion is one for which indifferentiability in the honest-but-curious model implies
its indifferentiability in the general model. We prove that for upto a logarithmic
(in λ) number of rounds the LR-construction is a transparent construction.

Theorem 2. The k round LR-construction Cπ,k is a (tE , qE) transparent con-
struction of the random permutation π from random oracle H for number of
rounds k = O(log(λ)). The running time tE and number of queries qE are both
polynomial in the security parameter λ.

Proof: Consider the k round LR-construction Cπ,k for number of rounds k =
O (log(λ)). We will describe an extracting algorithm E that when given access
to (Cπ,k, TCπ,k↔H) can extract the values of H(〈i〉 ‖ x) for any x ∈ {0, 1}n and
i = 1 . . . k. Note that such an algorithm E will suffice for our purpose. This
is because the random oracle output at any other input is never used by the
construction Cπ,k. Thus we will assume that E gets inputs of the form (〈i〉 ‖ x),
and it outputs the value H(〈i〉 ‖ x) (or hi(x)). We will describe this algorithm
E in an inductive fashion.

– Input (〈1〉 ‖ x): On this input, E chooses an arbitrary n bit string, R0. It
then assigns R1 = x and makes the query Cπ,k(0, R0 ‖ R1). This is a forward
RP query. In response, it gets the transcript TCπ,k↔H , which includes the
value h1(R1).

– Input (〈i〉 ‖ x) , i ≥ 2: Such round function values are computed recursively.
• Choose arbitrary R0, R1 ∈ {0, 1}n, and query Cπ,k(0, R0 ‖ R1). This will

give us a random round value R1
i−1 and corresponding round function

value hi−1(R1
i−1).

• Compute R1
i−2 = hi−1(R1

i−1) ⊕ x. Recursively invoke E(〈i − 2〉 ‖ R1
i−2)

to get hi−2(R1
i−2).

• Compute R1
i−3 = hi−2(R1

i−2)⊕R1
i−1. Recursively invoke E(〈i−3〉 ‖ R1

i−3)
to get hi−3(R1

i−3).
• Continue in this fashion to get (R1

i−4, hi−4(R1
i−4)) , . . . , (R1

1, h1(R1
1)).

• Compute R1
0 = h1(R1

1)⊕R1
2. Now query Cπ,k(0, R1

0 ‖ R1
1). This will give

us the round function values (R1
i , hi(R1

i)). ButR1
i = hi−1(R1

i−1)⊕R1
i−2 =

x. Thus we have hi(x).

On the Relation Between the Ideal Cipher and the Random Oracle Models 195

For a query (〈i〉 ‖ x), let the worst case running time of E be tE(i) and number
of queries be qE(i). From the above algorithm, we can deduce that tE(i) =
tE(i − 2) + tE(i − 3) + . . . + tE(1) + O(1) and qE(i) = qE(i − 2) + qE(i −
3) + . . . + qE(1) + O(1). Now one can verify that tE(i) and qE(i) are both
approximately equal to the ith Fibonacci number. And hence in the worst case
tE = qE = O

(
φk

)
, where φ =

√
5+1
2 . And thus when k = O(log(λ)), both tE

and qE are polynomial in the security parameter λ. Hence Cπ,k is a transparent
construction when k = O(log(λ)).

Thus one can hope to prove indifferentiability of the LR-construction forO(log(λ))
rounds in the honest-but-curious model, and it will imply the general indifferen-
tiability of the construction. However, there is no indication to suggest that this
task might be any easier than the general result.

3.2 Main Result: Equivalence for ω(log λ) Rounds

On the positive side, we prove the indifferentiability of the LR-construction in
the honest-but-curious model for a super-logarithmic number of rounds.

Theorem 3. The k round construction Cπ,k is
(
tD, tS , q, O

(
(q · k)4 · 2−n

))
indifferentiable from a random permutation π : {0, 1}2n → {0, 1}2n (with security
parameter λ) in the honest-but-curious model for k = ω (log(λ)) rounds. tS, n
and q are all polynomial in λ.

Proof Intuition: The proof of this theorem consists of two parts. First, we will
describe the simulator S that fakes the communication between Cπ,k and H,
in the random permutation model. The input to the simulator is either of the
form (0, x) (forward π query) or (1, y) (inverse π query), where x, y ∈ {0, 1}2n.
In the random oracle model, if the input (0, x) is given to the construction
Cπ,k in the random oracle model, then Cπ,k makes queries to the random oracle
H and computes the values R1 . . . Rk where R0 = x|

L
, R1 = x|

R
and Ri =

hi−1(Ri−1) ⊕ Ri−2 for i ∈ {2, . . . k + 1}. Inverse queries (1, y) are handled in a
similar fashion, albeit in reverse starting from Rk = y|

L
and Rk+1 = y|

R
and

computing Ri = hi+1(Ri+1) ⊕Ri+2 for i ∈ {k − 1 . . . 0}.
In the random permutation model, the simulator performs essentially the

same computation except that it simulates the round functions hi itself. It main-
tains a table Thi

for each of the round functions hi, in which it stores all pre-
viously generated round function values. Consider a forward query (0, x), thus
R0 = x|

L
and R1 = x|

R
. The simulator S generates a fake transcript for this

query as follows:

1. First, it forwards this query (0, x) to the random permutation π and gets
y = π(x). Thus, in our representation of the LR-construction Rk = y|

L
and

Rk+1 = y|
R
.

2. Next, it checks to see if hk(Rk) is already defined. If so then it checks the tables
Thk−1 , Thk−2 , . . . and so on to see if there exists a chain of defined values of the
form [Ri−1 = hi(Ri) ⊕Ri+1]i=k...bot, where bot ∈ {1, k}. If bot = 1 then the

196 Y. Dodis and P. Puniya

entire chain is already defined, so it checks to see if the (Rbot−1 ‖ Rbot) = x.
If so, S returns this sequence of values as the transcript to the distinguisher,
otherwise the simulator exits with failure since there is no way to define the
round function values consistent with π.

3. If bot > 1 then it checks to see if similarly there exists a chain of defined round
function values going down from R0 = x|

L
, R1 = x|

R
. That is, a sequence

of round values [Ri+1 = hi(Ri) ⊕Ri−1]i=1...top, where top ∈ {1, k}. It then
checks to see if top ≥ bot− 2. If so then it exits with failure since it cannot be
consistent with both π and its previous responses.

4. If everything goes well until now, then the simulator S starts defining the
missing round function values between top and bot. It defines the function
values htop+1(Rtop+1) . . . hbot−2(Rbot−2) at random. It joins the top and bot-
tom chains by defining hbot−1(Rbot−1) = Rbot ⊕ Rbot−2 and hbot(Rbot) =
Rbot+1 ⊕Rbot−1.

5. After completing the entire chain in this fashion, S sends it to D.

Thus the simulator S simply tries to define all intermediate round function values
randomly. However, it first scans to see if part of the chain of round function
values is already defined. It does so both starting from top and bottom, and
defines the undefined values in the middle at random but making sure that it
joins the two partial chain. If it so happens that the two chains are so long that
there are no undefined round values left in the middle, then it realizes that it
cannot be consistent with both these chains simultaneously and exits with failure.

The next task is to prove the indistinguishability of the random oracle model,
with the LR-construction Cπ,k and the transcript of its communication with the
RO H, and the random permutation model, with the random permutation π
and the fake transcript generated by the simulator S described above. Our proof
consists of a hybrid argument that starts in the random permutation model and
through a series of indistinguishable hybrid models it ends up in the random
oracle model. The most non-trivial part of the proof consists of the combinatorial
lemma 3, which involves counting the number of queries needed by D to induce
an inconsistency in the responses of S. This number is shown to be exponential
in the number of rounds k, and hence super-polynomial in the security parameter
λ when k = ω(log λ). The formal proof is given below.

A formal proof of the fact that the simulator described above works is given in
appendix A.

3.3 Non-transparency for ω(logλ) Rounds

One can deduce from theorem 3 that if the LR-construction with ω(log λ) rounds
is a transparent construction, then it will imply the general indifferentiability
of this construction too. Unfortunately, we show that for number of rounds
ω(log(λ)) the LR-construction is not a transparent construction.

Theorem 4. The k round LR-construction Cπ,k is not a transparent construc-
tion of the random permutation π for number of rounds k = ω(log(λ)).

On the Relation Between the Ideal Cipher and the Random Oracle Models 197

Proof: Say that we are given an extracting algorithm E that given oracle access
to Cπ,k along with the transcript of the communication between Cπ,k and the RO
H, is supposed to compute H on any input. We will give a query x for which E
cannot find H(x) with non-negligible probability.

In the proof of theorem 3, we used a hybrid argument to prove the indistin-
guishability of (Cπ,k, TCπ,k↔H) from (π, TS). Recall the hybrid scenario in figure
5b, where we had the simulator S1 that avoids XOR of any 3 of previously
defined round (function) values, and the relaying algorithm M1 that uses the
simulator S1 to respond to the random permutation queries made by the sim-
ulator. By our hybrid argument in the proof of theorem 3, we can see that the
random oracle scenario (Cπ,k, TCπ,k↔H) is also indistinguishable from this hybrid
scenario (M1, TS1).

Coming back to our current proof, if we give the extracting algorithm E
access to (M1, TS1), then it should be able to compute the output of any
of the round functions simulated by S1 on any input, just as it does in the
random oracle model. If this is not the case, then we can use the extracting
algorithm E to design a distinguisher that can tell apart the random oracle
model from this hybrid model with high probability. Let us denote the round
functions simulated by S1 as h1 . . . hk and the corresponding round values as
R0, . . . , Rk+1.

We will ask the extracting algorithm E to compute h k
2

(x). Say E finds out
h k

2
(x) in query number m, which can be assumed to be a forward query without

loss of generality. Denote the round values in query numberm as R(m)
0 , . . . , R

(m)
k+1.

We can deduce that R
(m)
(k/2) = x since it is in this query that E finds the

values h k
2

(x). Now if the round value R
(m)
(k/2)−1 is a new round value then

h k
2−1(R

(m)
(k/2)−1) would have been assigned a random value and h k

2−1(R
(m)
(k/2)−1)⊕

R
(m)
(k/2)−2 would have been equal to x with only a negligible probability. So it

must have been the case that R(m)
(k/2)−1 was defined in some query prior to query

number m. We can make similar deductions to show that all the round values
R

(m)
0 , . . . , R

(m)
(k/2)−2 were also defined in queries previous to the mth query.

After this the proof of the theorem follows in pretty much the same way
as the combinatorial lemma 3. We show that the extracting algorithm must
have already made a φ

k
4 (for φ =

√
5+1
2) queries prior to the mth query. For a

super-logarithmic number of rounds k, this is super-polynomial in the security
parameter λ.

3.4 Negative Results for Constant Rounds

Finally, we mention that one does need to use sufficient number of rounds of
the Feistel permutation in the construction, to have any hope of proving it
indifferentiable. Coron [7] showed that for less than 6 rounds the LR-construction
is not indifferentiable from a random permutation.

198 Y. Dodis and P. Puniya

Theorem 5 ([7]). Let Cπ,k be the k round LR-construction of a random permu-
tation π, with number of rounds k < 6. Then there is an efficient distinguisher
D such that for any simulator S, D can distinguish the oracle pair (Cπ,k,H) and
(π, S) with non-negligible probability.

It is easy to see that the construction (Cπ,k,H) cannot work for k < 4, since in
this case it does not even satisfy the classical indistinguishability definition [19].
Coron [7] gave attacks on 4 and 5 round LR-constructions in the indifferentia-
bility scenario. We give an attack on the 4 round LR construction in appendix
B for illustration.

This theorem also implies that indifferentiability (even in the honest-but-
curious model) is strictly stronger than classical indistinguishability. This is be-
cause the LR-construction with 4 rounds or more is known to satisfy the latter
[19]. Thus we can derive the following corollary from theorem 5.

Corollary 1. A 4 round LR-construction is indistinguishable , but not indiffer-
entiable, from a random permutation (even in the honest-but-curious model).

4 Conclusions and Future Work

In this paper, we have shown that the Luby-Rackoff construction with a super-
logarithmic number of rounds can be used to instantiate the ideal block cipher in
any honest-but-curious cryptosystem. We have also proved that improving this
result to upto a logarithmic number of rounds will imply that this construction
is indifferentiable from the ideal cipher in general. The main question that still
remains unanswered is whether the Luby-Rackoff construction is indifferentiable
from the ideal cipher in general.

Acknowledgements. We would like to thank Jean-Sébastien Coron and Joel
Spencer for useful discussions.

References

1. J. Black, The Ideal-Cipher Model, Revisited: An Uninstantiable Blockcipher-Based
Hash Function, eprint 2005/210, (2005).

2. M. Bellare, A. Boldyreva and A. Palacio. An Uninstantiable Random-Oracle-Model
Scheme for a Hybrid-Encryption Problem, To appear in Proccedings of Eurocrypt
(2004).

3. M. Bellare, and P. Rogaway, Random oracles are practical: A paradigm for design-
ing efficient protocols, In Proceedings of the 1st ACM Conference on Computer
and Communications Security (1993), 62 -73.

4. M. Bellare and P. Rogaway, The exact security of digital signatures - How to sign
with RSA and Rabin. Proceedings of Eurocrypt’96, LNCS vol. 1070, Springer-
Verlag, 1996, pp. 399-416.

5. J. Black, P. Rogaway, T. Shrimpton, Black-Box Analysis of the Block-Cipher-Based
Hash-Function Constructions from PGV, in Advances in Cryptology - CRYPTO
2002, California, USA.

On the Relation Between the Ideal Cipher and the Random Oracle Models 199

6. M. Bellare and P. Rogaway, Optimal Asymmetric Encryption, Proceedings of Eu-
rocrypt’94, LNCS vol. 950, Springer-Verlag, 1994, pp. 92–111.

7. J.-S. Coron, personal communication.
8. J.-S. Coron, Y. Dodis, C. Malinaud and P. Puniya, Merkle-D̊amgard Revisited:

How to Construct a Hash Function, In Advances in Cryptology - Crypto 2005
Proceedings (2005), 430 -448.

9. J.-S. Coron, A. Joux, and D. Pointcheval, Equivalence Between the Random Oracle
Model and the Random Cipher Model, Dagstuhl Seminar 02391: Cryptography,
(2002).

10. R. Canetti, O. Goldreich, and S. Halevi, The random oracle methodology, revisited,
In Proceedings of the 30th ACM Symposium on the Theory of Computing (1998) ,
ACM Press, pp. 209 -218.

11. R. Canetti, O. Goldreich, and S. Halevi, On the random-oracle methodology as
applied to length-restricted signature schemes, In First Theory of Cryptography
Conference (2004).

12. I. D̊amgard, A Design Principle for Hash Functions, In Crypto ’89, pages 416-427,
1989. LNCS No. 435.

13. A. Desai, The security of all-or-nothing encryption: Protecting against exhaus-
tive key search, In Advances in Cryptology - Crypto’00 (2000), LNCS vol. 1880,
Springer-Verlag.

14. S. Even, and Y. Mansour, A construction of a cipher from a single pseudorandom
permutation, In Advances in Cryptology - ASIACRYPT’91 (1992), LNCS vol. 739,
Springer-Verlag, pp. 210 -224.

15. A. Fiat, and A. Shamir, How to prove yourself: Practical solutions to identification
and signature problems, In Advances in Cryptology - Crypto’86 (1986), Lecture
Notes in Computer Science, Springer-Verlag, pp. 186 -194.

16. S. Goldwasser and Y. Tauman. On the (In)security of the Fiat-Shamir Paradigm,
In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science (2003), 102-114.

17. E. Jaulmes, A. Joux, and F. Valette, On the security of randomized CBC-MAC be-
yond the birthday paradox limit: A new construction, In Fast Software Encryption
(FSE 2002) (2002), vol. 2365 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 237 -251.

18. J. Kilian, and P. Rogaway, How to protect DES against exhaustive key search (An
analysis of DESX), Journal of Cryptology 14, 1 (2001), 17 -35.

19. M. Luby and C. Rackoff, How to construct pseudo-random permutations from
pseudo-random functions, SIAM J. Comput., Vol. 17, No. 2, April 1988.

20. U. Maurer, R. Renner, and C. Holenstein, Indifferentiability, Impossibility Results
on Reductions, and Applications to the Random Oracle Methodology, Theory of
Cryptography - TCC 2004, Lecture Notes in Computer Science, Springer-Verlag,
vol. 2951, pp. 21-39, Feb 2004.

21. R. Merkle, One way hash functions and DES, in Advances in Cryptology, Proc.
Crypto’89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 428-446.

22. J. B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-Committing Encryption Case, In Advances in Cryptology - Crypto
2002 Proceedings (2002), 111-126

23. M. Naor and O. Reingold, On the construction of pseudo-random permutations:
Luby-Rackoff revisited, J. of Cryptology, vol 12, 1999, pp. 29-66.

24. D. Pointcheval, and J. Stern, Security proofs for signature schemes, In Advances
in Cryptology - Eurocrypt 1996 proceedings, 387 -398.

200 Y. Dodis and P. Puniya

25. C.-P. Schnorr, Efficient signature generation by smart cards, In Journal of Cryp-
tology 4, 3 (1991), 161 -174.

26. R. Winternitz, A secure one-way hash function built from DES, in Proceedings
of the IEEE Symposium on Information Security and Privacy, pages 88-90. IEEE
Press, 1984.

A Formal Proof of Indifferentiability

Now we will prove that when the simulator S described in theorem 3 above is
used in the indifferentiability game, then any distinguisher D that makes at most
q queries to its oracles has only a negligible distinguishing advantage. Here q and
n (the output length of H) are both polynomial functions of the security param-
eter λ, while the number of rounds in the LR construction is k = ω(log(λ)). As
we mentioned, our proof proceeds via a hybrid argument.

Hiding the random permutation π. Let us start in the random permuta-
tion scenario. Here the distinguisher has oracle access to π and the simulator S.
Our first modification is to prevent D from directly accessing π, by replacing
it with a simple relaying algorithm M that acts as an interface to π. When
M gets a query from the distinguisher, it simply relays this query to the ran-
dom permutation π and sends back the response of π. In this new scenario,
the distinguisher has oracle access to Mπ and Sπ (see figure 5a). Since we
have made no real change from the point of view of the distinguisher, we have
Pr[D(π,TSπ) = 1] = Pr[D(Mπ,TSπ) = 1].

Bounding out the “bad events”. Now we will modify the simulator S, so
that it never outputs certain types of collisions that will affect our analysis
later. Recall that the simulator S needs to define the round function values
h1(R1) . . . hk(Rk) in order to generate the transcript TS for every query made
to it. And S tries to assign random values to hi(Ri) for any new Ri.

Now we introduce a slightly modified simulator S1 that is essentially the
same as S except that it chooses round function values more carefully. Let
us first fix a little notation. We will number the queries made to the simu-
lator in the order they are made, query number 1 followed by 2 and so on.
And for the mth query made to the simulator, we will label its round values as
R

(m)
0 , R

(m)
1 , . . . , R

(m)
k , R

(m)
k+1.

Assume for now that query number m is a forward query. When assigning
a new round function value hi(R

(m)
i) in this query, the distinguisher makes

sure that hi(R
(m)
i) is cannot be represented as an XOR of upto three previ-

ously defined values. This includes all values R(�)
j or h(R(�)

j) for � < m , j ∈
{0, k + 1} and all values R(m)

j or hj(R
(m)
j) for j < i (and j > i for an inverse

query m). More formally, S1 assigns a value hi(R
(m)
i) for the mth query (a for-

ward query) that does not satisfy the following equality for values x1, x2, x3 ∈
{R(�)

j1
, hj1(R

(�)
j1

), R(m)
j2

, hj2(R
(m)
j2

) | � < m , j1 ≤ k + 1, j2 < i}

hi(R
(m)
i) = x1 or (x1 ⊕ x2) or (x1 ⊕ x2 ⊕ x3)

On the Relation Between the Ideal Cipher and the Random Oracle Models 201

The distinguisher cannot tell if it has oracle access to (M, S) or (M, S1) unless
the old simulator S outputs a round function value that satisfies one of the above
equalities. Let us denote this event by B1. Hence for any distinguisher D making
q queries, ∣∣∣Pr [D(Mπ,TSπ) = 1

]
− Pr

[
D

(Mπ,TSπ
1

) = 1
]∣∣∣ ≤ Pr [B1]

We can bound the probability of B1 occurring by noticing that for randomly
assigned round function values, Pr [B1] = O

(
(q·k)4

2n

)
. This can be derived by

using the birthday paradox to bound the probability that any XOR of upto 4
round (or round function) values is 0n.

Transferring Control to the Simulator. Next we will modify the relaying
algorithm M so that it does not simply act as a channel between the distinguisher
and π. The new relaying algorithm, which we will call M1, responds to the π
queries by making the same queries to the simulator S1 and computing π(x) (or
π−1(y)) from the responses of S1 (see figure 5b).

To illustrate this point, say M1 gets a query (0, x) from the distinguisher D
(that is, a forward query to π). Then M1 forwards this query to S1, which in turn
gets y = π(x) from the random permutation and constructs a fake transcript
TS1(0, x) (or round values R0 = x|

L
, R1 = x|

R
, . . . , Rk+1). If all goes well this

transcript is consistent with π. The simulator sends this transcript TS1(0, x) to
M1, which can compute π(x) from TS1 and send it to the distinguisher D with
this value. Inverse queries 1, y) are handled in a similar fashion.

From the view of D, everything in this scenario is same as in the previous
one unless the simulator S1 exits with failure on some query made by M1. This
happens if and only if S1 fails to be consistent with the random permutation π on
some query. We claim that if the number of queries q made by the distinguisher
D is polynomial in the security parameter λ then the simulator S1 is always
consistent with π.

Lemma 3. For a polynomial number of queries q made to the simulator S1,
the responses of the simulator are always consistent with the random
permutation π.

Proof: Say query number m is the first time S1 is inconsistent with π. Without
loss of generality assume this to be a forward query (0, x), with π(x) = y. Thus
R

(m)
0 = x|

L
, R

(m)
1 = x|

R
and R(m)

k = y|
L
, R

(m)
k+1 = y|

R
. Since S1 is inconsistent on

this query, there exist partial round value chains,R(m)
0 , R

(m)
1 . . . R

(m)
top , R

(m)
top+1 and

R
(m)
bot−1, R

(m)
bot . . . R

(m)
k , R

(m)
k+1 with top ≥ bot− 2. But in this case either (top ≥ k

2)
or (bot ≤ k

2 + 1). That is, at least one of these two partial chains consists of
more than k

2 defined round function values. Without loss of generality, assume
that the top ≥ k

2 . Thus all round function values h1(R
(m)
1) . . . htop(R

(m)
top) were

defined before query number m was made. We will look at the queries where
each of these round function values was defined for the first time. For any round
value R(j)

i , we denote by first(R(j)
i) the query number where the round function

202 Y. Dodis and P. Puniya

value hi(R
(j)
i) was first defined. Thus if R(j)

i is a new round value that appeared
in query number j itself, then first(R(j)

i) = j otherwise first(R(j)
i) < j. We

can thus say that for i = 1 . . . top, it is the case that first(R(m)
i) < m.

Now consider any three consecutive round values R(m)
i−1 , R

(m)
i and R

(m)
i+1 for

i ∈ {2 . . . top− 1}. Let first(R(m)
i−1) = �i−1, first(R

(m)
i) = �i and first(R(m)

i+1) =
�i+1 (�i−1, �i, �i+1 < m). We wish to analyze the order of the queries �i−1, �i
and �i+1. First, note that �i−1 �= �i and �i �= �i+1. Either case would imply that
the �ith query is the same as the mth query, and the inconsistency should have
occurred there itself. Let us now look at the possible orders between �i−1, �i and
�i+1.

1. (�i > �i−1 ≥ �i+1) or (�i > �i+1 > �i−1). That is, query number �i occurs after

�i−1 and �i+1. We know that hi(R
(m)
i) = R

(m)
i−1 ⊕R

(m)
i+1 and hence hi(R

(�i)
i) =

R
(�i−1)
i−1 ⊕R

(�i+1)
i+1 . But the round values R(�i−1)

i−1 and R(�i+1)
i+1 already exist when

hi(R
(�i)
i) was defined for the first time in the �ith query. And since the simu-

lator S1 avoids such an XOR collision, this order is impossible.
2. (�i−1 > �i > �i+1) or (�i−1 < �i < �i+1). These strictly increasing/decreasing

orderings are possible.
3. (�i < �i−1 < �i+1) or (�i < �i+1 < �i−1). Here the �ith query comes before both

the �i−1
th and �i+1

th queries. These orders are possible.
4. (�i < �i−1 = �i+1). This is the same as above, except that the �i−1 = �i+1.

In this case, a short calculation gives that hi(R
(�i−1)
i) = hi(R

(�i)
i), where

R
(�i−1)
i �= R

(�i)
i . And since R(�i−1)

i exists before hi(R
(�i)
i) is defined, this order

is impossible.

Thus we know that the possible orderings of the queries for any three consecutive
round values are the configurations 2 and 3. Now we can apply the same to all the
queries first(R(m)

1) = �1, first(R
(m)
2) = �2, . . . , first(R

(m)
top) = �top, considering

each triple of consecutive round values separately and then combining of these
orderings together. Using this, we obtain that there is a j ∈ {1, k} such that
(�1 > �2 > . . . > �j) and (�j < �j+1 < . . . < �top). That is, the query numbers
�1 . . . �top are strictly decreasing until some �j and strictly increasing after that.
One can verify that any other configuration will involve one of the “impossible”
triple orderings 1 or 4.

Now we will look for more structure in these queries. If j ≥ top
2 , then we will

analyze the decreasing sequence of queries �1 . . . �j , otherwise we will analyze the
increasing sequence of queries �j . . . �top. Without loss of generality, assume that
j ≥ top

2 ; the case j < top
2 is symmetrical. Since we earlier derived that top ≥ k

2 ,
we can also deduce that j ≥ k

4 .
Now we will show that these queries and others that led to the inconsistency

in the mth query form a Fibonacci tree of depth j (which we know is ≥ k
4). Each

node of the Fibonacci tree corresponds to a different query, with mth query at
the root of the tree. This would imply that m is at least as large as the number
of nodes in a Fibonacci tree of depth k

4 . But since we know that k = ω(log(λ)) it

On the Relation Between the Ideal Cipher and the Random Oracle Models 203

also holds that m is superpolynomial in the security parameter λ. In turn, this
implies that the simulator S1 is always consistent with the random permutation
for any polynomial number of queries.

The queries from �1 . . . �j form the first level of the Fibonacci tree which we
will describe. To see this structure more explicitly, we will now move from the
mth query to these first level queries. Consider any three consecutive queries in
this ordering, �i, �i+1, �i+2 (recall �i > �i+1 > �i+2). Let us look at the �ith query.
This query could be a forward or inverse query. For now we assume that it is a
forward query. As it will turn out, if this is an inverse query then the Fibonacci
tree of queries would be even larger, and so will the number of queries needed.
We know that R(�i)

i (= R
(m)
i) is a new round value in this query. Consider the

round function value hi−1(R
(�i)
i−1). Since R(�i)

i = R
(m)
i , we can deduce that

hi−1

(
R

(�i)
i−1

)
= R

(�i)
i−2 ⊕ hi+1

(
R

(�i+1)
i+1

)
⊕R

(�i+2)
i+2

Note that the �i+1
th and �i+2

th queries were made before query number �i.
And since the �i

th query is a forward one, R(�i)
i−2 is defined before R

(�i)
i−1. Now

if R(�i)
i−1 is a new round value then the simulator S1 would have avoided the

above XOR representation. Thus hi−1(R
(�i)
i−1) was already defined before the �ith

query. Using similar analysis, one can also deduce that the round function values
h1(R

(�i)
1) . . . hi−2(R

(�i)
i−2) also had to be defined prior to the �ith query.

Let first(R(�i)
1) = b1, . . . , first(R

(�i)
i−1) = bi−1. Consider the queries bi−1 and

bi−2. Let us see in what order these queries could have occurred. We know that
queries bi−1 and bi−2 were both made before the �ith query. We also know that
the �i+1

th query was also made before �ith query. First note that bi−1 �= bi−2,
since otherwise the bi−1

th query would the same as query number �i, which is
not possible since R(�i)

i is a new round values in the �ith query.

1. bi−2 < bi−1 ≤ �i+1 or bi−1 < bi−2 ≤ �i+1. A short calculation in this case

gives hi+1(R
(�i+1)
i+1) = R

(�i+2)
i+2 ⊕ R

(bi−2)
i−2 ⊕ hi−1(R

(bi−1)
i−1). Since all 3 of these

round (function) values existed before hi+1(R
(�i+1)
i+1) was defined, the simula-

tor S1 would have avoided their XOR. Hence these orderings are impossible.
2. bi−2 ≤ �i+1 < bi−1 or �i+1 < bi−2 < bi−1. These orderings are impossible

since here we can make a similar argument for hi−1(R
(bi−1)
i−1).

3. bi−1 ≤ �i+1 < bi−2. This ordering is possible.
4. �i+1 < bi−1 < bi−2. This ordering is also possible.

We note here a couple of things about these possible orderings before we move
on. First, query bi−1 could have only been made before query bi−2. Secondly,
query bi−2 could not have been made before the query �i+1. Now starting with
this ordering defined between queries bi−1 and bi−2, we can deduce the order
in which queries b1 . . . bi−3 could have been made. The analysis of this will be
pretty much the same as that for �1 . . . �top, with one major difference. Here the
only possible order amongst b1 . . . bi−1 we will get will be a descending order

204 Y. Dodis and P. Puniya

b1 > b2 > . . . > bi−1. That is query b1 was made before b2 which was made
before b3 and so on. This happens because we were able to establish a strict
order between bi−2 and bi−1, which was not the case for �top−1 and �top. Thus
the i−1 queries, b1 . . . bi−1, had to be made in strict decreasing order. This fact
turns out to be really crucial since we do not lose half of the queries at this level
of the “Query tree”, as we did in the case of query number m.

Thus for each of the queries �i at the first level, we have at least i− 2 queries
that lie strictly in between �i and �i+1. Note that the same counting method
can be extended to the bi queries to show that there are i − 2 queries strictly
in between bi and bi+1, and so on. This query structure takes the shape of a
Fibonacci tree. Since queries at any level lie strictly in between two consecutive
parent level queries, it turns out that each of the queries in the tree is, in fact,
different! An example this query structure is shown in figure 4.

Let T (i) represents the number of queries in a “query tree” starting with
R

(m)
i (thus T (1) = 1). From the structure of the “query tree”, we can compute

that T (i) = T (i − 1) + T (i − 2). But this is exactly the expression for the
ith Fibonacci number. We will not recompute this expression here and just state
that T (i) = O

(
φi

)
where φ =

√
5+1
2 . And thus if an inconsistency occurs in

query number m, then m = O
(
T

(
k
4

))
= O

(
φ

k
4

)
, which is superpolynomial in

the security parameter λ, if k = ω(log(λ)).

Thus for any distinguisher D that makes q queries (q = poly(λ)), it is the case

that Pr[D(Mπ,TSπ
1

)] = Pr[D(M
TSπ

1 ,TSπ
1

)].

Query number
T1

T1 : first level query tree
T2 : second level query tree
T3 : third level query tree

T2

T3

�i+2

�i+1

�i

�2

�1

m

1

bj+1

bj

Fig. 4. An example of a “Fibonacci tree” formed by queries (showing three levels)

On the Relation Between the Ideal Cipher and the Random Oracle Models 205

π S

D

TS

S

π

D

TS

M

D

π

D

π

TS1 TS1

M S1 M1 S1TS1

(a) (b)

D
TS1

π

M1 TS1
S1 S2M1

D
TS2

TS2
M1 S2

TS2
D

TS2

D

TCπ.k↔H

Cπ.k H

(c) (d)

Fig. 5. Overall Game Structure

Removing the Random Permutation π. Until now, all queries are forced
to be consistent with π. Now we will modify the simulator S1 and get closer to
the actual random oracle scenario. The new simulator, which we shall denote
by S2, does not attempt to output transcripts consistent with π. As before it
implements the k round LR-construction with randomly assigned internal round
functions. But now it also implements the last (or first) couple of round functions
hk−1, hk (or h2, h1) with randomly chosen values (see figure 5c).

To illustrate this, when the new simulator S2 gets a forward query (0, x). It
computes R0 = x|

L
, R1 = x|

R
and assigns random values to h1(R1), . . . , hk(Rk).

It then sends the round values R0, . . . , Rk+1 as the transcript for the query (0, x).
Inverse queries are handled in a symmetrical fashion. The relaying algorithm,
M1, as before uses these transcripts to compute its responses to D’s queries.

Note that the distinguisher cannot tell this scenario apart from the previous
scenario, unless

• the new simulator S2 violates the XOR constraint satisfied by S1. We call this
event B3.

• the old simulator S1 exits with failure. We call this event B4.

Lemma 3 implies that the event B4 does not happen for any distinguisher D that
makes a polynomial number of queries. Thus for any distinguisher D making at
most a polynomial number of queries q,∣∣∣∣Pr [D(M

TSπ
1 ,TSπ

1
)
]
− Pr

[
D(MTS2 ,TS2)

]∣∣∣∣ ≤ Pr [B3] = O
(

(q.k)4

2n

)

Onto the Random Oracle Model. Note that the previous scenario is essen-
tially the same as the random oracle scenario, since all round function values
chosen by S2 are random. Therefore for any distinguisher D (figure 5d), we have
Pr[D(MTS2 ,TS2)] = Pr[D(CH

π,k,TCπ,k↔H) = 1].

206 Y. Dodis and P. Puniya

Combining all the above hybrids, for any distinguisher D that makes at most
q queries,∣∣∣Pr [D(CH

π,k,TCπ,k↔H) = 1
]
− Pr

[
(Dπ,TSπ) = 1

]∣∣∣ < O
(

(q · k)4
2n

)
Here q and n are polynomial in the security parameter λ, and k = ω(log(λ)). In
fact, with a slightly more carefully designed simulator S1 that avoids an XOR
of specific round (function) values, one gets that the distinguishing advantage of
D is O

(
q4

2n

)
B Attack on 4 Round LR-Construction

We will represent the round values of the construction Cπ,4 as R0, R1 . . . R4, R5,
such that Cπ,4(R0 ‖ R1) = (R4 ‖ R5). And the round functions will be denoted
as h1, . . . , h4. Now consider any simulator S for which we get the two scenarios:
(Cπ,4,H) and (π, S). We will design a distinguisher D that distinguishes these
two with high probability for any simulator S.

The distinguisher D essentially forces the simulator to satisfy a constraint
that holds with very low probability for an RP π. On the other hand, it always
holds for the LR-construction Cπ,4. The algorithm of D is as follows:

1. Choose 3 arbitrary n bit strings, R2, R
′
2, R3.

2. Query the random oracle H to get h2(R2), h2(R′
2) and h3(R3), in this order.

3. Compute R1 = h2(R2) ⊕R3 and R′
1 = h2(R′

2) ⊕R3.
4. Query the random oracle to get h1(R1) and h1(R′

1). Compute R0 = h1(R1)⊕
R2 and R′

0 = h1(R′
1) ⊕R2.

5. Query the random permutation on R0 ‖ R1 and R′
0 ‖ R′

1 to get the values
R4 ‖ R5 and R′

4 ‖ R′
5, respectively.

6. Check if R4 ⊕R′
4 = R2 ⊕R′

2. If so, then output 1 else output 0

Note that the values R2 and R′
2 were queried upon before R3. Hence the round

values R1 and R′
1 are completely arbitrary round values controlled by the dis-

tinguisher. The distinguisher D always outputs 1 when given access to the con-
struction Cπ,4. But when given access to the random permutation, the simulator
S will need to find h1(R1) and h1(R′

1) that satisfy the constraint:

π((h1(R1) ⊕R2) ‖ R1)|L ⊕ π((h1(R′
1) ⊕R′

2) ‖ R′
1)|L = R2 ⊕R′

2

In this equation R1, R′
1, R2 and R′

2 are all effectively chosen by the distinguisher.
Hence no efficient simulator can find two round function values h1(R1) and
h1(R′

1) that satisfy the above constraint with non-negligible probability for a
random permutation π.

Intrusion-Resilience Via the
Bounded-Storage Model�

Stefan Dziembowski��

Institute of Informatics,
Warsaw University, Poland

and
Institute for Informatics and Telematics

CNR Pisa, Italy

Abstract. We introduce a new method of achieving intrusion-resilience
in the cryptographic protocols. More precisely we show how to preserve
security of such protocols, even if a malicious program (e.g. a virus) was
installed on a computer of an honest user (and it was later removed).
The security of our protocols relies on the assumption that the amount of
data that the adversary can transfer from the infected machine is limited
(however, we allow the adversary to perform any efficient computation
on user’s private data, before deciding on what to transfer). We focus
on two cryptographic tasks, namely: session-key generation and entity
authentication. Our method is based on the results from the Bounded-
Storage Model.

1 Introduction

In the contemporary Internet environment, computers are often exposed to at-
tacks of malicious programs, which can monitor the machines and steal the secret
data. This type of software can be secretly attached to seemingly harmless pro-
grams, or can be installed by worms or viruses. In order to protect against these
threats a user is usually advised to use virus and spyware removal tools. These
tools need to be frequently updated (as the new viruses spread out very quickly).
Nevertheless, for an average PC user it is quite inevitable that his computer is
from time to time infected by a malicious process (which is later removed by an
appropriate tool).

This phenomenon can be particularly damaging if the user runs some crypto-
graphic programs on his machine. This is because in most of cryptographic tasks
(encryption, authentication) the user needs to posses (and store somewhere) a
secret key s. If the user does not store s outside of the machine (e.g. on a trusted
hardware that will later participate in the protocol), then it seems that there
� This is an extended version of a report [Dzi05] that appeared on the eprint archive.

�� Partially supported by the EU ECRYPT grant IST-2002-507932 and by the Polish
KBN grant 4 T11C 042 25. Part of this work was carried out during the tenure of
an ERCIM fellowship. Another part of this work was done when the author was
employed at the Institute of Mathematics of the Polish Academy of Sciences.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 207–224, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

208 S. Dziembowski

is little that can be done to preserve the security, as the malicious process can
always steal s (and then impersonate the honest user, or decrypt his private com-
munication). If the protocol is based on a password memorized by the user then
the virus can wait until the password is typed and then record the key-strokes.

In this paper we propose a method for constructing intrusion-resilient crypto-
graphic protocols, i.e. such protocols that remain secure even after the adversary
gained access to the victim’s machine (and later lost this access). The security of
our protocols is based on a novel assumption that the amount of data that the
adversary is allowed to transfer from the victim’s machine is limited (however,
we allow the adversary to perform any efficient computation on user’s private
data, before deciding on what to transfer). In the security proofs we make use
of the theory of the Bounded Storage Model (see Section 3).

1.1 Previous Work

Intrusion-resilience was introduced in [IR02] (see also [DFK+03]) and can be
viewed as a combination of forward and backward security.1 A cryptosystem is
forward-secure if an exposure of a secret key at some particular time t does not
affect the security of the sessions of the protocol that ended before t. It was
studied in context of key-exchange (see e.g. [DvOW92,Kra96]), digital signa-
tures (this research was initiated by Ross Anderson, see [And02]) and public-key
encryption [CHK03]. A cryptosystem is backward-secure if the exposure of a se-
cret key at time t does not affect the security of the sessions of the protocol that
started after t. So far this was achieved by distributing the secret key among a
group of participants (e.g. in [IR02] this group consist of two players: a signer
and a home base). One has to make an assumption that the entire group is never
compromised by the adversary at the same time.

Cryptosystems that remain secure even in case of a partial leakage of the
secret key were already studied in the area of Exposure-Resilient Cryptography
(see e.g. [Dod00]). The differences from our model are as follows: (1) they con-
sider only the leakage of individual bits of the secret keys and (2) the keys in
their protocols are short.

Our model can be viewed as a generalization of the model of Kelsey and
Schneier [KS99]. In their model the adversary is allowed to access individual
bits of the secret key (this is justified by an assumption that the access to the
memory is slow). In this model they show a simple authentication protocol (the
secret key is a long random string of bits; in order to verify the authenticity of
the client the server asks for the values of some randomly chosen positions of the
secret key). In Sect. 5.2 we show that this protocol is also secure in our model.

Independently2 (but earlier) a similar model was introduced by Dagon et al.
[DLL05]. They propose a system (called VAST) for securely storing secret data
on devices that can be subject to an intrusion e.g. by a virus. They assume that
1 There seems to be some confusion in the literature about the terminology. What is

called forward security in [And02] is called backward security in [IR02,DFK+04]. In
this paper we use the terminology of [IR02].

2 We became aware of this work after submitting our paper to TCC.

Intrusion-Resilience Via the Bounded-Storage Model 209

such data is encrypted by a weak (human-memorized) password (let T denote
the resulting ciphertext and let π be the password). To prevent the adversary
from downloading T and cracking the password (i.e. performing a dictionary
attack on π) on his own machine, they design their protocols so that T is too
large to be fully downloaded. In order for this to make sense they need to assume
that the computing power of the virus is limited (so the virus cannot perform the
password-cracking on the victim’s machine). This is in contrast to our model,
where we can grant the virus a right to perform an arbitrary (polynomial-time)
computation on the victim’s data. Another difference is that they assume that
the adversary does not have a full access to the victim’s machine. In particular
when the user is interacting with VAST the virus should not have access to the
keyboard. This is because when the user enters the password π to the machine
the virus can learn π by recording the key-strokes.

1.2 Our Contribution

We propose a new method for constructing intrusion-resilient protocols for the
session-key generation and entity authentication (the main novelty of our ap-
proach is the new method of achieving backward-security; the forward-security
is achieved in a fairly standard way). The assumption that we make is that
the secret key is of huge size (e.g. K is of size 5 GB). More precisely, we will
grant the adversary the power to break into the honest user’s machine and take
full control over it. We will assume that the adversary is able to perform arbi-
trary (efficient) computation on victim’s data. Clearly, during the period of the
break-in one cannot hope for much security, since the adversary has a complete
knowledge about the behavior of one of the honest users (and hence she can
e.g. impersonate the user or steal the session key). So the intrusion-resilience
is the maximum what we can hope for. We achieve it by assuming that the
amount of data that the adversary can retrieve is much smaller than K (say
it is 0.5 GB). This assumption may be quite practical as in many situations
transmitting unnoticeably 0.5 GB of data is hard. Observe that if the secret
key is of size 1 KB then the virus can e.g. post it on some Usenet group, so
that the author of the virus can download it anonymously. Clearly this is much
harder if the secret is huge.

Another motivation is that protocols that are secure in our model have a
high level of resiliency against side-channel analysis [KSWH00]. Recall that the
side-channel attacks allow the adversary to obtain some information about the
users’ secrets by observing the behavior of the implementation of the protocol.
In practice the full protection against such attacks is hard, and we can only
hope for minimizing the amount of leaked information. The assumptions that
we make in our model guarantee that even if some information about the secrets
is leaked, the protocols are still secure.

Our method is based on the theory of the Bounded-Storage Model (see Sect. 3).
In the BSM one constructs protocols secure under the assumption that the amount
of data that the adversary can store is smaller that the amount of data that can be
broadcasted (e.g. by a satellite). The fact that he theory of the BSM has applica-

210 S. Dziembowski

tions here may seem surprising at the first sight, as in some sense the assumptions
in the BSM are opposite to ours. However, as it turns out, these models show sim-
ilarities and in fact theorems that were proven in the BSM are useful for us.

Our exposition is rather informal, as we mostly aim at introducing the model
and showing its power, not at providing ready to use practical solutions for con-
crete problems. For the same reason we do not provide numerical examples and
we do not give comparisons between security levels of different schemes presented
in the paper. Nevertheless, we believe that the protocols provided here (or their
variants) may find practical applications.

Finally, let us note that our results are proven in the random oracle model (see
Sect. 2.4).

1.3 The Contribution of [CDD+05]

The entity authentication protocol that we present in our paper was indepen-
dently constructed and analyzed by Cash et al. [CDD+05]. Moreover, they im-
prove our results by constructing a session-key generation protocol without the
random oracle assumption. They also provide some concrete numerical examples
of the parameter values that can be used in practical implementations.

2 Preliminaries

2.1 Probability Theory

The min-entropy of a probability distribution PX is defined as

H∞(X) := min
x∈X

(− log2(PX(x))).

If X is a random variable and A is an event then PX is the distribution of X and
PX|A is a conditional distribution of X given A. In this case we define H∞(X) :=
H∞(PX) andH∞(X |A) := H∞(PX|A). For more on min-entropy and its relation
to the standard Shannon entropy see e.g. [Cac97].

Let the statistical distance between random variablesX andX ′ distributed over
the same set X be defined as

δ(X,X ′) :=
1
2

∑
x∈X

|X(x) −X ′(x)|

We will also say that X is δ(X,X ′)-far from X ′. If U is a random variable with
uniform distribution over X then define d(X) := δ(X,U). The above notation
extends in a natural way to probability distributions.

2.2 Message Authentication Codes

We will use the following (simplified) security definition of the Message Authen-
tication Codes (MAC s). For a more complete definition the reader may consult
e.g. [Gol04]. MAC is an algorithm which takes as an input a security parameter 1k,

Intrusion-Resilience Via the Bounded-Storage Model 211

a random secret key S ∈ {0, 1}λ(k) (where λ is some polynomial) and a message
M ∈ {0, 1}∗. It outputs an authentication tag MACS(M, 1k)) (we will sometimes
drop 1k). It is secure against an adaptive chosen-message attack if any probabilis-
tic polynomial time (PPT) adversary (taking as input 1k) has negligible3 (in k)
probability of producing a valid pair (M,MACS(M, 1k)), after seeing an arbitrary
number of pairs

(M1,MACS(M1, 1k)), (M2,MACS(M2, 1k)) . . .

(whereM �∈ {M1,M2, . . .)), even whenM1,M2, . . . were adaptively chosen by the
adversary.

2.3 Public-Key Encryption

A public-key encryption scheme is a triple (G, encr , decr), where G is a PPT key-
generation algorithm taking as input 1k and returning as output a (private-key,
public-key) pair (E,D), encr is an polynomial-time algorithm taking as input
1k, a message M ∈ {0, 1}∗ and a public key E and returning a ciphertext C =
encrE(M), and decr is an algorithm taking as input a private key D a cipher-
text C and returning a message M ′ = decrD(C). We require that always M =
decrD(encrE(M)). Let E be a polynomial time adversary which is given 1k andE.
Her goal is to win the following game. She produces two messages M0 and M1 (of
the same length). Then, she is given a ciphertextC = encrS(Mr), where r ∈ {0, 1}
is random. She has to guess r. We say that (G, encr , decr) is semantically secure
[GM84] if any polynomial time adversary has chances at most negligibly (in k)
better that 0.5. More on the definitions of secure public-key encryption can be
found e.g. in [Gol04].

2.4 Random Oracle Model

We prove the security of our protocol in the Random Oracle Model [BR93]. More
precisely, we will model a hash function H : {0, 1}i → {0, 1}j as a random oracle,
i.e. a black box containing a random function h : {0, 1}i → {0, 1}j. We assume
that every party (including the adversary) has access to this oracle, i.e. can ask it
for the value of h on any (chosen by her) arguments.

3 Bounded Storage Model

We will use the results from the Bounded-Storage Model, introduced by Maurer in
[Mau92]. So far, this model was studied in the context of information-theoretically
secure encryption [ADR02, DM04b, Lu04,Vad04, Din05], key-agreement
[CM97, DM04a], oblivious transfer [CCM98, Din01, DHRS04] and time-
stamping [MSTS04]. In this model one assumes that a random t-bit stringR (called
a randomizer) is either temporarily available to the public (e.g. the signal of a deep

3 A function f : N → R is negligible (in k) if for every c ≥ 1 there exists k0 such that
for every k ≥ k0 we have |f(k)| ≤ k−c.

212 S. Dziembowski

space radio source) or broadcast by one of the legitimate parties. We assume that
the memory s of the adversary is smaller than t and therefore she can store only
partial information about R. It has been shown in [ADR02, DM04b, Lu04, Vad04]
that under this assumption the legitimate parties, Alice and Bob, sharing a short
secret key Y initially, can generate a very long n-bit one-time padX with n) |Y |
about which the adversary has essentially no information.

More formally, Alice and Bob share a short secret initial key Y , selected uni-
formly at random from a key space Y, and they wish to generate a much longer
n-bit expanded key X (i.e. n) log2 |Y|). In a first phase, a t-bit random string R
is available to all parties, i.e., the randomizer space is R = {0, 1}t. Alice and Bob
apply a known key-expansion function

f : R× Y → {0, 1}n

to compute the expanded key as X = f(R, Y). Of course, the function f must be
efficiently computable and based on only a very small portion of the bits of R, so
that Alice and Bob need not read the entire string R.

The adversary Eve E can store arbitrary s bits of information aboutR, i.e., she
can apply an arbitrary storage function

h : R → U

for some U with the only restriction that |U| ≤ 2s. The memory size during the
evaluation of h does not need to be bounded. The value stored by Eve isU = h(R).
After storing U , Eve looses the ability to access R. All she knows about R is U . In
order to prove as strong a result as possible, one assumes that Eve can now even
learn Y , although in a practical system one would of course keep Y secret.

A key-expansion function f is secure in the bounded-storage model if, with
overwhelming probability4, Eve, knowing U and Y , has essentially no informa-
tion about X . To be more precise, let us introduce a security parameter k which
is an additional input of f and of Eve. Let us assume that the length of the ran-
domizer, the size of Eve’s memory and the length of the output of f are functions
of k, i.e. t = τ(k), s = σ(k), and n = ν(k) (with ν(k) ≥ k). Also, assume that
the set of the initial keys is always equal to {0, 1}μ(k), for some function μ. We say
that function f is (σ, τ, ν, μ)-secure in the bounded-storage model if for any Eve
(with memory at most σ(k)) the statistical distance of the conditional probabil-
ity distribution PX|U=u,Y =y from uniform distribution over the ν(k)-bit strings is
negligible, with overwhelming probability over values u and y. Above we assumed
that the adversary and the function f are deterministic, but note that we would
not loose any security by allowing them to be randomized.5

4 Formally, a sequence of probabilities p0, p1, . . . is overwhelming if the function f(k) =
1 − pk is negligible.

5 Formally we could do it by allowing E and f to take extra random inputs rE and rf ,
resp. This does not give any extra power to the adversary, for the following reasons:
(1) the input rf is obsolete since if E is randomized then having rf clearly does not
change anything as E can simply choose rf herself and encode it into the description
of f ; (2) the input rE is obsolete since a computationally unbounded E can always
(for any value of k) find the optimal rE .

Intrusion-Resilience Via the Bounded-Storage Model 213

Several key expansion functions were proven secure in the past couple of years
(see for example [ADR02, DM04b,Lu04, Vad04]). In the next section we present
an example of such a function, taken from [DM04b]. We have chosen the function
of [DM04b] because we believe that it is the simplest one. The reader familiar with
the BSM literature can safely skip the next section.

3.1 The Scheme of [DM04b]

The randomizer R ∈ R = {0, 1}t is interpreted as being arranged in a matrix
with m rows, denoted R(1), . . . , R(m), for some m ≥ 1 called the height of the
randomizer. Each row consists of l+ n− 1 bits, for some l ≥ 1 called the width of
the randomizer. Hence t = m(l+n−1) and R can be viewed as anm× (l+n−1)
matrix (see Fig. 1). The initial key Y = (Y1, . . . , Ym) ∈ Y = {1, . . . , l}m selects
one starting point within each row, and the expanded key X = (X1, . . . , Xn) is
the component-wise XOR of the m blocks of length n beginning at these starting
points Yi, i.e.,

X = f(R, Y),

where f : R×Y → {0, 1}n is defined as follows. For r∈R and Y =(Y1, . . . , Ym)∈Y,

R(1) Y1
...

R(m) Ym

block of length l + n − 1

block of length n

height

width l

m

Y2

Fig. 1. Illustration of the scheme for deriving an expanded n-bit key X = (X1, . . . , Xn),
to be used as a one-time pad, from a short secret initial key Y = (Y1, . . . , Ym). The
randomizer R is interpreted as a m × (l + n − 1) matrix with rows R(1), . . . , R(m) of
length l+n−1. The expanded key X is the component-wise XOR of m blocks of length
n, one selected from each row, where Yi is the starting point of the ith block within the
ith row R(i).

f(R, Y) :=

(
m⊕

i=1

R(i, Yi), . . . ,
m⊕

i=1

R(i, Yi + n− 1)

)
, (1)

where R(i, j) denotes the jth bit in the ith row of R. This is illustrated in Fig. 1.
The above function f was proven secure in [DM04b], assuming that memory

of the adversary has a size that is a constant fraction c < 1 of the randomizer.
For the practically looking parameters this constant should be around 8%, i.e.
σ(k) := τ(k) · 0.08. See [DM04b] for details.

214 S. Dziembowski

4 Intrusion-Resilient Session-Key Generation

By session-key generation we mean a protocol that allows two parties (that share
a long-term symmetric key) to agree securely on a session key even in presence of
a malicious adversary that can obstruct their communication. Below, we describe
what we mean by intrusion-resilient session-key generation.

4.1 An Informal Description of the Model

First, let us fix the basic terminology. The honest users Alice A and BobB will be
attacked by a (polynomially bounded) adversary Eve E . The adversary is allowed
(1) to eavesdrop and to store the entire communication between Alice and Bob (2)
to fabricate messages or to prevent them from arriving and (3) to (periodically)
install malicious programs on the honest user’s machines (see below). Such a pro-
gram will be called a virus. We assume that the honest users share a long-term
secret keyK generated randomly. The time is divided into sessions T1, T2, . . . (the
number of sessions will be bounded). At the beginning of the session the users are
allowed to get some fresh random input. At the end of each session Ti the users
output a new session key κi. (In practice, once κi is generated, the users will uti-
lize κi for secure communication.) For simplicity assume that each execution of
the protocol is always initiated by Alice. After being installed, the virus can do
the following.

1. Read all the internal data of the victim.
2. Compute an arbitrary function Γ on this data. We will model it by asking

the adversary to produce a description of Γ as a boolean circuit. The only re-
striction that we put on Γ is that the length of its output is limited (observe
however that since Eve is polynomially-bounded the size of Γ has to be polyno-
mial). Note also that we do not need to consider the case of interactive viruses
(that would be allowed to engage in a interactive massage exchange with the
adversary), since the circuit may contain the description of the entire state of
the adversary.

3. Send the result of the computation back to the adversary.

Note, that we assume that the adversary is not allowed to modify the programs
running on the users’ machines. Informally speaking the goal of the adversary is
to successfully break some test session Ttest (of her choice), by achieving one of the
following goals:

1. learn κtest ,
2. convince at least one of the players to accept some κ′test about which the ad-

versary has some significant information, or
3. make A and B agree on different keys.

Clearly, if the adversary installs a virus on one of the users’ machines in session
Ttest then she can instruct the virus to retrieve κtest (since in a usual scenario

Intrusion-Resilience Via the Bounded-Storage Model 215

the session key κi is short6). Therefore, we are interested only in the adversary
breaking those sessions Ttest during which no virus was installed (neither on the
machine of A nor on the one of B).

Traditionally when considering forward security (see e.g. [Kra96]) one allows
the adversary to learn all the session keys except of the challenge key κtest . In our
model this ability of E comes from the fact that the adversary can compromise
all sessions except of Ttest (we will actually allow the adversary to ,,compromise
a session” that has already ended some time ago). Finally, let us remark that in
this model we assume that the players can reliably erase their data (in particular,
after the session Ti the players would erase κi). Actually, we will assume that the
only data that is not erased between the sessions is the secret key K.

4.2 A More Formal Description of the Model

We are now going to define the model more formally. Our definitions are inspired
by the definitions of the security of key-exchange protocols (esp. [CK01]). For the
sake of simplicity we assume that the protocol is executed just between two fixed
parties, and concurrent execution of the sessions is not allowed, i.e. the users sim-
ply execute one session after another. Giving a complete definition (e.g. in the style
of [CK01]) remains an open task.

The session-key generation scheme is a tuple (A,B, α, β, γ, δ, χ), where α, β, γ,
δ, χ are some polynomials and A and B are interactive Turing machines, taking
as input a security parameter 1k and a secret key K ∈ {0, 1}α(k). The adversary
E is a PPT Turing Machine taking as input 1k. The execution is divided into the
sessions T1, T2, . . . , Tχ(k). The execution of each Ti looks as follows:

1. The machinesA andB receive uniformly (and independently) chosen random
inputs rA ∈ {0, 1}β(k) and rB ∈ {0, 1}β(k) (respectively).

2. Machines start exchanging messages. The adversary can eavesdrop the mes-
sages. She can also prevent some of the messages from arriving to the destina-
tion and fabricate new messages. At the beginning A sends a unique message
start to B (so the adversary knows that a new session started).

3. At the end of the session the machines (privately) output an agreed key κi ∈
{0, 1}δ(k). If the traffic was not disturbed by the adversary then they have to
output the same value.

4. Now the adversary may choose to compromise the session Ti (each session Ti

may be compromised at most once in the entire execution of the protocol). In
this case the following happens.
(a) Eve produces a description of a boolean circuitC (which models the virus)

computing a function Γ : {0, 1}w → {0, 1}γ(k) (w is an arbitrary value).
Clearly we will always have γ(k)χ(k) < α(k), since otherwise Eve could re-
trieve the entire secret keyK. The size ofC is arbitrary (however, it has to
be polynomial in the security parameter, as the adversary is polynomially-
bounded).

6 Even if one would develop a scheme in which κi is too large to be retrieved, the ad-
versary could simply tell the virus to steal the data that is encrypted with κi.

216 S. Dziembowski

Note that we assume a uniform bound γ(k) on the amount of bits that
the adversary is allowed to steal in each compromised session. More gen-
erally, one could give a bound on the total number of bits retrieved by the
adversary in all compromised sessions.

(b) Eve learns the value of Γ (rA, rB,K).
Observe that the function Γ ,,has a complete view” of the internal states

of the parties during the session. Thus in particular the value of Γ (rA, rB,K)
may include the encoding of κi (if this is the wish of the adversary). Also note
that our model is actually stronger than what we need in practice (as we as-
sume that Γ has simultaneous access to both A andB, without restricting the
amount of data that she needs to transfer between the parties, to perform the
computation).

5. The adversary may decide to compromise a session (in the same way as in
Point 4) even long time after the sessionTi is finished (one can imagine that the
descriptions of the states ofA andB at the end of Ti are deposited somewhere
and the adversary may decide to access them at any later time). This may
seem an artificial strengthening of the model. However, in fact it simplifies
things, as it allows us to model the fact that κi may become known to the
adversary at some later point. Alternatively, we could introduce a special type
of session-key-queries [CK01] that the adversary may ask to learn κi after the
end of Ti.

Let C be the set of all compromised sessions. Clearly, the adversarywins if for some
session Ti �∈ C users A and B outputted different keys. If this is not the case then
at the end of the execution the adversary decides that some Ttest �∈ C will be her
test-session. In this case her task will be to distinguish κtest from a truly random
key of the same length. Of course we need to require that at least one of A and
B actually outputted some key κtest (by blocking the message flow the adversary
can clearly prevent the parties from reaching any agreement). The distinguishing
game is as follows:

1. Let r ∈ {0, 1} be random.
2. If r = 0 then pass κtest to the adversary. Otherwise generate a random κ′ ∈

{0, 1}δ(k) and pass it to the adversary. The adversary outputs some r′ ∈ {0, 1}.
We say that she won the distinguishing game if r = r′.

Definition 1. We say that a key generation scheme (A,B, α, β, γ, δ, χ) as above
is intrusion-resilient if for any PPT E

1. the chances that in some session Ti �∈ C machines A and B outputted different
keys are negligible (in k), and

2. the chances that E wins the distinguishing game, are at most negligibly (in k)
greater than 1/2.

4.3 The Protocol for Intrusion-Resilient Session-Key Generation

Preliminaries. Let f be (σ, τ, ν, μ)-secure in the BSM. Let MAC be a message
authentication scheme secure against adaptive chosen message attack. Assume

Intrusion-Resilience Via the Bounded-Storage Model 217

that for a security parameter 1k the length the secret key of MAC is λ(k). Let
H : {0, 1}ν(k) → {0, 1}λ(k) be a hash function (modeled as a random oracle).
Let (G, encr , decr) be a semantically secure public-key encryption scheme. In or-
der to achieve forward-security we will use the public-key encryption in a standard
way (see e.g. [DvOW92, Kra96]): Alice will (1) generate an ephemeral (public key,
private key) pair7 and (2) send the public key (in an authenticated way) to Bob,
Bob will generate the session key κ and send it (encrypted with Alice’s public
key) back to Alice (who can later decrypt κ).8 Afterwards, the ephemeral keys
are erased.

The Protocol. Fix some value of the security parameter k. Let R = {0, 1}τ(k)

and let Y = {0, 1}μ(k). Assume that Alice and Bob share a random secret key
K = (RA, RB) ∈ R2 and hence α(k) := 2 · τ(k). In each session Ti the players
execute the following protocol.

1. Alice generates a random YA ∈ Y and sends it to Bob.
2. Bob generates a random YB ∈ Y and sends it to Alice.
3. Both parties calculate S := f(RA, YA) ⊕ f(RB, YB) and S′ := H(S).
4. Alice generates a public key E and sends (E,MAC S′(A:E)) to Bob.
5. Bob verifies the correctness of the authentication tag. If it is correct then he

generates a random κi and sends (encrE(κi),MAC S′(encrE(B:κi)) to Alice.
He outputs κi.

6. Alice verifies the correctness of the authentication tag. If it is correct then she
decrypts κi and outputs it.

7. The players erase all their internal data (including κi and random inputs),
except of the long-term key K.

The role of labels ,,A:” and ,,B:” is to prevent the adversary from bouncing the
message sent by Alice in Step 4 back to her in Step 5.

The Bound on the Amount of Retrieved Data. An important parameter
that needs to be fixed is the amount of data that the virus can retrieve in each
session, i.e. the value of γ(k). If the adversary compromises some sessions than at
any point of the execution of the scheme, then she knows the value of some function
h̃ of K. We can think about h̃ as changing dynamically after each session. After
execution of i sessions the length of the output of h̃ is at most the sum of

• i · γ(k) (since she could have compromised at most i sessions do far), and
• i · λ(k) (since she could have learned i keys of the MAC scheme9)

Since the maximal number of sessions is χ(k) we know that the output of h̃ is of
a length at most

χ(k) · (γ(k) + λ(k)).

7 Ephemeral key is a key that is generated just for some particular session (and it is
erased later).

8 In [DvOW92,Kra96] it is actually done by exchanging Diffie-Hellman ephemeral keys,
i.e. doing authenticated Diffie-Hellman key agreement.

9 We have to add it because the definition of the security of MAC does not imply the
secrecy of all the bits of the key.

218 S. Dziembowski

Therefore if we want this value to be at most σ(k) we have to set

γ(k) := σ(k)/χ(k) − λ(k). (2)

This ensures that the information that Eve has about K is at most σ(k) bits.

4.4 The Security of the Protocol

We prove the following.

Theorem 1. The protocol in Sect. 4.3 is intrusion resilient.

Proof (sketch). Fix some uncompromised session Ti. Let us first consider the case
when the adversary wants to break it by disrupting (by stealing and substituting
messages) the communication. Let SA and SB be the values of S computed by A
and B (resp.) in Step 3. If the execution of the protocol was not disturbed by the
adversary then we have SA = SB. By the security of f in the BSM, the adversary
has almost no information about the values SA and SB (i.e. their distribution is
negligibly far from uniform from her point of view). Note that this holds even if
she was disrupting the communication between the parties. The only thing that
the adversary could possibly do is to force SA and SB to be such that they are not
equal, but they are not independent either. For example by modifying the message
YA (sent in Step 1) she could make SA ⊕ SB to be equal to some value S⊕ chosen
by her.10

This is why, before using S, we hash it (in Step 3): S′ := H(S). Let S′
A :=

H(SA) and let S′
B := H(SB). Clearly the chances of E of guessing SA or SB are

negligible. This is because the distributions of SA and SB are negligibly far from
a uniform distribution over {0, 1}ν(k) and we assumed that ν(k) ≥ k. Therefore
(since we model the hash function as a random oracle) we can assume that (except
with negligible probability) from the point of view of E the distributions of the
values S′

A and S′
B are entirely uniform. Moreover, one of the following has to hold

(except with negligible probability):

1. S′
A = S′

B, or
2. S′

A and S′
B are independent.

Assume that the first case holds. Then, the adversary is not able to fabricate mes-
sages in Steps 4 and 5, without breaking the MAC. The security of κi follows
now from the security of the encryption scheme (if the adversary could distin-
guish κi from a random key, then she could clearly break the semantic security of
(G, encr , decr)).

10 Consider for example the scheme from Sect. 3.1. Write YA = (Y1, . . . , Ym). Suppose
the adversary stored the first row (RA(1)) of RA (she should have enough memory to
do it) and she modified YA = (Y1, . . . , Ym) (sent is Step 1) only on the first component
(Y1). Let Y ′

A be the result of this modification. Clearly almost always fA(RA, YA) 	=
fA(RA, Y ′

A); however, fA(RA, YA)⊕fA(RA, Y ′
A) (and hence SA ⊕SB) is known to the

adversary.

Intrusion-Resilience Via the Bounded-Storage Model 219

In the second case, the parties easily discover that the adversary was interfer-
ing with their communication. This is because if the adversary wants to prevent
them from discovering this, then she needs to create (in Steps 4 and 5) valid pairs
(message,MAC), without having any information about the secret keys. Again,
she cannot do it without breaking the MAC .

Now suppose that the adversary wants to distinguish κi from a random key,
after the session is completed. If she compromises some future session Tj then she
can of course recover the key S′ used in session Ti (if she stored YA and YB from
Ti). However, now it is too late (as the key S′ is used only for authentication).
Therefore, the security of κi again follows from the semantic security of the en-
cryption scheme. ��

4.5 An Alternative Protocol

In this section we show another variant of the protocol from Sect. 4.3. The main
difference is that instead of using a BSM-secure key derivation function f , we will
use a function f̃ : R × Y → {0, 1}k that is not BSM-secure, but still works
for our purposes. Again, let k be a security parameter and suppose that the ran-
domizer R is a random element from R = {0, 1}τ(k). Let Y := {(Y1, . . . , Yk) ∈
{1, . . . , τ(k)}k | Y1 < · · · < Yk}. Thus Y can be viewed as a set of all k-element
subsets of {1, . . . , τ(k)}. First, define

ϕ((R1, . . . , Rτ(k)), (Y1, . . . , Yk)) := (RY1 , . . . , RYk
).

Let H be a hash function. We set

f̃(R, Y) := H(ϕ(R, Y)).

In other words: we just pick random positions of the secret key, concatenate them
and hash the result. Of course usually f̃ is not secure in the BSM as the hash
functions belong to the complexity-theoretic world. However, if we model H as
a random oracle, then the value of f̃(R, Y) is random from the point of view of
the adversary, unless she managed to guess the value of ϕ(R, Y). So, if we want
to use f̃ instead of f in the protocol from Sect. 4.3, then we have to show that the
probability of any adversary of guessing ϕ(R, Y) correctly, is negligible (for the
appropriate choice of the parameters), even when the adversary is given h(R) and
Y (for some h : {0, 1}τ(k) → {0, 1}σ(k) chosen by her). If we model the adversary’s
guess as a function g we can formalize this requirement as follows.

Lemma 1. Suppose σ(k) = (1− δ)τ(k)− k, for an arbitrary δ > 0. For arbitrary
functions h : {0, 1}τ(k) → {0, 1}σ(k) and g : {0, 1}σ(k) → {0, 1}k we have that

P (ϕ(R, Y) = g(h(R), Y)) (3)

is negligible.

For the proof we need two other lemmas. The first lemma (proven in [CM97], see
Lemma 3) is quite simple. It roughly states that the knowledge of s bits of a ran-
dom string R reduces its min-entropy by around s, with a high probability.

220 S. Dziembowski

Lemma 2 ([CM97]). Let R be a random variable uniformly distributed over
{0, 1}t. Let h : {0, 1}t → {0, 1}s be an arbitrary function. Then, with probabil-
ity at least 1 − 2k the variable h(R) takes a value u such that

H∞(R | h(R) = u) ≥ t− s− k.

The second lemma (proven in [NZ96], see Lemma 11) is more complicated. Infor-
mally speaking, it states that if R ∈ {0, 1}t is a random string with min-entropy
δ · t and Y ∈ Y is chosen uniformly at random, then ϕ(R, Y) ∈ {0, 1}k has (with
high probability) a min-entropy close to δ′k, where δ′ is some constant.

Lemma 3 ([NZ96]). Let PR be a probability distribution over {0, 1}t with min-
entropy δt. SupposeR is chosen according toPR. Then, with probability at least 1−ε
(over the choice of y = Y) the distribution ofPϕ(R,y) is ε-far from some distribution
PX′ whose min-entropy is δ′k where δ′ := cδ/ log(δ−1) and ε := max(2−ck, 2−cδ′l)
for some constant c.

Actually, the lemma that is proven in [NZ96] is stronger, as it does not require Y
to be entirely uniform (see [NZ96] for details). We are now ready for the proof of
Lemma 1.

Proof (of Lemma 1). To simplify the notation we set s := σ(k) and t := τ(k).
First, observe that by Lemma 2 we have that (except with a negligible probability
2−k) the variable h(R) takes a value u such that

H∞(R | h(R) = u) ≥ t− s− k = δt. (4)

So, suppose that such u was selected. We are now going to apply Lemma 3. Thus
set δ′ = cδ/(log δ−1) and ε = max

(
2−ck, 2−cδ′k

)
(where c is some constant).

Observe that δ′ is constant and ε is negligible. Therefore (by Lemma 3) we know
that with overwhelming probability Y took a value y such that the conditional
distribution of

Pϕ(R,Y) | h(R)=u,Y =y (5)

is at most ε-far from a distribution PX′ with min-entropy δ′t. Assume that this
indeed happened. If we want to maximize (3) we have to let g choose an element
with the maximal probability according to the distribution Pϕ(R,Y) | h(R)=u,Y =y.
Clearly this probability is at most 2−H∞(PX′)+ε = 2−δ′t+εwhich is negligible in k.

5 Intrusion-Resilient Entity Authentication

In this section we informally describe a practical intrusion-resilient method for
entity authentication. In order to achieve such entity authentication one could of
course use the scheme from Sect. 4; however, this is an overkill and for practi-
cal applications a much simpler method suffices. The idea is as follows. We will

Intrusion-Resilience Via the Bounded-Storage Model 221

construct an intrusion-resilient scheme that allows a user U to authenticate to a
server S. We will consider only intrusions into U . This corresponds to a practical
situation in which the computers of the users are usually much more vulnerable
for the attacks then the computer of the server.

Assume that the parties have already established a channel C between S and
U that is authentic only from the point of view of the user, i.e. U knows that
(1) whatever comes through this channel is sent by U and (2) whatever is sent
through it can be read only by U . Now, the user wants to authenticate to the
server. This is a typical scenario on the Internet, where C is established e.g. us-
ing SSL (and the server authenticates with a certificate). In practice usually U
authenticates to S by sending his password over C. This method is clearly not
intrusion-resilient because once a virus enters the machine of U he can retrieve
the password (or record the key-strokes if the password is memorized by a
human).

In this section we propose an authentication method that is intrusion-resilient
(in the same sense as the protocols in the previous sections). Again, we will use
the assumption that the secret key K of the user is too large to be fully down-
loaded. We allow the virus to perform arbitrary computations11 of the victim’s
machine.

5.1 Our Protocol

Let f be a function that is (σ, τ, ν, μ)-secure in the BSM. Fix some security pa-
rameter k. The secret key K is simply the randomizer R ∈ {0, 1}τ(k). The key is
stored both on the user’s machine and on the server. The protocol is as follows (all
the communication is done via the channel C).

1. The server selects a random Y ∈ {0, 1}μ(k) and sends it to Bob.
2. Bob replies with f(R, Y).
3. Alice verifies the correctness of Bob’s reply.

Now assume that the adversary retrieved at most σ(k) bits of R. More precisely,
assume that the adversary knows a value h(R), where h is a function with the
range {0, 1}σ(k). It is easy to see that (by the security of f) she has negligible
chances of being able to reply correctly to the challenge Y . Observe that if the
adversary replies (in Step 2) with some value X , and Alice rejects this answer,
than the adversary learns exactly one bit of information about R (namely that
f(R, T) �= X), which should be added to the total number of ,,retrieved” bits (if
one want to achieve the security against multiple impersonation attempts).

Note that since we assume that the server is secure (i.e. there are no intrusions
to him) hence one could generate K pseudo-randomly and just store the seed on
the server. For example: the seed s could be a key to the block-cipher B and one
could set K := (Bs(1), Bs(2), . . . , Bs(j)), for some appropriate parameter j (this
method allows for a quick access to any part of K).

11 The computational power of the virus does not need to be limited in this case.

222 S. Dziembowski

5.2 The Protocol of [KS99]

In this section we note that in the protocol from Sect. 5.1 one can use a simpler
function f than the functions secure in the BSM. Namely, the server can simply
ask (in Step 1) for the values of k random positions on K. Formally, the challenge
in Step 1 is a random k-element subset of the set {1, . . . , τ(k)}. The function f in
Step 2 is replaced with ϕ (where ϕ was defined in Sect. 4.5). This is exactly the
protocol of [KS99] (however in that paper it was analyzed in a weaker model where
the adversary is allowed to access only the individual bits of the secret key). The
security of this protocol follows from the analysis in Sect. 4.5.

6 Discussion

The main drawback of our protocols is that during the intrusion the virus can
impersonate the user (and the user may not even be aware that something wrong
is happening). As a partial remedy we suggest that the user could be required
to split the private key into 2 halves K1 and K2, and to store each of them on a
separate DVD disc. In this case the authentication process would require physical
action of replacing one DVD with another (assuming that there is only one DVD
drive in the machine). Note that this method does not work if we assume that the
adversary is able to store large amounts of data on user’s hard-disc (as in this case
she can make a local copy of the DVDs containing the key).

7 Open Problems

It remains an open problem to examine which variant of the protocols described
above is the best for practical applications. We did not provide a comparison be-
tween the protocols based on the BSM key-expansion function and the protocols
based on the function ϕ (Sect. 4.5 and 5.2), as such comparison should depend on
the concrete parameters that one wants to optimize (the size of the communicated
data, computing time, level of security). For some choice of these parameters (long
computing time, high level of security) it may be even practical to use protocols
that perform computations on the entire randomizer. For example in the protocol
in Sect. 4.5 one could use function f̃ that simply hashes the entire randomizer R
concatenated with Y (i.e. set f̃(R, Y) = H(R · Y)).

Another open problem is to implement other cryptographic tasks (as asymmet-
ric encryption and signature schemes) in our model.

Acknowledgments

We would like to thank Krzysztof Pietrzak and Bartosz Przydatek for helpful dis-
cussions, and the anonymous referees for their comments.

Intrusion-Resilience Via the Bounded-Storage Model 223

References

[ADR02] Y. Aumann, Y. Z. Ding, and M. O. Rabin. Everlasting security in the
bounded storage model. IEEE Transactions on Information Theory,
48(6):1668–1680, 2002.

[And02] R. Anderson. Two remarks on public key cryptology. Technical report,
University of Cambridge, Computer Laboratory, 2002.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

[Cac97] Christian Cachin. Entropy Measures and Unconditional Security in Cryp-
tography. PhD thesis, ETH Zurich, 1997. Reprint as vol. 1 of ETH Series
in Information Security and Cryptography, ISBN 3-89649-185-7, Hartung-
Gorre Verlag, Konstanz, 1997.

[CCM98] C. Cachin, C. Crepeau, and J. Marcil. Oblivious transfer with a memory-
bounded receiver. In 39th Annual Symposium on Foundations of Com-
puter Science, pages 493–502, 1998.

[CDD+05] D. Cash, Y. Z. Ding, Y. Dodis, W. Lee, R. Lipton, and S. Walfish.
Intrusion-resilient authentication and key agreement in the limited com-
munication model. Manuscript, 2005.

[CHK03] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryp-
tion scheme. In Advances in Cryptology - EUROCRYPT 2003, Interna-
tional Conference on the Theory and Applications of Cryptographic Tech-
niques, Warsaw, Poland, May 4-8, 2003, Proceedings, volume 2656 of Lec-
ture Notes in Computer Science, pages 255–271, 2003.

[CK01] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and
their use for building secure channels. In Advances in Cryptology - EURO-
CRYPT 2001, International Conference on the Theory and Application of
Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceed-
ing, volume 2045 of Lecture Notes in Computer Science, pages 453–474,
2001.

[CM97] C. Cachin and U. Maurer. Unconditional security against memory-
bounded adversaries. In Burton S. Kaliski Jr., editor, CRYPTO, vol-
ume 1294 of Lecture Notes in Computer Science, pages 292–306. Springer,
1997.

[DFK+03] Y. Dodis, M. K. Franklin, J. Katz, A. Miyaji, and M. Yung. Intrusion-
resilient public-key encryption. In Topics in Cryptology - CT-RSA 2003,
The Cryptographers’ Track at the RSA Conference 2003, San Francisco,
CA, USA, April 13-17, 2003, Proceedings, volume 2612 of Lecture Notes
in Computer Science, pages 19–32, 2003.

[DFK+04] Y. Dodis, M. K. Franklin, J. Katz, A. Miyaji, and M. Yung. A generic
construction for intrusion-resilient public-key encryption. In Tatsuaki
Okamoto, editor, CT-RSA, volume 2964 of Lecture Notes in Computer
Science, pages 81–98. Springer, 2004.

[DHRS04] Y. Z. Ding, D. Harnik, A. Rosen, and R. Shaltiel. Constant-round oblivi-
ous transfer in the bounded storage model. In M. Naor, editor, TCC, vol-
ume 2951 of Lecture Notes in Computer Science, pages 446–472. Springer,
2004.

[Din01] Y. Z. Ding. Oblivious transfer in the bounded storage model. In Joe Kil-
ian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science,
pages 155–170. Springer, 2001.

224 S. Dziembowski

[Din05] Y. Z. Ding. Error correction in the bounded storage model. In J. Kilian,
editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages
578–599. Springer, 2005.

[DLL05] D. Dagon, W. Lee, and R. J. Lipton. Protecting secret data from insider
attacks. In Financial Cryptography and Data Security, 9th International
Conference, FC 2005, Roseau, The Commonwealth of Dominica, February
28 - March 3, 2005,, pages 16–30, 2005.

[DM04a] S. Dziembowski and U. Maurer. On generating the initial key in the
bounded-storage model. In Jan Camenisch and Christian Cachin, editors,
Advances in Cryptology — EUROCRYPT ’04, volume 3027 of Lecture
Notes in Computer Science, pages 126–137. Springer-Verlag, May 2004.

[DM04b] S. Dziembowski and U. Maurer. Optimal randomizer efficiency in the
bounded-storage model. Journal of Cryptology, 17(1):5–26, January 2004.

[Dod00] Y. Dodis. Exposure-Resilient Cryptography. PhD thesis, Massachussetts
Institute of Technology, August 2000.

[DvOW92] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and
authenticated key exchanges. Designs, Codes and Cryptography, 2(2):107–
125, 1992.

[Dzi05] S. Dziembowski. Intrusion-resilience via the bounded-storage model. Cryp
tology ePrint Archive,Report 2005/179, 2005. http://eprint.iacr.org/.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Com-
puter and System Sciences, 28(2):270–299, 1984.

[Gol04] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applica-
tions. Cambridge University Press, New York, NY, USA, 2004.

[IR02] G. Itkis and L. Reyzin. Sibir: Signer-base intrusion-resilient signatures.
In Advances in Cryptology - CRYPTO 2002, 22nd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 18-22,
2002, Proceedings, volume 2442 of Lecture Notes in Computer Science,
pages 499–514, 2002.

[Kra96] H. Krawczyk. A versatile secure key-exchange mechanism for the internet.
In Proceedings of the 1996 Symposium on Network and Distributed System
Security (SNDSS ’96), pages 114–127. IEEE Computer Society, 1996.

[KS99] J. Kelsey and B. Schneier. Authenticating secure tokens using slow mem-
ory access. In USENIX Workshop on Smart Card Technology, pages 101–
106. USENIX Press, 1999.

[KSWH00] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side channel cryptanalysis
of product ciphers. Journal of Computer Security, 8(2/3), 2000.

[Lu04] C.-J. Lu. Encryption against storage-bounded adversaries from on-line
strong extractors. Journal of Cryptology, 17(1):27–42, January 2004.

[Mau92] U. Maurer. Conditionally-perfect secrecy and a provably-secure random-
ized cipher. Journal of Cryptology, 5(1):53–66, 1992.

[MSTS04] T. Moran, R. Shaltiel, and A. Ta-Shma. Non-interactive timestamping
in the bounded storage model. In Advances in Cryptology - CRYPTO
2004, 24th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 2004, Proceedings, volume 3152 of Lecture
Notes in Computer Science, pages 460–476, 2004.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of
Computer and System Sciences, 52(1):43–52, 1996.

[Vad04] S. P. Vadhan. Constructing locally computable extractors and cryptosys-
tems in the bounded-storage model. Journal of Cryptology, 17(1):43–77,
January 2004.

Perfectly Secure Password Protocols in the
Bounded Retrieval Model

Giovanni Di Crescenzo1, Richard Lipton2, and Shabsi Walfish3

1 Telcordia Technologies, Piscataway, NJ, USA
giovanni@research.telcordia.com

2 Georgia Institute of Technology, Atlanta, GA, USA
rjl@cc.gatech.edu

3 New York University, New York, NY, USA
walfish@cs.nyu.edu

Abstract. We introduce a formal model, which we call the Bounded
Retrieval Model, for the design and analysis of cryptographic protocols
remaining secure against intruders that can retrieve a limited amount
of parties’ private memory. The underlying model assumption on the
intruders’ behavior is supported by real-life physical and logical consid-
erations, such as the inherent superiority of a party’s local data bus over
a remote intruder’s bandwidth-limited channel, or the detectability of
voluminous resource access by any local intruder. More specifically, we
assume a fixed upper bound on the amount of a party’s storage retrieved
by the adversary. Our model could be considered a non-trivial variation
of the well-studied Bounded Storage Model, which postulates a bound
on the amount of storage available to an adversary attacking a given
system.

In this model we study perhaps the simplest among cryptographic
tasks: user authentication via a password protocol. Specifically, we study
the problem of constructing efficient password protocols that remain se-
cure against offline dictionary attacks even when a large (but bounded)
part of the storage of the server responsible for password verification is
retrieved by an intruder through a remote or local connection. We show
password protocols having satisfactory performance on both efficiency
(in terms of the server’s running time) and provable security (making
the offline dictionary attack not significantly stronger than the online
attack). We also study the tradeoffs between efficiency, quantitative and
qualitative security in these protocols. All our schemes achieve perfect
security (security against computationally-unbounded adversaries). Our
main schemes achieve the interesting efficiency property of the server’s
lookup complexity being much smaller than the adversary’s retrieval
bound.

1 Introduction

Partially motivated by the recent press attention to intrusions from both external
attackers and insiders into databases containing highly sensitive information

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 225–244, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

226 G. Di Crescenzo, R. Lipton, and S. Walfish

(e.g., [27, 28]), we initiate a rigorous study of cryptographic protocols in the
presence of intruders, under a novel and reasonable assumption on their power.
This leads us to define a new formal model which we call the Bounded Retrieval
Model since we assume a bound on the amount of a party’s stored data that
can be retrieved by the adversary. In practice, this bound would be due to both
physical and logical considerations, as we now explain. With respect to internal
attackers, this bound may result from the capabilities of a simple Intrusion
Detection System (IDS), which can easily monitor any large and repeated access
to the party’s stored data. With respect to external attackers, this bound is
further minimized as a consequence of the inherent gap between the (smaller)
availability of bandwidth due to physical limits and the (larger) availability of
storage memory: an attacker needing a large amount of time to retrieve large
amounts of sensitive data will most likely be unable to maintain an unauthorized
connection for enough time without being detected.

Our model could be considered a non-trivial variation of the well-studied
Bounded Storage Model, introduced in [13] (see, e.g., [12, 14] and references
therein for further studies of several cryptographic tasks, such as key-agreement,
encryption, oblivious transfer, time-stamping, etc). This model postulates a fixed
upper bound on the storage capacity (but no bound at all on the computational
power) of the adversary attacking a cryptographic protocol. Thus, with respect
to the standard model used in the security analysis of most cryptographic prim-
itives, where the adversary is assumed to have a polynomial upper bound on
both storage and computational power, this model achieves much higher secu-
rity at the expense of a stronger assumption on the adversary’s storage capability.
Analogously, our model also avoids upper bounds on the computational power
of the adversaries at the expense of a stronger assumption on the adversary’s
retrieval capability, which we argued before as being supported by reasonable
considerations.

In this paper we use this model to analyze possibly the simplest cryptographic
task: entity authentication via password verification, which we will briefly call a
‘password protocol’ in the rest of the paper.

Password Protocols. Despite their often noticed weaknesses, password proto-
cols remain the most widely used method for authenticating computer users. In
traditional UNIX-like password schemes, the server stores some one-way func-
tion of users’ passwords in a single password database. In order to verify a login
attempt, the server simply computes the same one-way function on a putative
password supplied by the user attempting to login, and compares it to the stored
value in the database. If the values match, the user is allowed to log in. An adver-
sary trying to impersonate an authorized user can always try an “online attack”
by entering different passwords in correspondence to the user’s login name. How-
ever, if the user’s password is chosen with enough entropy or randomness, each
attempt is extremely unlikely to succeed, and modern servers are programmed
to close the authentication session after just a few unsuccessful attempts. Unfor-
tunately, the password database itself is typically small, and can be quickly and
easily retrieved by any attacker capable of minimally compromising the security

Perfectly Secure Password Protocols in the Bounded Retrieval Model 227

of the server. Although the password database does not directly contain any of
the user’s passwords, it opens up the possibility of an “offline dictionary attack”
to the adversary. In such an attack, the adversary can utilize the information
contained in any single record of the password database by attempting to apply
the appropriate one-way function to every word in a dictionary in the hopes
that it will match the content of that record (due to the users’ tendency to sup-
ply dictionary words for their passwords). Although too large to be efficiently
searched by a human, dictionaries are typically small enough so that they are
efficiently searchable by a computer, thus making this offline dictionary attack
quite feasible.

In this paper we explore the following simple but intriguing question: can
we design a scheme so that an adversary is required to access many records
when trying to carry out these attacks? Storage is a static, cheap resource,
that is very available today (such that a server can easily provide it in huge
quantities). External bandwidth, a time-dependent resource, is certainly much
less available than storage. Furthermore, the bandwidth available to a remote or
local attacker may be easily controlled by physical means (or even by monitoring
traffic at the server’s interface to the outside world). By using this gap between
server’s storage capacity and the adversary’s ability to retrieve stored data, we
show how to realize a significant server’s security advantage over the adversary,
thus making the off-line dictionary attack just slightly more powerful than the
(practically unsuccessful) online attack.

Analysis in the Bounded Retrieval Model. Intuitively, we propose to con-
struct password database files that are so large that either (1) they cannot be
retrieved in their entirety by a local or remote intruder in any reasonable time
(due to access or bandwidth limitations), or (2) any such huge retrieval oper-
ation is easily detected. Note that (2) can be obtained using very simple and
efficient intrusion detection mechanisms (see, e.g., [1] for a survey and [5] for
a theoretical model of intrusion detection). Specifically, a huge retrieval would
be considered an anomalous event, thus triggering actions such as closing the
adversary’s access port or preventing access to the storage area from any in-
sider. Furthermore, note that there are several typical scenarios where (1) can
be true. The simplest is clearly that of an adversary with relatively limited band-
width. In fact, this limitation is already present in existing networks, as even the
high bandwidth connections commonly available today may require minutes to
transfer modest data amounts such as 1 gigabyte. (See Appendix A for detailed
numerical examples.) As another typical scenario, assume the server is distribut-
ing the password database in several locations and that the adversary is either
unaware of the position of some of them, or cannot physically access some of
them.

Formally, we place a bound on the quantity of information from the server’s
storage area that is retrieved by the adversary during an attack. Analogously
to [13], security in our model can be information theoretic in nature, which
is quite desirable due to the brute-force nature of off-line dictionary attacks.
We consider two main classes of attacks in this model: (1) static retrievals,

228 G. Di Crescenzo, R. Lipton, and S. Walfish

modeling the case where the adversary must pre-select the data he wishes to
collect prior to the beginning of the actual data retrieval phase; and (2) adaptive
retrievals, modeling an adversary selecting each single location to be retrieved
based on the content of all previously retrieved locations. In both cases the total
information retrieved by the adversary is bounded by a fixed parameter. Each
of these two classes of attacks models a real world scenario. For example, static
intrusions model any situation where the adversary may receive blocks of data
chosen independently of their contents, such as data recovered from a damaged
and discarded hard disk. Adaptive intrusions model the most general scenario,
where the adversary may have arbitrary access to data blocks of its choice, such
as retrieving data interactively from an insecure network file server (for example,
via FTP). Although it would seem that an adversary, if possible, would always
choose to perform an adaptive retrieval attack, one should keep in mind that
adaptivity also requires the adversary to expend time to examine the information
that is being retrieved and therefore may actually provide the adversary with
less information than in the case of a static retrieval. We note that in this model
access to the entire data file by the adversary is not ruled out, as it can be easily
prevented using intrusion detection techniques. On the other hand, we caution
the reader that the model does not include the case in which the server is totally
compromised by an attacker, where the latter would actually be able to directly
observe the passwords received from users during their login attempts anyway.

Our results. In designing password protocols in the bounded retrieval model,
we pay attention to various parameters for security (e.g., the adversary’s ad-
vantage over the online attack success probability, and the adversary’s retrieval
strategy) and efficiency (e.g., the server’s lookup complexity). This allows us to
appropriately set target goals for both. To that purpose, it is useful to keep in
mind the following two important issues about parameters:

Adversary’s advantage vs. online attack success probability. Although it is cer-
tainly desirable to have a password scheme with 0 or exponentially small adver-
sary’s advantage probability, in practice it is essentially just as desirable to have
a password scheme with the adversary’s advantage comparable to the online at-
tack success probability (as the overall attacker’s success probability is the sum
of the two values).

Server’s running time vs. adversary’s retrieval bound. Although intuitively it
would seem easier to design provably secure password schemes where at each user
registration or verification the server reads more locations than the adversary is
ever allowed, this severely restricts the efficiency of the scheme and its practical
applicability.

Summarizing, the combination of efficiency and security properties we de-
sire requires the adversary’s advantage to be provably comparable to the online
attack success probability, and the server’s running time (as measured by the
number of data blocks read) to be significantly smaller than the adversary’s.

Towards this goal, our first result is a lower bound on the advantage of the
adversary, which, among other things, relates the advantage to the adaptivity

Perfectly Secure Password Protocols in the Bounded Retrieval Model 229

of the server’s lookup strategy. We then start by exploring what schemes can be
constructed using well-known cryptographic tools such as secret sharing schemes
and all-or-nothing transforms. These result in schemes P1 and P2, having the
smallest possible adversary’s advantage (0 and exponentially small, respectively)
in the strongest adversarial model (adaptive attacks), but requiring the server’s
running time to be larger than the adversary’s retrieval bound.

Our main protocols, denoted as P3 and P4, achieve high efficiency in that
the server’s lookup complexity is much smaller than the adversary’s retrieval
limit. Protocol P3 is based on dispersers and pairwise-independent hash func-
tions, and guarantees both security against adaptive adversaries and that the
adversary’s advantage is not significantly larger than the online attack success
probability. Because of our previous lower bound, this protocol achieves an opti-
mal bound on the adversary’s advantage (up to a constant) for typical values of
the adversary’s retrieval bound (e.g. whenever the adversary’s retrieval bound
is a constant fraction of the storage). Protocol P4 is based on t-wise indepen-
dent hash functions and strong extractors and achieves security against static
retrieval attacks, ensuring exponentially-small adversary’s advantage without
any computational assumption. Protocols P3 and P4 can be combined, resulting
in a single scheme that simultaneously enjoys both of their desirable security
properties.

A more detailed account of our protocols’ properties is in Figure 1. We note
that none of our protocols is proved secure by assuming the existence of random
oracles (we thus removed this assumption from one protocol in [7]).

Protocol Adversary’s Adversary’s Server’s Server’s Storage
name advantage strategy complexity strategy constraints
P1 0 adaptive l > q non-adaptive n ≥ 2td

P2 O(2−λ) adaptive l > q non-adaptive n ≥ 2d

P3 O(m3/(m − q)2l2d) adaptive l < q non-adaptive n ≥ 2d + 1
P4 (2t + 4) · 2−λ static l < q adaptive n ≥ O(λ) + 2d

none 2−λ static l < q non-adaptive

Fig. 1. Any two protocols in the above table are incomparable, in the sense that each
one is better in some features than the other. Specifically, protocol P1, based on secret
sharing, is of interest as it achieves 0 adversary’s advantage. Protocol P2, based on
all-or-nothing transforms, is of interest as it achieves exponentially small adversary’s
advantage while improving storage constraints. Protocol P3, based on dispersers and
pairwise-independent hash functions, is of interest as it achieves security against adap-
tive adversaries and server’s lookup complexity l smaller than the adversary’s retrieval
bound q. Protocol P4, based on strong extractors and t-wise independent hash func-
tions, is of interest as it achieves the efficiency property of P3 as well as exponentially
small advantage against static adversaries. At the end of the paper we also discuss
a protocol that combines features from protocols P3 and P4. The last line in the ta-
ble points out that achieving exponentially small advantage against adaptive or static
adversaries is impossible when the server’s lookup strategy is non-adaptive, due to a
lower bound in Section 3. Formal definitions, including parameters and performance
measures used in the table, are given in Section 2.

230 G. Di Crescenzo, R. Lipton, and S. Walfish

Related work. The Bounded Retrieval Model is a novel variation of the Bounded
Storage Model of [13], and furthermore in some of our solutions we use strong ex-
tractors, which are a common tool for protocols in the Bounded Storage Model.
However, we point out that solutions and analysis for our password protocol
problems have to address quite non-trivial obstacles, even given such tools. A
bounded-retrieval notion similar to ours was also used implicitly in [10], in the
context of smart cards with slow memory access. Whereas [10] studied the prob-
lem of token based authentication in a bounded retrieval context, we consider
the problem of password based authentication.

The importance of securing the server’s password file has been well-known for
many years, and is discussed in detail, for instance, in [20, 8]. Various aspects of
password protocols have been studied in the security literature. One important
area is that of securing password protocols where the communication goes over
an insecure network (e.g., see [9] for schemes based on public-key encryption
and [2, 3, 18, 26] for heuristic schemes not using public keys). While this aspect
is orthogonal to the server compromise security considered in our work, we stress
that many of the cited results can be modularly combined with results in this
paper to obtain network password protocols secure against bounded retrieval
attacks. Other work on password-related protocols includes well-studied areas
like password- authenticated key exchange, that are even farther from the scope
of this work.

2 Model and Formal Definitions

We start by presenting the scenario for password protocols. We discuss the
entities involved and the assumed connectivity among them, the phases, the
(sub)protocols, and finally the requirements that a password protocol has to
satisfy to be declared secure in the bounded retrieval model.

Entities, connectivity, resources. An arbitrary system (or network) contain-
ing a number of resources can be accessed locally or remotely through a password
protocol controlled by a server S. The users, denoted as U1, U2, . . . , Ut for some
integer t, are any entities that need resources in the system, and thus may require
access to it. Although potentially all users are connected to each other as well as
to the server through some communication link, for practical purposes, we are
interested in password protocols where each user only interacts with the server,
and not necessarily at the same time. For simplicity, we will assume that the
communication link between each user and the server is private or not subject
to attacks, although we note that the model in which this link is also subject
to adversarial attacks is of orthogonal focus and can be separately studied (but
will not be studied in this paper). The server’s storage area contains a password
file, that we denote as F , with m locations, each containing a record of n bits.
We denote as F [i] the content of the i-th location of F and, as F [L] the set
{F [i] : i ∈ L}.

Perfectly Secure Password Protocols in the Bounded Retrieval Model 231

Subprotocols and Phases. A password protocol can be divided into four main
algorithms or subprotocols: a setup algorithm, a password sampling algorithm, a
registration algorithm and an identification subprotocol.

A setup algorithm, that we denote as Set, is only run by the server. On input
a security parameter λ in unary, algorithm Set returns an m-location password
file F , for some m = poly(λ) in time at most polynomial in λ.

A password sampling algorithm, that we denote as Sample, is run by users to
select their passwords. We will only consider the algorithm Sample that, on input
parameter 1d, returns a uniformly chosen string from {0, 1}d. (In each of our con-
structions, by properly using tools such as extractors, we can modularly reduce to
this casemore general cases such as that of users choosing passwords from a smaller
dictionary of stringswith knownmin-entropy.)We will think of the password length
d as a constant, this being much smaller than the security parameter λ.

The registration algorithm, denoted as Reg, is a possibly probabilistic poly-
nomial time (in n) algorithm that takes as input a user’s login name logi, her
password pwi, and the password file F , and returns an output F for S. Here,
logi denotes a login name somehow generated by S or by Ui (we won’t deal with
the details on how this happens but just assume that each user has a distinct
login name that is, for simplicity of notation, d-bit long), and the output F is
an updated version of the password file.

During an identification subprotocol, a user Ui sends both logi and pwi to
S, which runs a deterministic polynomial time (in λ) algorithm Ver on input
logi, pwi, F , in addition to the various parameters and all login names, and re-
turns accept (briefly, 1) or reject (briefly, 0), according to whether the user has
been positively identified or not.

We will denote a password protocol as a quadruple of probabilistic algorithms
P = (Set,Sample,Reg,Ver), and we will assume, for simplicity, that an exe-
cution of P can be divided into three phases: first, an initialization phase, where
the server runs the setup algorithm; then, a registration phase, where each among
the t users U1, . . . , Ut chooses a password using Sample and runs subprotocol
Reg with server S; finally, an identification phase: at any time, any among
U1, . . . , Ut can run the identification subprotocol with S. We denote as Param
the list of parameters (represented in unary) associated with P , that can be
any subset among: the password length d, the number of users t, the number
of locations m, the location size n, the security parameter λ, which have been
defined above, and the lookup complexity l, and the retrieval bound q, which will
be defined later.
Correctness requirement. A basic requirementwe expect from a passwordpro-
tocol is that, at any time, a server positively identifies previously registered users.

Definition 1. Let P = (Set,Sample,Reg,Ver) be a password protocol with
parameters Param = (d, t,m, n, l, q). The correctness requirement for P is as
follows: for each j ∈ {1, . . . , t}, and any login-name logj, it holds that

Pr
[
F ← Set(1n); {pwi ← Sample(1d);F ← Reg(logi, pwi, F)}t

i=1 :
Ver(Param, {logi}t

i=1, logj, pwj , F) = 1

]
= 1.

232 G. Di Crescenzo, R. Lipton, and S. Walfish

Bounded Retrieval security requirement. All our results consider an ad-
versary A that is not time-bounded. This is not only an interesting byproduct
of our results but also an especially desired requirement in our model, as we
want to withstand adversaries who can run dictionary attacks. Moreover, the
adversary is given knowledge of all users’ login names, and is allowed to retrieve
up to q entries from the server S’s password file F . We consider two levels of
adaptivity (that is, dependency on the content of F) that the adversary can
use in choosing the q entries from F . In practical applications, the adaptivity
level plays an important role, as adaptivity may slow down the retrieval rate for
the adversary. Specifically, we will restrict the adversarial attack to one of the
following two types:

1. Static Retrieval: First, the adversary must select a set of at most q locations
L = {l1, . . . , lq}, without observing any of the data in the password file
F . Then the adversary is given the contents F [l1], . . . , F [lq] of the selected
locations. Finally, the adversary returns a pair (logj , pw

′
j), trying to guess

the password of user Uj .
2. Adaptive Retrieval: As before, except each of the q locations can be selected

by the adversary after seeing the contents of the previously selected ones.

Formally, for x ∈ { static, adaptive }, we say that a bounded retrieval attack of
type x is successful if the experiment EP,A

x returns 1, where

1. if x = static then EP,A
x = EP,A

static

2. if x = adaptive and EP,A
x = EP,A

adaptive,

and, for all parameters Param = (d, t,m, n, l, q) described in unary and all login
names {log1, . . . , logt}, the experiments are defined as follows (here, the notation
y ← Alg(x1, x2, . . .) denotes the process of running the (possibly probabilistic)
algorithm Alg on input x1, x2, . . . and the necessary random coins, and obtaining
y as output):

EP,A
static(Param, {logi}t

i=1)
1. F ← Set(1n)
2. for i = 1, . . . , t,

pwi ← Sample(1d)
F ← Reg(logi, pwi, F)

3. p ← (Param, {logi}t
i=1)

4. {l1, . . . , lq} ← A(p)
5. (log′, pw′) ← A(p, {li, F [li]}q

i=1)
6. if Ver(p, log′, pw′, F) = 1 then

return: 1
else return: 0.

EP,A
adaptive(Param, {logi}t

i=1)
1. F ← Set(1n)
2. for i = 1, . . . , t,

pwi ← Sample(1d)
F ← Reg(logi, pwi, F)

3. i ← 0; p ← (Param, {logi}t
i=1)

4. repeat
i← i+ 1
li ← A(p, {lj , F [lj]}i−1

j=1)
until i = q

5. (log′, pw′) ← A(p, {li, F [li]}q
i=1)

6. if Ver(p, log′, pw′, F) = 1 then
return: 1 else return: 0.

We are now ready to define the security requirement for password protocols in
the bounded retrieval model.

Perfectly Secure Password Protocols in the Bounded Retrieval Model 233

Definition 2. Let P = (Set,Sample,Reg,Ver) be a password protocol with
parameters (d, t,m, n, l, q). For x ∈ { static, adaptive }, we say that P is
ε-secure against a bounded retrieval attack of type x if for any algorithm A,
all login names {log1, . . . , logt}, and any j = 1, . . . , t, it holds that

Pr
[
b ← EP,A

x (Param, {logi}t
i=1) : b = 1 ∧ log′ = logj

]
≤ 1

2d
+ ε.

Remarks. In the above definitions we only have addressed the most basic and
practically relevant variant of a number of definitions that one could come up
with. For instance, one could strengthen the security requirement by defining an
adversary to be successful even if it obtains any nonzero information about the
joint values of all passwords, rather than just being able to successfully login, as
defined above. (This requirement seems stronger than what’s desired in practice.)

Performance Metrics. In addition to the above different adversarial models,
when designing password protocols secure under bounded retrieval attacks, we
also consider various performance metrics, which we will now discuss in detail. In
the rest of the paper we will present a lower bound on the adversary’s advantage,
denoted as ε, and protocols that exhibit tradeoffs between all these metrics, in
the effort of balancing their security and efficiency.

Time, lookup strategy, storage complexity. An obviously important metric is the
time complexity of algorithms Set,Reg and Ver; in particular, we will pay
attention to the (possibly parallel) time complexity of Ver, as it is run more
frequently in applications. Additionally, we will pay special attention to the
lookup strategy of algorithm Ver, and specifically, to whether it is adaptive or
non-adaptive; that is, based on location content or not. Also related to time
complexity is the storage complexity; that is, the amount of storage used by the
server during the initialization phase. Although storage is today an easily avail-
able resource, we will ensure that even a large increase in the storage complexity
does not make the time complexity impractical.

Lookup complexity. Additionally, we will pay special attention to the lookup
complexity of algorithms Reg and Ver, which we denote as l, and defined as
the maximum number of locations from F that is read or written by either
algorithm Reg during its execution on an input logi, pwi, F or algorithm Ver,
when run on an input log, pw, F , in addition to all parameters and login-names.
We will assume, without loss of generality, that this number is the same for all
inputs to Reg and Ver. (We note that all algorithms Reg,Ver can be simply
modified so that this holds).

Adversary’s breaking advantage. Our model is of information-theoretic nature, as
we will consider security against adversaries that are not time-bounded. Therefore,
we will be interested in constructions that achieve adversary’s advantage ε either =
0 or exponentially small (in the security parameter λ). Additionally, given that an
on-line attack is always available in practice to an adversary, we will be interested
in constructions that achieve ε = O(2−d), where d is the length of a password.
(Note that 2−d may not be exponentially small in the security parameter.)

234 G. Di Crescenzo, R. Lipton, and S. Walfish

Lookup complexity vs. Retrieval Bound. Given lookup complexity l and retrieval
bound q for the adversary, it is of interest to achieve constructions that have the
smallest possible value for l and the highest possible for q, in combination with
satisfactory performance on the above metrics.

3 A Lower Bound on the Adversary’s Advantage

We present a lower bound on the security of password protocols having lookup
complexity smaller than the adversary’s retrieval bound. This will be used to
prove the protocol in Section 5 optimal up to a multiplicative constant.
Some definitions. Let P = (Set,Sample,Reg,Ver) be a password protocol
and let l denote the lookup complexity of the verification subprotocol Ver.
We now define t distributions LocDj , for j = 1, . . . , t, where each LocDj is
the distribution of the locations in F accessed by the algorithm Ver on fixed
input (Param, {logi}t

i=1, logj, pwj , F) generated as in experiment EP,A
static. For-

mally, we first define algorithm LVer as the algorithm that, given an input
(Param, {logi}t

i=1, logj, pwj , F), returns the set L of locations from F accessed
during an execution of algorithm Ver on the same input. Then we can define,
for j = 1, . . . , t, the distribution LocDj as

{run steps 1, 2 of EP,A
static ;L← LVer(Param, {logi}t

i=1, logj, pwj , F) : L};

that is, the distribution of locations read by the server during a login by Uj. Note
that both Ver and LVer are deterministic algorithms, and therefore the actual
probability space for distribution LocDj is given by the randomness contained in
the public file F obtained during the execution of experiment EP,A

static; and, specif-
ically, by how the locations accessed by Ver change, if at all, as an effect of such
randomness. For instance, in the case of a non-adaptive lookup strategy, by defi-
nition, L can be a single value and therefore the distribution LocDj trivializes to
having a single value in its support. Recall that for a distribution D over support
X , the collision probability cp(D) is defined as

∑
x∈X(Pr [x′ ← D : x′ = x])2;

where we note that if a distribution has a single value in its support, then its
collision probability is 1.
Lower Bound Statement and Discussion. Informally, the following lower bound
formalizes the intuition that if the servers’ lookup complexity is smaller than
the adversary’s retrieval bound then the larger the amount of adaptivity in the
server’s lookup strategy, the harder is the adversary’s job in finding a password.
More formally:

Theorem 1. Let P = (Set,Sample,Reg,Ver) be a password protocol with
parameters (d, n, t, l,m, q), and assume that P is ε-secure against a bounded re-
trieval attack of static type. If l ≤ q then it holds that

ε ≥ max
j∈{1,...,t}

(⌊q
l

⌋
· 1
2d

· cp(LocDj)
)
,

where cp(LocDj) is the collision probability of distribution LocDj defined above.

Perfectly Secure Password Protocols in the Bounded Retrieval Model 235

We note that in the case of non-adaptive lookup strategy from Ver, distribution
LocDj returns a single value, its collision probability is equal to 1, and the bound
in the above theorem becomes ε ≥ �q/l� · 2−d, under the hypothesis l ≤ q. As
in practice, work in the order of 2d may be efficiently performed, we derive that
non-adaptive strategies for Ver can only result in password protocols ε-secure
for values of ε that are not smaller than the on-line attack success probability
(e.g., ε = Ω(2−d)).

The formal proof of Theorem 1 follows by showing an adversary that can
run some modified version of the server’s algorithm and always finds a password
that would be accepted by the server with probability equal to the lower bound
on ε in the statement of the theorem. Specifically, the adversary creates a new
password file F ′ identically and independently distributed from the real one;
then it starts an off-line dictionary attack by trying several passwords from the
dictionary, as follows. For each password, it runs the server’s registration and
verification algorithms on input F ′ to determine the set of locations read or
written by the server; then, it queries the same set of locations from the real file
F , and runs the verification algorithm to see if that password would be accepted
by the server. Details of the proof appear in the full version of the paper.

4 Strongly-Secure Constructions with Large Lookup
Complexity

The purpose of this section is to present two very basic constructions of pass-
word protocols secure against bounded retrieval attacks, and show that they
achieve very strong security at the expense of requiring an inefficient lookup
strategy from the server. Specifically, these constructions achieve essentially the
best possible security properties: the adversary’s advantage can be 0 in one con-
struction and exponentially small in the other one. Furthermore, these values
are achieved against an adaptive adversary. The server’s lookup strategy in these
constructions is also non-adaptive. On the other hand, in both constructions the
server’s lookup complexity is larger than the adversary’s retrieval bound. In fact,
in one of the two constructions the server has to access the entire password file
in order to verify a user’s identity. (Constructions in the next sections will lower
the server’s lookup complexity and at the same time obtain desirable security
properties.) Formally, we obtain the following:

Theorem 2. For i=1, 2 there exist protocols Pi =(Seti,Samplei,Regi,Veri)
with parameters (n, t, d;mi, qi, li), that are εi-secure against a bounded retrieval
attack of adaptive type, and such that

1. ε1 = 0, m1 ≥ l1 ≥ q1 + 1 and n ≥ 2td.
2. ε2 = O(2−λ), m2 = l2 ≥ q2 + min(λ, o(q2)), and n ≥ 2d.

Note that in both constructions li ≥ qi. For practical applications, the fact that
the server’s lookup complexity is large constrains the size of the password file so
that it is not very large (or otherwise the identification phase would not be effi-
cient). As a consequence, the adversary’s retrieval bound cannot be large either,

236 G. Di Crescenzo, R. Lipton, and S. Walfish

which restricts the applicability of these schemes to settings where the adversary
has a small retrieval rate (e.g., if the adversary has a slow connection). The two
schemes satisfying Theorem 2 are based on secret sharing schemes for threshold
access structures, as in [22] (using polynomial interpolation), and on adaptively-
secure all-or-nothing transforms, as in [6] (using adaptively-secure exposure-
resilient functions). Very informally, in the first scheme, the entire password file
contains the shares of a threshold scheme, where the secret is the concatenation
of all login names and passwords, and the threshold is set as strictly larger than
the adversary’s retrieval bound. Analogously, in the second scheme, the pass-
word file can be seen as an all-or-nothing transform of the concatenation of all
login names and passwords. We provide a formal description of these schemes in
the full version of this paper.

5 A Secure Construction with Small Lookup Complexity

The constructions in Section 4 showed how to achieve strong security (in terms
of both the adversary’s advantage and the attack type) and non-adaptive server
lookup at the expense of a large lookup complexity. In this section we start
exploring what security we can achieve if we target constructions with low lookup
complexity, while still maintaining non-adaptive lookup. The lower bound of
Section 3 implies that the best security that can be obtained under this setting
is comparable to the security against on-line attack. In the rest of the section we
give a construction that achieves this security level and is therefore essentially
optimal (up to lower-order multiplicative factors) for this setting. We present
a password protocol secure against bounded retrieval attacks, which we also
call SCS, since the server’s storage algorithm in this protocol is based on three
basic actions: Select, Combine and Store. Specifically, on an input consisting of
a login and a password, the server carefully selects several locations from the
password files, combines their content according to some function, and stores
the result of this function as a tag that can be associated with this password.
We instantiate the ‘select’ action of the SCS scheme by using dispersers, and the
‘combine’ action using a pairwise-independent hash function. Our construction
has server’s lookup complexity lower than the adversary’s retrieval bound, and,
moreover, the following properties: adversary’s advantage comparable with the
security against on-line attack; non-adaptive server’s lookup strategy; constant
parallel time complexity; and security against adaptive adversaries. Formally, we
obtain the following:

Theorem 3. There exists a password protocol P3 = (Set,Sample,Reg,Ver)
with parameters Param = (n, t, d,m, q, l), that is ε-secure against a bounded
retrieval attack of adaptive type, and such that, for any t, d,m, q, it holds that
ε = m3

l·(m−q)2 · 1
2d , for n ≥ 2d+ 1 and l = 2b, where

b = log2(d) · poly(log log d) + (log d) · (log(m/(m− q))).

Note that the value of ε in the theorem matches (up to a constant) the
bound from Theorem 1 in the typical case q = cm, for 0 < c < 1. We also

Perfectly Secure Password Protocols in the Bounded Retrieval Model 237

note that the constant factor c here can be made arbitrarily close to 1. We now
prove Theorem 3.
A first tool: t-wise independent hash families. Informally, t-wise indepen-
dence requires that for any fixed set of t elements, a uniformly selected function
from the hash family will map those elements to t uniformly distributed and
independent outputs. A formal definition of t-wise independent hash functions
follows.

Definition 3 (t-wise Independent Hash Function). A family H of func-
tions hw : {0, 1}a → {0, 1}b is t-wise independent if, for any distinct elements
x1, . . . , xt ∈ {0, 1}a, and any r1, . . . , rt ∈ {0, 1}b, we have that

Pr
w

[hw(x1) = r1, . . . , hw(xt) = rt] = (2−b)t

A commonly used t-wise independent hash function is defined, when c = a = b,
by simply evaluating a t− 1 degree polynomial over GF (2c). Specifically, define
the following family H, where x,w1, . . . , wt are viewed as elements of GF (2c),
the field over which the computation is to be performed:

H = {hw1,...,wt | hw1,...,wt(x) =
t∑

j=1

wjx
j−1}

In our constructions we will use this construction of t-wise independent hash
families both in the case a > b (in this section, when t = 2) and in the case
a < b (in the next section, for larger values of t) where, in both cases, we set
c = max(a, b) and we use trivial padding or truncation operations to satisfy
length consistencies. We note that a function from this family can be indexed
by exactly t strings of c bits each.

A second tool: Extractors and dispersers. Extractors and dispersers were
first introduced in [17] and [24], respectively, and have received a significant
amount of attention in several areas of computer science, mostly in the deran-
domization literature, but also in other areas including combinatorics, network
theory and security. Both extractors and dispersers are often defined as bipar-
tite graphs, while in this paper it will be easier to use their functional definition,
which we now recall.

The statistical distance between two distributions D1, D2 over the same space
S is defined as sd(D1, D2) = 1

2 Σx∈S |Pr [x← D1]−Pr [x ← D2] |. We say that
distributions D1, D2 are δ-close if it holds that sd(D1, D2) ≤ δ. We say that a
distribution D is δ-close to uniform if it holds that sd(D,U) ≤ δ, where U
denotes the uniform distribution over the same space S. The min-entropy of a
distribution D over space S is defined as H∞(D) = minx{− log2(Pr [x ← D])}.

A function Ext: {0, 1}a×{0, 1}b → {0, 1}c is called a (k, δ)-extractor if for any
distribution D on {0, 1}a with min-entropy at least k, the distribution N(D) is
δ-close to uniform, where N(D) = {x← D; e← {0, 1}b; y ← Ext(x, e) : y}.

A function Disp: {0, 1}a × {0, 1}b → {0, 1}c is called a (k, δ)-disperser if for
any A ⊆ {0, 1}a such that |A| ≥ 2k, it holds that |N(A)| ≥ (1 − δ)2c, where
N(A) = {z | z = Disp(x, y), x ∈ A, y ∈ {0, 1}b}.

238 G. Di Crescenzo, R. Lipton, and S. Walfish

We refer to [16, 23] for surveys of applications, constructions and related re-
sults for extractors and dispersers. (We use the formal definition of dispersers
that appears in [16]; other papers such as [23] use a slightly different definition.)

Construction of protocol P3. The protocol P3 = (Sample,Set,Reg,Ver)
uses a polynomial-time computable function Select : {0, 1}d × {0, 1}d → [m]l,
that we later instantiate using extractors, and a family H of pairwise-independent
hash functions hw : {0, 1}nl+2d → {0, 1}n (selection of which parameterizes the
Reg and Ver algorithms). We first describe algorithms Set, Reg, and Ver,
and then one instantiation of the function Select.
Algorithm Set. Formally, algorithm Set, on input parameters d, t, n, l,m, q in
unary, returns an m-location password file F , which can be parsed as F = X ◦T
with |X | = mx and |T | = t (and thus m = mx + t). X is initialized as an array
of values X [1], . . . , X [mx] uniformly chosen from {0, 1}n, and T is initialized as
an empty array of t locations.
Algorithm Reg. The registration algorithm maps a login and a password to a
subset of locations in the set of locations containing random elements, combines
their content by computing a tag as their sum, and stores the tag. Formally, on
input logi, pwi, F , algorithm Reg runs the following steps:

1. compute (loc1, . . . , locl) = Select(logi, pwi);
2. compute tagi = hw(logi|pwi|X [loc1]| · · · |X [locl]),
3. store tagi into T by setting T [i] = tagi.

Algorithm Ver. The verification algorithm recomputes the tag corresponding to
the input login and password and checks that it is equal to the tag stored during
the registration phase. Formally, on input Param, {logi}t

i=1, log
′, pw′, F , where

F = X |T , algorithm Ver runs the following steps:

1. compute (loc′1, . . . , loc
′
l) = Select(log′, pw′);

2. let j ∈ {1, . . . , t} be such that logj = log′;
3. if there exists no such j then return: 0 and halt;
4. verify that T [j] = hw(log′|pw′|X [loc′1]| · · · |X [loc′l]);
5. if so, return: 1; else return: 0.

Instantiation of function Select. For our construction we only need to apply
dispersers, but since (k, δ)-extractors are also (k, δ)-dispersers (this can be seen
by setting D equal to the uniform distribution over subset A), and given that
extractors have been much more studied in the literature, we will apply (a cer-
tain kind of) extractors. In particular, we are interested in extractors that firstly
maximize the parameter c, denoting the extractor output, so that it is as close
as possible to the sum of the min-entropy of the source and the number of real
random bits used. Secondly, it is of interest to minimize the value of parameter
b for that to happen. This choice criterion is based on that of minimizing the
adversary’s advantage first, and then, further minimizing the server’s sequential
running time. We note that in this scheme the parallel running time is constant
with respect to the lookup complexity l, regardless of which extractor we choose.

Perfectly Secure Password Protocols in the Bounded Retrieval Model 239

A recent survey [23] summarizes most known results about extractors, and we
can plug in some of the results in Table 1, pp. 11 of [23] to obtain a function
Select with satisfactory performance. Bearing in mind the aforementioned cri-
terion, we will use the following fact (obtained from Corollary 6.15 of [21]):

Fact 4. [21] For any 0 ≤ α < a and δ > exp(−α/(log∗ α)O(log∗ α))), there exists
an explicit (k, δ)-extractor Ext: {0, 1}a×{0, 1}b → {0, 1}c such that k = a−α, b =
O(log2(a) · poly(log log a)+(log a) · (log(1/δ))) and c = k+b−2 log(1/δ)−O(1).

Informally, we can instantiate Select as the function returning all outputs of
the above extractor, when given the password as a first input and all possi-
ble l values as a second input. (In the graph-based formulation, these would
be all neighbors of the node associated with the password). More formally, for
any parameters n, t, d,m, q, where m = mx + t, we can instantiate Select
as follows. For log ∈ {0, 1}d and pw ∈ {0, 1}d, we define Select(log, pw) =
(loc1, . . . , locl), where locj = Ext((log|pw), j), for j = 1, . . . , l; algorithm Ext:
{0, 1}a×{0, 1}b → {0, 1}c is the (k, δ)-extractor guaranteed from Fact 4, where
α = d, a = 2d; b = O(log2(2d) · poly(log log 2d) + (log 2d) · (log(m/(m − q))));
c = logm; l = 2b; δ = 1 − q/m; and k = logm− l − 2 log(m/(m− q)) −O(1).

Proving the security of the SCS protocol. Proving the security property of
P3 makes crucial use of the properties of dispersers and of pairwise-independent
hash functions. The main intuition is that if the adversary queries q locations
from F , possibly using an adaptive querying strategy, even if he tries to run
an off-line password attack, he will be able to test only a very small number of
passwords. More specifically, we observe the following facts, using the proper-
ties of pairwise-independent hash functions: (1) the probability that the server
accepts a false password, is very small. Then we observe that the content of the
locations queried by the adversary define t partitions of the set of passwords
into two sets: the set of passwords that are mapped to locations queried by the
adversary and its complement. Furthermore, (2) the size of the first set is small,
(i.e., O(m3/l(m − q)2)), and (3) any password in the second set does not give
a significant advantage to the adversary in being successful; where (2) uses the
properties of the disperser from Fact 4 and (3) uses the definition of pairwise-
independent hash functions. The security property of P3 follows by combining
the three mentioned facts.

6 Strong Security with Small, Adaptive Lookup
Complexity

In the previous section we showed that it is possible to construct password
protocols secure against bounded retrieval attacks by adaptive adversaries, and
simultaneously have low lookup complexity. The adversary’s advantage in the
previous construction is not significantly larger than the on-line attack success
probability, and essentially meets the lower bound in Section 3. In this section we
investigate the possibility of achieving even smaller adversary’s advantage (say,

240 G. Di Crescenzo, R. Lipton, and S. Walfish

exponentially small) while maintaining an efficient lookup complexity. Since the
server’s lookup strategy will be adaptive, the lower bound in Section 3 does
not apply. The scheme remains incomparable to the scheme in previous section
though, as it is only secure against static adversaries. We call our new scheme
HE, for Hashing and Extraction, according to the strategy used by the server’s
registration algorithm. Formally, we obtain the following:

Theorem 5. There exists a protocol P4 = (Set4,Sample4,Reg4,Ver4) with
parameters Param = (n, t, d,m, q, l), that is ε-secure against a bounded retrieval
attack of static type, and such that, for any t, d, q,m, it holds that
ε = (2t+ 3) · 2−λ, m > q + t ≥ [l = t+O(d + λ)] and n = O(λ) + 2d.

We stress that in P4 the server uses an adaptive lookup strategy and therefore
the exponentially small upper bound on ε does not contradict the lower bound
of Theorem 1. We now sketch the proof of Theorem 5.

Tools used by our HE protocol. The construction uses two tools: t-wise
independent hash functions (see Definition 3), where t is the number of users,
and locally computable and strong extractors.
Locally-computable and strong extractors. We recall two additional properties
that extractors (defined in Section 5) may satisfy. Intuitively, the definition of
strong extractors requires that the extractor’s output remains statistically close
to random even when conditioned on the value of the random seed; furthermore,
the definition of locally computable extractors requires that the extractor reads
only a small subset of the bits contained in the (large) input distribution that the
entropy is to be extracted from (this is for efficiency reasons only). The formal
definitions follow.

A function Ext: {0, 1}a × {0, 1}b → {0, 1}c is called a strong (k, δ)-extractor
if for any distribution D on {0, 1}a with min-entropy at least k, the distribution
U(b) × N(D,U(b)) is δ-close to distribution U(b) × U(c), where N(D,U(b)) is
defined as {x← D; e ← {0, 1}b; y ← Ext(x, e) : y}, and, for any z, U(z) denotes
the uniform distribution over {0, 1}z.

An extractor Ext: {0, 1}a ×{0, 1}b → {0, 1}c is �-locally-computable if for any
R ∈ {0, 1}b, the value of R uniquely determines the bit locations in x ∈ {0, 1}a

used while computing Ext(x,R) and the number of such locations is at most �.
We will use the following strong and locally-computable extractor, guaranteed

from Theorem 8.5 in [25]:

Fact 6 ([25]). Let ρ, σ be arbitrary constants > 0. For every a ∈ N,
δ > exp(−a/2O(log∗ a)), c ≤ (1 − σ)aρ, there is an explicit �-locally computable
and strong (k, δ) extractor Ext : {0, 1}a × {0, 1}b → {0, 1}c such that:

1. k = aρ
2. b = log a+O(log c+ log(1/δ))
3. � = (1 + σ)kc/n+ log(1/δ))

Construction of protocol P4. We assume, for simplicity, that the algorithm
Sample just uniformly and independently selects a password from {0, 1}d.

Perfectly Secure Password Protocols in the Bounded Retrieval Model 241

Algorithm Set. Let the data block size n = 2d + λ, where λ is the security
parameter. Set initializes a t-location array W with a uniformly chosen t-wise
independent hash function hw : {0, 1}d → {0, 1}n. Set then initializes X as an
array of mx locations containing uniformly and independently chosen values in
{0, 1}n. Additionally, Set initializes an empty array T with t empty locations
of n bits each, and then sets F = T ◦W ◦X . Observe that the total number of
data blocks in F is m = 2t+mx.
Algorithm Reg. The registration algorithm first hashes the login name and the
password to a random value using the t-wise independent hash function specified
by the W component of F , to produce a seed value R. (Note that this step makes
the server’s lookup strategy adaptive, as the computation of R depends on the
contents of W , and subsequent lookup operations in X will depend on R.) The
extractor is applied to the X component of F using the previously computed seed
R in order to produce a (nearly) uniform random output. The resulting output
R′ may then be used as the tag associated with this password, and is stored in
the T component of F . Formally, on input i, logi, pwi, F , where F = T ◦W ◦X ,
algorithm Reg does the following:

1. set w = (W [1], . . . ,W [t]) and R = hw(logi | pwi).
2. set R′ = Ext(X,R);
3. store tagi = R′ in location T [i].

Algorithm Ver. The Ver algorithm is essentially identical to the Reg algorithm,
only after computing tagi, rather than storing it in the T [i] location in F , the
value is compared with the previously stored value in T [i], and the result of
the comparison is output. The total number of lookups performed by Ver is
l = t+�+1. Formally, Ver, on input Param, {logi}t

i=1, log
′, pw′, F = T ◦W ◦X ,

does the following:

1. set w = (W [1], . . . ,W [t]) and R = hw(log′ | pw′).
2. let j ∈ {1, . . . , t} be such that logj = log′;
3. if there exists no such j then return: 0 and halt;
4. set R′ = Ext(X,R);
5. if T [j] = R′ then return: 1 else return: 0

Proof that P4 satisfies Theorem 5. Proving the security property ofP4 makes
crucial use of the properties of strong extractors and of t-wise independent hash
functions, as follows. We use the properties of strong extractors to show that the
first tag is statistically indistinguishable from a uniformly distributed tag, even
conditioned on the value of all other tags and on the value of the hash function
used to generate the seed for the extractor. In proving that the conditioning on
the value of all other tags does not affect the statistical indistinguishability, we
use the indistinguishability of the extractor’s output from random, even condi-
tioned over the result of a bounded-output function over the extractor’s input.
In proving that the conditioning on the seed does not affect the statistical in-
distinguishability, we use the extractor’s ‘strong’ property. Then we replace the
first tag with a random tag and repeat the analogous argument over the second

242 G. Di Crescenzo, R. Lipton, and S. Walfish

tag, etc. (Note that independence of the R values used to compute each tag is
guaranteed for up to t users by the t-wise independent hash function.) Finally,
we compute an upper bound on the adversary’s advantage when all tags are
random by computing an upper bound on collisions on the t-wise independent
hash function and on the extractor used. A formal proof is available in the full
version of the paper.
An extension: Combining protocols P3 and P4. Recall that protocol P3 is
secure against adaptive adversaries but allows the adversary to achieve a non-
negligible advantage (which is optimal in the setting of adaptive intrusions).
Furthermore, protocol P4 only allows the adversary to achieve at most negligible
advantage, but is only secure against static adversaries. We would like to achieve
the “best of both worlds” with a single scheme that limits the adversary to a
negligible advantage in case of static intrusions, but remains secure even under
an adaptive attack.

Fortunately, such a solution is indeed possible. We simply modify the con-
struction of P3, replacing the input pwi with the tagi computed as in protocol
P4. That is, the the final tagi values computed using P3 will now be based on
“password” inputs taken from the tagi values computed via P4 using the user’s
actual password. It can be shown that the resulting scheme achieves security
comparable to that of P4 under static intrusion attacks, and comparable to that
of P3 under adaptive intrusion attacks.

Acknowledgment. The first author thanks Rajesh Talpade for interesting dis-
cussions on intrusion detection. This material is based upon work supported
by the United States Air Force under Contract FA8750-04-C-0249. Any opin-
ion, findings, and conclusions or recommendations expressed in this material are
those of author(s) and do not necessarily reflect the view of the United States
Air Force.

References

1. S. Axelsson. Research in Intrusion-Detection systems: A Survey, in Technical Report
98–17, Dept. of Comp. Eng., Chalmers, Univ. of Technology, Goteborg, Sweden,
1998, http://citeseer.ist.psu.edu/axelsson98research.html.

2. S. Bellovin and M. Merrit. Encrypted Key Exchange, in Proc. of the 1992 Internet
Society Network and Distributed System Security Symposium.

3. S. Bellovin and M. Merrit. Augmented Encrypted Key Exchange, in Proc. of the
1st ACM Conference on Computer and Communication Security, pp. 224-250

4. G. R. Blakley. Safeguarding cryptographic keys. In Proc. of the National Computer
Conference, v.48, pp. 242–268, 1979.

5. G. Di Crescenzo, A. Ghosh, and R. Talpade. Towards a Theory of Intrusion Detec-
tion. In Proc. of European Symposium on Research in computer Security (ESORICS
2005), vol. 3679 of LNCS, pp. 267-286, Springer-Verlag.

6. Y. Dodis, A. Sahai, A. Smith. On Perfect and Adaptive Security in Exposure-
Resilient Cryptography. In Proc. of EUROCRYPT 2001, vol. 2045 of LNCS, pp.
301-324. Springer-Verlag.

Perfectly Secure Password Protocols in the Bounded Retrieval Model 243

7. Password Protocols provably secure in the Bounded Retrieval Model, first public
version of this work, unpublished draft, April 2005.

8. D.C. Feldmeier and P.R. Karn. UNIX Password Security - Ten Years Later, in
Proceedings of Crypto’89, LNCS, no. 435, Springer-Verlag, pp. 44-63

9. S. Halevi and H. Krawczyk. Public-key Cryptography and Password Protocols.
In Proc. of the 5th annual ACM conference on Computer and Communications
Security, pp. 122–131, 1998

10. John Kelsey and Bruce Schneier. Authenticating Secure Tokens Using Slow Mem-
ory Access. USENIX Workshop on Smart Card Technology, USENIX Press, pp.
101–106, 1999.

11. Chi-Jen Lu. Encryption against storage-bounded adversaries from on-line strong
extractors. Journal of Cryptology, vol. 17, no. 1, pp. 27–42, 2004.

12. Stefan Dziembowski and Ueli Maurer. Optimal Randomizer Efficiency in the
Bounded-Storage Model. In Journal of Cryptology, vol. 17, no. 1, pp. 5-26.

13. Ueli Maurer. Conditionally-Perfect Secrecy and a Provably-Secure Randomized
Cipher. Journal of Cryptology, vol. 5, no. 1, pp. 53–66, 1992.

14. Tal Moran, Ronen Shaltiel, Amnon Ta-Shma. Non-interactive Timestamping in
the Bounded Storage Model. In Proc. of CRYPT0 2004, vol. 3152 of LNCS, pp.
460–476. Springer-Verlag.

15. R. Morris and K. Thompson. Password Security: A Case History, in Communica-
tions of the ACM, Vol. 22, no. 11, 1979, pp. 594-597.

16. N. Nisan and A. Ta-Shma. Extracting Randomness: A Survey and New Construc-
tions, in Journal of Computer and System Sciences, February 1999, vol. 58, no. 1,
pp. 148-173(26)

17. N. Nisan and D. Zuckerman. More Deterministic Simulation in Logspace, in Proc.
of ACM STOC 93.

18. S. Patel. Number theoretic attacks on secure password schemes, in Proc. of the
1997 IEEE Symposium on Security and Privacy.

19. Benny Pinkas and Tomas Sander. Securing Passwords Against Dictionary Attacks.
ACM CCS-9: Computer and Communications Security, Nov., 2002.

20. N. Provos and D. Mazieres, A Future-Adaptable Password Scheme, In Proceedings
of the Annual USENIX Technical Conference, 1999.

21. O. Reingold, S. Vadhan, and A. Wigderson. Entropy Waves, The Zig-Zag Graph
Product, and New Constant-Degree Expanders and Extractors. in Electronic Col-
loquium on Computational Complexity TR01-018; other versions in Proceedings of
FOCS 2000 and Annals of Mathematics, vol. 155, pp. 157-187, 2002.

22. A. Shamir. How to Share a Secret. Communications of the ACM, Volume 22 , Issue
11 (November 1979)

23. R. Shaltiel. Recent developments in Explicit Constructions of Extractors. Bulletin
of the EATCS, 77:67–95, 2002.

24. M. Sipser. Expanders, Randomness and Time vs. Space, in Journal of Computer
and System Sciences, vol. 36, 1988.

25. S. P. Vadhan. On constructing locally computable extractors and cryptosystems in
the bounded storage model. Journal of Cryptology, vol. 17, no. 1, pp. 43–77, 2004.

26. T. Wu, The secure remote password protocol, in Proc. of the 1998 Internet Society
Network and Distributed System Security Symposium

27. http://money.cnn.com/2003/02/18/technology/creditcards/
28. http://www.detnews.com/2005/technology/0506/18/tech-219662.htm

244 G. Di Crescenzo, R. Lipton, and S. Walfish

A Numerical Examples

Some typical parameters for instantiating protocol P4 might be as follows. Set
O(λ) = 176 for a dictionary of size ≈ 2d, where, say d = 40 (this yields a
dictionary of approximately 1 trillion words). We have that n = 2d + O(λ) =
80 + 176 = 256 = 28 (assuming a small constant under the O notation). This
requires that data be read from storage in chunks not less than 48 bytes in size.

For a system with t ≈ 212 = 4096 maximum users, we can achieve the fol-
lowing parameters. Letting m = 2t + m̂ = 213 + 235 ≈ 235, we obtain a total
storage requirement of mn = 28235 = 243 bits, or approximately 1 TB (ter-
abyte). It should be noted that 1 terabyte of storage can currently be purchased
at very reasonable cost (under $1000). Given storage of this size, we can safely
set β = 0.99, allowing the adversary to retrieve up to 99 percent of the storage,
which is about 990 MB (megabytes) of data. If we limit the server to an out-
going bandwidth of 8192 bits/sec = 1024 bytes/sec, it will take the adversary
over 30 years to download that much data. With an outgoing bandwidth of 1024
bytes/sec, the server can process approximately 32 logins/sec. The lookup com-
plexity will be l = t+O(d+ λ) ≈ 212 +C(40 + 176) ≈ 213, which is about 8000
blocks of 256-bits each, per login (a total of less than half a megabyte of data).

Polylogarithmic Private Approximations and
Efficient Matching

Piotr Indyk1 and David Woodruff1,2

1 MIT CSAIL
{indyk, dpwood}@mit.edu

2 Tsinghua University

Abstract. In [12] a private approximation of a function f is defined to
be another function F that approximates f in the usual sense, but does
not reveal any information about x other than what can be deduced from
f(x). We give the first two-party private approximation of the l2 distance
with polylogarithmic communication. This, in particular, resolves the
main open question of [12].

We then look at the private near neighbor problem in which Alice has
a query point in {0, 1}d and Bob a set of n points in {0, 1}d, and Alice
should privately learn the point closest to her query. We improve upon
existing protocols, resolving open questions of [13, 10]. Then, we relax
the problem by defining the private approximate near neighbor problem,
which requires introducing a notion of secure computation of approxi-
mations for functions that return sets of points rather than values. For
this problem we give several protocols with sublinear communication.

Keywords: private approximations, secure multiparty computation,
nearest neighbor, communication complexity.

1 Introduction

Recent years witnessed the explosive growth of the amount of available data.
Large data sets, such as transaction data, the web and web access logs, or network
traffic data, are in abundance. Much of the data is stored or made accessible in
a distributed fashion. This neccessitates the development of efficient protocols
that compute or approximate functions over such data (e.g. see [2]).

At the same time, the availability of this data has raised significant privacy
concerns. It became apparent that one needs cryptographic techniques in order
to control data access and prevent potential misuse. In principle, this task can be
achieved using the general results of secure function evaluation (SFE) [33, 18].
However, in most cases the resulting private protocols are much less efficient
than their non-private counterparts1. Moreover, SFE applies only to algorithms
that compute functions exactly, while for most massive data sets problems, only
1 A rare exception is the result of [29], who show how to obtain private and

communication-efficient versions of non-private protocols, as long as the commu-
nication cost is logarithmic.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 245–264, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

246 P. Indyk and D. Woodruff

efficient approximation algorithms are known or are possible. Indeed, while it is
true that SFE can be used to privately implement any efficient algorithm, it is
of little use applying it to an approximation algorithm when the approximation
leaks more information about the input than the solution itself.

In a pioneering paper [12], the authors introduced a framework for secure
computation of approximations. They also proposed an Õ(

√
n)-communication2

two-party protocol for approximating the Hamming distance between two binary
vectors. This improves over the linear complexity of computing the distance
exactly via SFE, but still does not achieve the polylogarithmic efficiency of a
non-private protocol of [25]. Improving the aforementioned bound was one of
the main problems left open in [12].

In this paper we provide several new results for secure computation of approx-
imations. Our first result is an Õ(1)-communication protocol for approximating
the Euclidean (�2) distance between two vectors. This, in particular, solves the
open problem of [12]. Since distance computation is a basic geometric primitive,
we believe that our result could lead to other algorithms for secure approxima-
tions. Indeed, in [1] the authors show how to approximate the �2 distance using
small space and/or short amount of communication, initiating a rich body of
work on streaming algorithms.

In the second part of the paper, we look at secure computation of a near
neighbor for a query point q (held by Alice) among n data points P (held by
Bob) in {0, 1}d. We improve upon known results [10, 13] for this problem under
various distance metrics, including �2, set difference, and Hamming distance
over arbitrary alphabets. Our techniques also result in better communication
for the all-near neighbors problem, where Alice holds n different query points,
resolving an open question of [13], and yield a binary inner product protocol
with communication d+O(k) in the common random string model.

Complexity Problem Prior work SFE
Õ(n + d) Near neighbor under l2, [10] Õ(nd)

Hamming over {0, 1}d, Set difference
Õ(dU + n) Near neighbor under distances [10] Õ(nd log U)

f(a, b) =
∑d

i=1 fi(ai, bi), ai, bi ∈ [U]
�log d�d + O(k) Hamming distance [14] O(kd)

Õ(nd2 + n2) All-near neighbors [13] Õ(n2d)

However, all of our protocols for the near neighbor problem have the drawback
of needing Ω(n) bits of communication, though the dependence on d is often
optimal. Thus, we focus on what we term the approximate near neighbor problem.
For this we introduce a new definition of secure computation of approximations
for functions that return points (or sets of points) rather than values.

2 We write f = Õ(g) if f(n, k) = O
(
g(n, k) logO(1)(n)poly(k)

)
, where k is a security

parameter.

Polylogarithmic Private Approximations and Efficient Matching 247

Approximate privacy. Let Pt(q) be the set of points in P within distance t
from q. In the c-approximate near neighbor problem, the protocol is required to
report a point in Pcr(q), as long as Pr(q) is nonempty. We say that a protocol
solving this problem is c′-private (or just private if c′ = c) if Bob learns nothing,
while Alice learns nothing except what can be deduced from the set Pc′r(q). In
our paper we always set c′ = c.

We believe this to be a natural definition of privacy in the context of the
approximate near neighbor problem. First, observe that if we insist that Alice
learns only the set Pr (as opposed to Pcr), then the problem degenerates to the
exact near neighbor problem. Indeed, even though the definition of correctness
allows the protocol to output a point p ∈ Pcr − Pr, in general Alice cannot
simulate this protocol given only the set Pr. Thus, in order to make use of
the flexibility provided by the approximate definition of the problem, it seems
necessary to relax the definition of privacy as well.

Second, the above relaxation of privacy appears natural in the context of ap-
plications of near neighbor algorithms. In most situations, the distance function
is only a heuristic approximation of the dis-similarity between objects, and there
is no clear rationale for a sharp barrier between objects that can or cannot be
revealed (still, it is important that the information leak is limited). Our model
formalizes this intuition, and our algorithmic results shows that it is possible to
exploit the model to obtain more efficient algorithms.

Specifically, within this framework, we give a c-approximate near neighbor
protocol with communication Õ(n1/2 + d) for any constant c > 1. The protocol
is based on dimensionality reduction technique of [25]. We show how the depen-
dence on d can be made polylogarithmic if Alice just wants a coordinate of a
point in Pcr. We also give a protocol based on locality-sensitive hashing (LSH)
[23], with communication Õ(n1/2+1/(2c) +d), but significantly less work (though
still polynomial).

Finally, proceeding along the lines of [20], we say the protocol leaks b bits of
information if it can be simulated given b extra bits which may depend arbi-
trarily on the input. With this definition, we give a protocol with Õ(n1/3 + d)
communication leaking only k bits, where k is a security parameter.

General vs specific solutions. As described above, this paper offers solutions
to specific computational problems. In principle, a general “compiler-like” ap-
proach (as in [33, 18]) would be preferable. However, it appears unlikely that
a compiler approach can be developed in the context of approximate problems.
Indeed, there is no general method that, for a given problem, generates an ef-
ficient approximation algorithm (even ignoring the privacy issue). This implies
that a compiler would have to start from a particular approximation to a given
function. Unfortunately, as mentioned earlier, such approximation itself can leak
too much information.

This argument leads us to believe that, in context of approximate algorithms,
designing efficient private solutions to specific problems is the only possible
approach.

248 P. Indyk and D. Woodruff

2 Preliminaries

Background on homomorphic encryption, oblivious transfer (OT), and secure
function evaluation (SFE) can be found in appendix A. We write negl(k, n) to
denote an arbitrary negligible function of k, n, that is a function which shrinks
faster than any inverse polynomial in n, k.

We assume both parties are computationally bounded and semi-honest, mean-
ing they follow the protocol but may keep message histories in an attempt to
learn more than is prescribed. In [18, 7, 29], it is shown how to transform a semi-
honest protocol into a protocol secure in the malicious model. Further, [29] does
this at a communication blowup of at most a small factor of poly(k). Therefore,
we assume parties are semi-honest in the remainder of the paper.

We briefly review the semi-honest model, referring the reader to [17, 26] for
more details. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a function, the
first element denoted f1(x1, x2) and the second f2(x1, x2). Let π be a two-party
protocol for computing f . The views of players P1 and P2 during an execution
of π(x1, x2), denoted Viewπ

1 (x1, x2) and Viewπ
2 (x1, x2) respectively, are:

Viewπ
1 (x1, x2) = (x1, r1,m1,1, . . . ,m1,t), Viewπ

2 (x1, x2) = (x2, r2,m2,1, . . . ,m2,t),

where ri is the random input and mi,j the messages received by player i re-
spectively. The outputs of P1 and P2 during an execution of π(x1, x2) are de-
noted outputπ

1 (x1, x2) and outputπ
2 (x1, x2). We define outputπ(x1, x2) to be

(outputπ
1 (x1, x2), outputπ

2 (x1, x2)). We say that π privately computes a func-
tion f if there exist PPT algorithms S1, S2 for which for i ∈ {1, 2} we have the
following indistinguishability

{Si(xi, fi(x1, x2)), f(x1, x2)}
c≡ {Viewπ

i (x1, x2), outputπ(x1, x2)}.

This simplifies to {Si(xi, fi(x1, x2))}
c≡ {Viewπ

i (x1, x2)} if either f1(x1x2) =
f2(x1, x2) or if f(x1, x2) is deterministic or equals a specific value with proba-
bility 1 − negl(k, n), for k a security parameter.

We need a standard composition theorem [17] concerning private subproto-
cols. An oracle-aided protocol (see [26]) is a protocol augmented with a pair of
oracle tapes for each party and oracle-call steps. In an oracle-call step parties
write to their oracle tape and the oracle responds to the requesting parties. An
oracle-aided protocol uses the oracle-functionality f = (f1, f2) if the oracle re-
sponds to query x, y with (f1(x, y), f2(x, y)), where f1, f2 denote first and second
party’s output respectively. An oracle-aided protocol privately reduces g to f if
it privately computes g when using oracle-functionality f .

Theorem 1. [17] If a function g is privately reducible to a function f , then
the protocol g′ derived from g by replacing oracle calls to f with a protocol for
privately computing f , privately computes g.

We now define the functional privacy of an approximation as in [12]. For our
approximation protocols we will have f1(x, y) = f2(x, y) = f(x, y).

Polylogarithmic Private Approximations and Efficient Matching 249

Definition 1. Let f(x, y) be a function, and let f̂(x, y) be a randomized func-
tion. Then f̂(x, y) is functionally private for f if there is an efficient simulator
S s.t. for every x, y, we have f̂(x, y)

c≡ S(f(x, y)).

A private approximation of f privately computes a randomized function f̂ that
is functionally private for f .

Finally, we need the notion of a protocol for securely evaluating a circuit with
ROM. In this setting, the ith party has a table Ri ∈ ({0, 1}r)s defined by his
inputs. The circuit, in addition to the usual gates, is equipped with lookup gates
which on inputs (i, j), output Ri[j].

Theorem 2. [29] If C is a circuit with ROM, then it can be securely computed
with Õ(|C|T (r, s)) communication, where T (r, s) is the communication of 1-out-
of-s OT on words of size r.

3 Private �2 Approximation

Here we give a private approximation of the �2 distance. Alice is given a vector
a ∈ [M]n, and Bob a vector b ∈ [M]n. Note that ‖a − b‖2 ≤ Tmax

def= nM2.
In addition, parameters ε, δ and k are specified. For simplicity, we assume that
k = Ω(log(nM)). The goal is for both parties to compute an estimate E such that
|E−‖x‖2| ≤ ε‖x‖2 with probability at least 1−δ, for xdef= a−b. Further, we want E
to be a private approximation of ‖x‖, as defined in section 2. As discussed there,
wlog we assume the parties are semi-honest. We set the parameter B = Θ(k);
this notation means B = ck for a large enough constant c independent from
k, n,M, δ, ε. In our protocol we make the following cryptographic assumptions.

1. There exists a PRG G stretching polylog(n) bits to n bits secure against
poly(n)-sized circuits.

2. There exists an OT scheme for communicating 1 of n bits with communica-
tion polylog(n).

At the end of the section we discuss the necessity and plausibility of these as-
sumptions. Our protocol relies on the following fact and corollary.

Fact 3. [27] Let A be a random n × n orthonormal matrix (i.e., A is picked
from a distribution defined by the Haar measure). Then there is c > 0 such that
for any x ∈ *n, any i = 1, . . . , n, and any t > 1,

Pr[|(Ax)i| ≥
‖x‖√
n
t] ≤ e−ct2 .

Corollary 1. Suppose we sample A as in Fact 3 but instead generate our ran-
domness from G, rounding its entries to the nearest multiple of 2−Θ(B). Then,

∀ x ∈ [M]n,

Pr[(1 − 2−B)‖x‖2 ≤ ‖Ax‖2 ≤ ‖x‖2 and ∀i(Ax)2i <
‖x‖2

n
B] > 1 − neg(k, n)

250 P. Indyk and D. Woodruff

Proof. If there were an infinite sequence of x ∈ [M]n for which this did not hold,
a circuit with x hardwired would contradict the pseudorandomness of G.

Protocol Overview: Before describing our protocol, it is instructive to look at
some natural approaches and why they fail. We start with the easier case of
approximating the Hamming distance, and suppose the parties share a common
random string. Consider the following non-private protocol of [25] discussed in
[12]: Alice and Bob agree upon a random O(log n)×n binary matrix R where the
ith row consists of n i.i.d. Bernoulli(βi) entries, where β is a constant depending
on ε. Alice and Bob exchange Ra,Rb, and compute R(a−b) = Rx. Then ‖x‖ can
be approximated by observing that Pr[(Ra)i = (Rb)i] ≈ 1/2 if ‖x‖) β−i, and
Pr[(Ra)i = (Rb)i] ≈ 1 if ‖x‖ + β−i. Let the output be E. The communication is
O(log n), but it is not private since both parties learn Rx. Indeed, as mentioned
in [12], if a = 0 and b = ei, then Rx equals the ith column of R, which cannot
be simulated without knowing i.

However, given only ‖x‖, it is possible to simulate E. Therefore, as pointed
out in [12], one natural approach to try to achieve privacy is to run an SFE with
inputs Ra,Rb, and output E. But this also fails, since knowing E together with
the randomness R may reveal additional information about the inputs. If E is a
deterministic function of Ra,Rb, and if a = 0 and b = ei, Alice may be able to
find i from a and R.

In [12], two private protocols which each have Ω(n) communication for a
worst-case choice of inputs, were cleverly combined to overcome these problems
and to achieve Õ(

√
n) communication. The first protocol, High-Distance Estima-

tor, works when ‖x‖ >
√
n. The idea is for the parties to obliviously sample

random coordinates of x, and use these to estimate ‖x‖. Since the sampling is
oblivious, the views depend only on ‖x‖, and since it is random, the estimate is
good provided we take Õ(

√
n) samples.

The second protocol, Low-Distance Estimator, works when ‖x‖ ≤
√
n. Roughly,

the idea is for the parties to perfectly hash their vectors into Õ(
√
n) buckets so

that at most one coordinate j for which aj �= bj lies in any given bucket. The
parties then run an SFE with their buckets as input, which can compute ‖x‖
exactly by counting the number of buckets which differ.

Our protocol breaks this O(
√
n) communication barrier as follows. First, Alice

and Bob agree upon a random orthonormal matrix A in Rn×n, and compute Aa
and Ab. The point of this step is to uniformly spread the mass of the difference
vector x over the n coordinates, as per Fact 3, while preserving the length. Since
we plan to sample random coordinates of Ax to estimate ‖x‖, it is crucial to
spread out the mass of ‖x‖, as otherwise we could not for instance, distinguish
x = 0 from x = ei. The matrix multiplication can be seen as an analogue to the
perfect hashing in Low-Distance Estimator, and the coordinate sampling as an
analogue to that in High-Distance Estimator.

To estimate ‖x‖ from the samples, we need to be careful of a few things. First,
the parties should not learn the sampled values (Ax)j , since these can reveal too
much information. Indeed, if a = 0, then (Ax)j = (Ab)j , which is not private.

Polylogarithmic Private Approximations and Efficient Matching 251

To this end, the parties run a secure circuit with ROM (see section 2) Aa and
Ab, which privately obtains the samples.

Second, we need the circuit’s output distribution E to depend only on ‖x‖.
It is not enough for E[E] = ‖x‖2, since a polynomial number of samples from E
may reveal non-simulatable information about x based on E’s higher moments.
To this end, the circuit uses the (Ax)j to independently generate r.v.s zj from
a Bernoulli distribution with success probability depending only on ‖x‖. Hence,
zj depends only on ‖x‖.

Third, we need to ensure that the zj contain enough information to approx-
imate ‖x‖. We do this by maintaining a loop variable T which at any point in
time is guaranteed to be an upper bound on ‖x‖2 with overwhelming probability.
Using Corollary 1, for all j it holds that q def= n(Ax)2j/(TB) ≤ 1 for a parameter
B, so we can generate the zj from a Bernoulli(q) distribution. Since T is halved
in each iteration, for some iteration E[

∑
j zj] will be large enough to ensure that

E is tightly concentrated.
We now describe the protocol in detail. Set � = Θ(B)(1/ε2 log(nM) log(1/δ) +

k). In the following, if q > 1, then the distribution Bernoulli(q) means Bernoulli(1).

�2-Approx (a, b):

1. Alice, Bob exchange a seed of G and generate A as in Corollary 1
2. Set T = Tmax

3. Repeat:
(a) {Assertion: ‖x‖2 ≤ T }
(b) A secure circuit with ROM Aa,Ab computes the following

– Generate random i1, . . . , i� and compute (Ax)2i1 , . . . (Ax)2i�

– Generate {zj}j∈[�] from i.i.d. Bernoulli
(

n(Ax)2ij

TB

)
distributions

(c) T = T/2
4. Until

∑
i zi ≥ �

4B or T < 1
5. Output E = 2TB

l

∑
i zi as an estimate of ‖x‖2

Note that the protocol can be implemented in O(1) rounds by parallelizing the
secure circuit invocations.

Lemma 1. The probability that assertion 3a holds in every iteration of step 3
is 1 − neg(k, n). Moreover, if ‖x‖2 �= 0, then when the algorithm exits, with
probability 1 − neg(k, n) it holds that E[

∑
j zj] = Θ (�/B).

Proof. By Corollary 1, PrA[(1 − 2−B)‖x‖2 ≤ ‖Ax‖2 ≤ ‖x‖2 and ∀i(Ax)2i <
‖x‖2

n B] = 1−neg(k, n), so we may condition on this event occurring. If ‖x‖2 = 0,
then Ax = 0, and thus Pr[E = 0] = 1.

Otherwise, ‖x‖2 ≥ 1. Consider the smallest j for which Tmax/2j < ||x||2. We
show for T = Tmax/2j−1 ≥ ‖x‖2 ≥ 1 that Pr[

∑
j zj < �/(4B)] = neg(k, n). The

assertion holds at the beginning of the jth iteration by our choice of T . Thus,

252 P. Indyk and D. Woodruff

n(Ax)2i ≤ TB for all i ∈ [n] by the properties of A. So for all j, Pr[zj = 1] =
‖Ax‖2

TB ≥ (1 − 2−B)/(2B), and thus E[
∑

j zj] ≥ �/(3B). By a Chernoff bound,
Pr[

∑
j zj < �/(4B)] = neg(k, n), so if ever T = Tmax/2j−1, then this is the last

iteration with overwhelming probability.
Note that the second part of the lemma follows from standard Chernoff

bounds. Indeed, if ‖x‖2 �= 0, then we have shown with overwhelming proba-
bility that in some iteration, T ≥ 1 and

∑
i zi ≥ �/4B, so we may condition

on the event that the algorithm exits in such an iteration. But for a certain
constant in the big-Oh notation, one can show (by Chernoff and union bounds)
that the probability

∑
i zi ≥ �/4B when E[

∑
j zj] = O(�/B) is negligible. On

the other hand, once E[
∑

j zj] ≥ �/3B, we have shown that
∑

i zi ≥ �/4B with
overwhelming probability. Thus we exit with E[

∑
j zj] = Θ(�/B).

Correctness. We claim Pr[|E − ‖x‖2| ≤ ε] ≥ 1 − δ. Since Ax = 0 if ‖x‖2 =
0, we have that E = 0 in this case, and the claim is immediate. So suppose
‖x‖2 �= 0. By Lemma 1, when the algorithm exits, with probability 1−neg(k, n),
E [

∑
i zi] = Θ (�/B), so we assume this event occurs. By a Chernoff and a union

bound over iterations, we may assume that whenever E [
∑

i zi] = Θ (�/B),

Pr

[∣∣∣∣∣∑
i

zi − E

[∑
i

zi

]∣∣∣∣∣ ≥ ε

2
E

[∑
i

zi

]]
≤ e−Θ(ε2 �

B) <
δ

2
.

Thus, this holds when the algorithm exits. By Lemma 1, assertion 3a holds, so
that �(1− 2−B)‖x‖2 ≤ TB ·E[

∑
i zi] ≤ � ‖x‖2. Setting E = 2TB

�

∑
i zi (recall

that T is halved in step 3c) then shows that Pr[|E − ‖x‖2| ≥ ε‖x‖2] ≤ δ.

Privacy. We replace the secure circuit with ROM in step 3b of �2-Approx with an
oracle (see section 2). We construct a single simulator Sim, which givenΔdef= ‖x‖2,
satisfies Sim(Δ)

c≡ Viewπ
A (a, b) and Sim(Δ)

c≡ Viewπ
B (a, b), where Viewπ

A (a, b),
Viewπ

B (a, b) are Alice, Bob’s real views respectively. This, in particular, implies
functional privacy. It will follow that �2-Approx is a private approximation of Δ.

Sim (Δ):

1. Generate a random seed of G
2. Set T = Tmax

3. Repeat:
(a) Generate {zj}j∈[�] from i.i.d. Bernoulli

(
Δ

TB

)
distributions

(b) T = T/2
4. Until

∑
i zi ≥ �

4B or T < 1
5. Output E = 2TB

l

∑
i zi

With probability 1−neg(k, n), the matrix A satisfies the property in Corollary 1,
so we assume this event occurs. In each iteration, the random variables zj are

Polylogarithmic Private Approximations and Efficient Matching 253

independent in both the simulation and the protocol. Further, the probabilities
that zj = 1 in the simulated and real views differ only by a multiplicative factor
of (1 − 2−B) as long as T ≥ Δ. But the probability that, in either view, we
encounter T < Δ is neg(k, n).

Complexity. Given our cryptographic assumptions, we use Õ(1) communication
and O(1) rounds.

Remark 1. Our cryptographic assumptions are fairly standard, and similar to
the ones in [12]. There the authors make the weaker assumptions that PRGs
stretching nγ bits to n bits and OT with nγ communication exist for any constant
γ. In fact, the latter implies the former [21, 15]. If we were to instead use these
assumptions, our communication would be O(nγ), still greatly improving upon
the O(n1/2+γ) communication of [12]. A candidate OT scheme satisfying our
assumptions can be based on the Φ-Hiding Assumption [6], and can be derived
by applying the PIR to OT transformation of [30] to the scheme in that paper.

Remark 2. For the special case of Hamming distance, we have an alternative
protocol based on the following idea. Roughly, both parties apply the perfect
hashing of the Low-Distance Estimator protocol of [12] for a logarithmic number
of levels j, where the jth level contains Õ(2j) buckets. To overcome the Õ(

√
n)

barrier of [12], instead of exchanging the buckets, the set of buckets is randomly
and obliviously sampled. From the samples, an estimate of Δ(a, b) is output.
For some j, 2j ≈ Δ(a, b), so the estimate will be tightly concentrated, and for
reasons similar to �2-Approx, will be simulatable. We omit the details, but note
that two advantages of this alternative protocol are that the time complexity
will be Õ(n) instead of Õ(n2), and that we don’t need the PRG G, as we may
use k-wise independence for the hashing.

4 Private Near Neighbor and c-Approximate Near
Neighbor Problems

We consider the case in which Alice has a point q, and Bob a set of n points P .

4.1 Private Near Neighbor Problem

Suppose for some integer U , Alice has q ∈ [U]d, Bob has P = p1, . . . , pn ∈ [U]d,
and Alice should learn mini f(q, pi), where f is some distance function. In [10]
protocols for �1, �2, Hamming distance over U -ary alphabets, set difference, and
arbitrary distance functions f(a, b) =

∑d
i=1 fi(ai, bi) were proposed, using an

untrusted third party. We improve the communication of these protocols and
remove the third party using homomorphic encryption to implement polynomial
evaluation as in [13], and various hashing tricks.

In [13], the authors consider the private all-near neighbors problem in which
Alice has n queries q1, . . . , qn ∈ [U]d and wants all pi for which Δ(pi, qj) ≤ t < d

for some j and parameter t. Our techniques improve the Õ(n2d) communication
of a generic SFE and the Õ(n

(
d
t

)
) communication of [13] for this problem to

254 P. Indyk and D. Woodruff

Õ(nd2 + n2). Finally, in the common random string model we achieve $log d� +
O(k) communication for the (exact) Hamming distance, and an inner product
protocol with d+O(k) communication.

For the details of our schemes, see the full version of our paper [24]. We do
not focus on them here since they still suffer from an Ω(n) communication cost.
We instead focus on how to privately approximate these problems.

4.2 Private c-Approximate Near Neighbor Problem

Suppose q ∈ {0, 1}d and pi ∈ {0, 1}d for all i. Let Pt = {p ∈ P | Δ(p, q) ≤ t},
and c > 1 be a constant.

Definition 2. A c-approximate NN protocol is correct if when Pr �= ∅, Alice
outputs a point f(q, P) ∈ Pcr with probability 1 − 2−Ω(k). It is private if in the
computational sense, Bob learns nothing, while Alice learns nothing except what
follows from Pcr. Formally, Alice’s privacy is implied by an efficient simulator Sim
for which 〈q, P, f(q, P)〉 c≡ 〈q, P, Sim(1n, Pcr, q)〉 for poly(d, n, k)-time machines.

Following [20], we say the protocol leaks b bits of information if there is a de-
terministic “hint” function h : {0, 1}(n+1)d → {0, 1}b such that the distributions
〈q, P, f(q, P)〉 and 〈q, P, Sim(1n, Pcr, q, h(P, q))〉 are indistinguishable. As moti-
vated in section 1, we believe these to be natural extensions of private approxi-
mations in [12, 20] from values to sets of values.

We give a private c-approximate NN protocol with communication Õ(
√
n+d)

and a c-approximate NN protocol with communication Õ(n1/3+d) which leaks k
bits of information. Both protocols are based on dimensionality reduction in the
hypercube [25]. There it is shown that for an O(log n)× d matrix A with entries
i.i.d. Bernoulli(1/d), there is an τ = τ(r, cr) such that for all p, q ∈ {0, 1}d, the
following event holds with probability at least 1 − 1/poly(n)

If Δ(p, q) ≤ r, then Δ(Ap,Aq) ≤ τ, and if Δ(p, q) ≥ cr, then Δ(Ap,Aq) > τ.

Here, arithmetic occurs in Z2. We use this idea in the following helper protocol
DimReduce(τ,B, q, P). Let A be a random matrix as described above. Let S =
{p ∈ P | Δ(Ap,Aq) ≤ τ}. If |S| > B, replace S with the lexicographically first
B elements of S. DimReduce outputs random shares of S.

DimReduce (τ,B, q, P):

1. Bob performs the following computation
– Generate a matrix A as above, and initialize L to an empty list.
– For each v ∈ {0, 1}O(log n), let L(v) be the first B pi for which
Δ(Api, v) ≤ τ .

2. A secure circuit with ROM L and input (q,A) executes:
– Compute Aq.
– Lookup Aq in L to obtain S. If |S| < B, pad S so that all S have

the same length.
– Output random shares (S1, S2) of S so that S = S1 ⊕ S2.

Polylogarithmic Private Approximations and Efficient Matching 255

It is an easy exercise to show the correctness and privacy of DimReduce.

Remark 3. As stated, the communication is Õ(dB). The dependence on d can
be improved to Õ(d+ B) using homomorphic encryption. Roughly, Alice sends
E(q1), . . . , E(qd) to Bob, who sets L(v) to be the first B different E(Δ(pi, q)) for
which Δ(Api, v) ≤ τ . Note that E(Δ(pi, q)) is efficiently computable, and has
size Õ(1) + d.

It will be useful to define the following event H(r1, r2, P) with r1 < r2. Suppose
we run DimReduce independently k times with matrices Ai. Then H(r1, r2, P) is
the event that at least k/2 different i satisfy

∀p ∈ Pr1 , Δ(Aip,Aiq) ≤ τ(r1, r2) and ∀p ∈ P \ Pr2 , Δ(Aip,Aiq) > τ(r1, r2).

The next lemma follows from the properties of the Ai and Chernoff bounds:

Lemma 2. Pr[H(r1, r2, P)] = 1 − 2−Ω(k).

4.3 c-Approximate NN Protocol

Protocol Overview: Our protocol is based on the following intuition. When |Pcr|
is large, a simple solution is to run a secure function evaluation with Alice’s
point q as input, together with a random sample P ′ of roughly a k/|Pcr| fraction
of Bob’s points P . The circuit returns a random point of P ′ ∩ Pcr, which is
non-empty with overwhelming probability. The communication is Õ(n/|Pcr|).

On the other hand, when |Pcr| is small, if for k independent trials Alice
and Bob run DimReduce(τ(r, cr), |Pcr|, q, P), then with overwhelming probability
Pr ⊆ ∪iSi, where Si denotes the (randomly shared) output in the ith execution.
A secure function evaluation can then take in the random shares of the Si and
output a random point of Pr. The communication of this scheme is Õ(|Pcr|).

Our protocol combines these two protocols to achieve Õ(
√
n) communication,

by sampling roughly an n−1/2 fraction of Bob’s points in the first protocol, and
by invoking DimReduce with parameter B = Õ(

√
n) in the second protocol. This

approach is similar in spirit to the “high distance / low distance” approach used
to privately approximate the Hamming distance in [12].

c-Approx (q, P):

1. Set B = Õ(
√
n).

2. Independently run DimReduce(τ(r, cr), B, q, P) k times, generating
shares (S1

i , S
2
i).

3. Bob finds a random subset P ′ of P of size B.
4. On inputs q, S1

i , S
2
i , P

′, a secure circuit executes:
– Compute Si = S1

i ⊕ S2
i for all i.

– Let f(q, P) be a random point from Pcr ∩P ′ �= ∅ if it is non-empty,
– Else let f(q, P) be a random point from Pr∩∪iSi if it is non-empty,

otherwise set f(q, P) = ∅.
– Output (f(q, P), null).

256 P. Indyk and D. Woodruff

Using the ideas in Remark 3, the communication is Õ(d+B), since the SFE has
size Õ(B). Let F be the event that P ′ ∩ Pcr �= ∅, and put H = H(r, cr, P).

Correctness. Suppose Pr is nonempty. The probability s of correctness is just
the probability we don’t output ∅. Thus s ≥ Pr[F]+Pr[¬F] Pr[f(q, P) �= ∅ | ¬F].

Case |Pcr| ≥
√
n: For sufficiently large B, we have s ≥ Pr[F] = 1 − 2−Ω(k).

Case |Pcr| <
√
n: It suffices to show Pr[f(q, P) �= ∅ | ¬F] = 1 − 2−Ω(k). But

this probability is at least Pr[f(q, P) �= ∅ | H,¬F] Pr[H], and if H occurs, then
f(q, P) �= ∅. By Lemma 2, Pr[H] = 1 − 2−Ω(k).

Privacy. Note that Bob gets no output, so Alice’s privacy follows from the
composition of of DimReduce and the secure circuit protocol of step 5. Similarly, if
we can construct a simulator Sim with inputs 1n, Pcr, q so that the distributions
〈q, P, f(q, P)〉 and 〈q, P, Sim(1n, Pcr, q)〉 are statistically close, Bob’s privacy will
follow by that of DimReduce and the secure circuit protocol of step 5.

Sim (1n, Pcr, q):

1. Set B = Õ(n1/2).
2. With probability 1 −

(
n−|Pcr|

B

)(
n
B

)−1, output a random element of Pcr,
3. Else output a random element of Pr.

Let X denote the output of Sim(1n, Pcr, q). It suffices to show that for each p ∈
P , |Pr[f(q, P) = p]−Pr[X = p]| = 2−Ω(k), since this also implies |Pr[f(q, P) =
∅] − Pr[X = ∅]| = 2−Ω(k). We have

Pr [f(q, P) = p] = Pr [f(q, P) = p,F] + Pr [f(q, P) = p,¬F]
= Pr [f(q, P) = p,F] + Pr [f(q, P) = p,¬F | H] ± 2−Ω(k)

= Pr [F] |Pcr|−1 + Pr[¬F] Pr[f(q, P) = p | H,¬F] ± 2−Ω(k),

where we have used Lemma 2. Since Pr[F] = 1 −
(
n−|Pcr|

B

)(
n
B

)−1, we have

|Pr[f(q, P) = p] − Pr[X = p]| ≤
Pr[¬F]

∣∣Pr[f(q, P) = p | H,¬F] − δ(p ∈ Pr)|Pr|−1
∣∣ + 2−Ω(k).

If |Pcr| ≥
√
n, then Pr[¬F] = 2−Ω(k). If |Pcr| <

√
n, then Pr[f(q, P) = p |

H,¬F] = δ(p ∈ Pr)|Pr|−1.

Reducing the dependence on d: The way the current problem is stated, there
is an Ω(d) lower bound. We now sketch how, if Alice just wants to learn some
coordinate of an element of Pcr, this dependence can be made polylogarithmic.
The idea is to perform an approximation to the Hamming distance instead of
using the E(Δ(pi, q)) in the current protocol (see, e.g., DimReduce, and the fol-
lowing remark). The approximation we use is that given in [25], namely, the

Polylogarithmic Private Approximations and Efficient Matching 257

parties will agree upon random matrices Ai for some subset of i in [n], and from
the Aipi and Aiq will determine (1 ± ε) approximations to the Δ(pi, q) with
probability 1− 2−k. We don’t need private approximations since the parties will
not learn these values, but rather, they will input the Aipi, Aiq into a secure
circuit which makes decisions based on these approximations.

More precisely, Bob samples B of his vectors pi, and in parallel agrees upon
B matrices Ai and feeds the Aipi into a secure circuit. Alice feeds in the Aiq.
Let c ≥ 1 + 8ε. The circuit looks for an approximation of at most r(1 + 6ε).
If such a value exists, the circuit gives Alice the corresponding index. Ob-
serve that if |Pr(1+4ε)| >

√
n, then with probability 1 − 2−k an index is re-

turned to an element in Pcr, and that this distribution is simulatable. So assume
|Pr(1+4ε)| ≤

√
n.

The parties proceed by running a variant of DimReduce(τ(r, r(1+4ε)), B, q, P),
with the important difference being that the output no longer consists of shares
of the E(Δ(pi, q)). Instead, for each entry L(v), Bob pretends he is running
the approximation of [25] with Alice’s point q. That is, the parties agree on B
different matrices Ai and Bob computes Aip for each p ∈ L(v). A secure circuit
obtains these products, and computes the approximations. It outputs an index
to a random element with approximation at most r(1 + 2ε). If Pr is nonempty,
such an index will exist with probability 1 − 2−k. Also, the probability that an
index to an element outside of Pr(1+4ε) is returned is less than 2−k, and so the
distribution of the index returned is simulatable.

Finally, given the index of some element in Pcr, the parties perform OT and
Alice obtains the desired coordinate, The communication is Õ(

√
n+polylog(d)).

Locality-sensitive hashing (LSH): We also have a similar protocol based on LSH,
which only achieves Õ(n1/2+1/(2c) + d) communication, but has much smaller
time complexity (though still polynomial). More precisely, the work of the LSH
scheme is nO(1), whereas the work of c-Approx is nO(1/(c−1)2), which is poly-
nomial only for constant c. See Appendix B for the details.

4.4 c-Approximate NN Protocol Leaking k Bits

Protocol Overview: We consider three balls Pr ⊆ Pbr ⊆ Pcr, where c− b, b− 1 ∈
Θ(1). We start by trying to use dimensionality reduction to separate Pr from
P \ Pbr, and to output a random point of Pr. If this fails, we try to sample
and output a random point of Pcr. If this also fails, then it will likely hold that
n1/3 ≤ |Pbr| ≤ |Pcr| ≤ n2/3. We then sample down the pointset P by a factor of
n−1/3, obtaining P̃ with survivors P̃br, P̃cr of Pbr, Pcr respectively. It will now
likely hold that we can use dimensionality reduction to separate P̃br from P̃ \ P̃cr

to obtain and output a random point of P̃br. The hint function will encode the
probability, to the nearest multiple of 2−k, that the first dimensionality reduction
fails, which may be a non-negligible function of P \Pcr. This hint will be enough
to simulate the entire protocol.

The protocol can be implemented in polynomial time with communication
Õ(B + d) = Õ(n1/3 + d).

258 P. Indyk and D. Woodruff

c-ApproxWithHelp (q, P):

1. Set B = Õ(n1/3).
2. Independently run DimReduce(τ(r, br), B, q, P) k times, generating

shares (S1
i , S

2
i).

3. Bob finds random subsets P ′, P̃ of P of respective sizes B and n2/3.
4. Independently run DimReduce(τ(br, cr), B, q, P̃) k times, generating

shares (S̃1
i , S̃

2
i).

5. On inputs q, S1
i , S

2
i , P

′, S̃1
i , S̃

2
i , a secure circuit executes:

– Compute Si = S1
i ⊕ S2

i and S̃i = S̃1
i ⊕ S̃2

i for all i.
– If for most i, |Si| < B, let f(q, P) be a random point in Pr ∩ ∪iSi,

or set it to ∅ if it is empty.
– Else if Pcr ∩ P ′ �= ∅, let f(q, P) be a random point in Pcr ∩ P ′.
– Else let f(q, P) be a random point in Pbr ∩ ∪iS̃i if it is non-empty,

otherwise set f(q, P) = ∅.
– Output (f(q, P), null).

To prove correctness and privacy, we introduce some notation. Let E1 be the event
that the majority of the |Si| are less than B, and E2 the event that Pr ⊆ ∪iSi. Let
F be the event that P ′∩Pcr �= ∅. Let G1 be the event that 1 ≤ P̃br ≤ P̃cr ≤ B and
G2 the event that P̃br ⊆ ∪iS̃i. Finally, let H1 = H(r, br, P) and H2 = H(br, cr, P̃).
Note that Pr[H1],Pr[H2] are 1 − 2−Ω(k) by Lemma 2. We need two lemmas:

Lemma 3. Pr[E2 | E1] = 1 − 2−Ω(k).

Proof. If H1 and E1 occur, then there is an i for which Pr ⊆ Si, so E2 occurs.

Lemma 4. Pr[G2 | G1] = 1 − 2−Ω(k).

Proof. If H2 and E2 occur, then the majority of the S̃i contain P̃br, so G2 occurs.

Correctness. We may assume Pr �= ∅. The probability s of correctness is just
the probability the algorithm doesn’t return ∅. Since F , E1, and G1 are indepen-
dent,

s ≥ Pr[E1] Pr[E2 | E1] + Pr[¬E1](Pr[F] + Pr[¬F] Pr[G1] Pr[G2 | G1]).

Case |Pbr| < B: H1 implies E1 since |Pbr| < B, and using Lemma 3, s ≥
Pr[E1] Pr[E2 | E1] = 1 − 2−Ω(k).

Case |Pbr| ≥ B: Since Pr[E2 | E1] = 1 − 2−Ω(k) by Lemma 3, we just need
to show that Pr[F] + Pr[¬F] Pr[G1] Pr[G2 | G1] = 1 − 2−Ω(k). If |Pcr| > n2/3,
it suffices to show Pr[F] = 1 − 2−Ω(k). This holds for large enough B =
Õ(n1/3). Otherwise, if |Pcr| ≤ n2/3, then it suffices to show Pr[G1] Pr[G2 | G1] =
1 − 2−Ω(k). By assumption, B ≤ |Pbr| ≤ |Pcr| ≤ n2/3. Therefore, for large

Polylogarithmic Private Approximations and Efficient Matching 259

enough B, Pr[G1] = 1 − 2−Ω(k), and thus by Lemma 4, Pr[G1] Pr[G2 | G1] =
1 − 2−Ω(k).

Privacy. Note that Bob gets no output, so Alice’s privacy follows from the
composition of DimReduce and the secure circuit protocol of step 5. Similarly,
if we can construct a simulator Sim with inputs 1n, Pcr, q, h(Pcr, q) so that the
distributions 〈q, P, f(q, P)〉 and 〈q, P, Sim(1n, Pcr, q, h(Pcr, q))〉 are statistically
close, Bob’s privacy will follow by that of DimReduce and the secure circuit of
step 5.

We define the hint function h(Pcr, q) to output the nearest multiple of 2−k

to Pr[E1]. In the analysis we may assume that Sim knows Pr[E1] exactly, since
its output distribution in this case will be statistically close to its real output
distribution.

Sim (1n, Pcr, q,Pr[E1]):

1. Set B = Õ(n1/3).
2. With probabiity Pr[E1], output a random element of Pr, or ∅ if Pr = ∅.
3. Else with probability 1−

(
n−|Pcr|

B

)(
n
B

)−1, output a random element of Pcr,
4. Else output a random element of Pbr.

Let X denote the output of Sim(1n, Pcr, q,Pr[E1]). It suffices to show that for
each p ∈ P ,

|Pr[f(q, P) = p] − Pr[X = p]| = 2−Ω(k),

since then we have |Pr[f(q, P) = ∅] − Pr[X = ∅]| = 2−Ω(k). Using the indepen-
dence of F , E1,G1, and Lemmas 3, 4, we bound Pr[f(q, P) = p] as follows

Pr[f(q, P) = p] = Pr[E1, f(q, P) = p] + Pr[¬E1, f(q, P) = p]
= Pr[E1] Pr[f(q, P) = p | E2E1] ± 2−Ω(k) + Pr[¬E1] Pr[F] Pr[f(q, P) = p | F,¬E1]
+ Pr[¬E1] Pr[¬F] Pr[f(q, P) = p | ¬F,¬E1]
= Pr[E1]|Pr|−1δ(p ∈ Pr) ± 2−Ω(k) + Pr[¬E1] Pr[F]|Pcr|−1

+ Pr[¬E1] Pr[¬F] Pr[G1] Pr[f(q, P) = p | G1G2¬F¬E1] ± 2−Ω(k)

+ Pr[¬E1] Pr[¬F] Pr[¬G1] Pr[f(q, P) = p | ¬G1¬F¬E1]
= Pr[E1]|Pr|−1δ(p ∈ Pr) + Pr[¬E1] Pr[F]|Pcr|−1

+ Pr[¬E1] Pr[¬F] Pr[G1]|Pbr|−1δ(p ∈ Pbr)
+ Pr[¬E1] Pr[¬F] Pr[¬G1] Pr[f(q, P) = p | ¬E1¬F¬G1] ± 2−Ω(k).

On the other hand, since Pr[F] = 1 −
(
n−|Pcr|

B

)(
n
B

)−1, then Pr[X = p] is

Pr[E1]|Pr|−1δ(p ∈ Pr)+Pr[¬E1] Pr[F]|Pcr|−1 +Pr[¬E1] Pr[¬F]|Pbr|−1δ(p ∈ Pbr),

260 P. Indyk and D. Woodruff

so that,

|Pr[f(q, P) = p] − Pr[X = p]| ≤
Pr[¬E1] Pr[¬F] Pr[¬G1] Pr[f(q, P) = p | ¬E1¬F¬G1] + 2−Ω(k).

If |Pbr| < B, Pr[¬E1] = 2−Ω(k). If |Pcr| ≥ n2/3, Pr[¬F] = 2−Ω(k). Otherwise
B ≤ |Pbr| ≤ |Pcr| ≤ n2/3, and as shown for correctness, Pr[¬G1] = 2−Ω(k),
which shows that |Pr[f(q, P) = p] − Pr[X = p]| = 2−Ω(k).

Acknowledgments

The second author would like to thank Andrew Yao for support and hospitality
while visiting Tsinghua University.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments, STOC, 1996.

[2] K. Bharat and A. Broder. Estimating the relative size and overlap of public web
search engines, WWW, 1998.

[3] A. Beimel, Y. Ishai, T. Malkin. Reducing the servers computation in private in-
formation retrieval: PIR with preprocessing, CRYPTO, 2000.

[4] J. D. C. Benaloh, Verifiable secret-ballot elections. PhD thesis, Yale University,
1987.

[5] C. Cachin, J. Camenisch, J. Kilian and J. Müller. One-round secure computation
and secure autonomous mobile agents, ICALP, 2000.

[6] C. Cachin, S. Micali and M. Stadler. Computationally private information retrieval
with polylogarithmic communication, Eurocrypt, 1999.

[7] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party computation, STOC, 2002.

[8] B. Chor, N. Gilboa and M. Naor, Private information retrieval by keywords, Tech-
nical Report CS0917, Department of Computer Science, Technion, 1997.

[9] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan. Private information re-
trieval, FOCS, 1995.

[10] W. Du and M. J. Attalah. Protocols for secure remote database access with ap-
proximate matching, CCS - Workshop on Security and Privacy in E-commerce,
2000.

[11] S. Even, O. Goldreich and A. Lempel. A randomized protocol for signing contracts,
Communications of the ACM, 1985.

[12] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. Wright. Secure
multiparty computation of approximations, ICALP 2001.

[13] M. Freedman, K. Nissim and B. Pinkas. Efficient private matching and set inter-
section, Eurocrypt, 2004.

[14] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen. On secure scalar product
computation for privacy-preserving data mining, ICISC, 2004.

[15] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. Construction of a pseudo-
random generator from any one-way function, Technical Report TR-91-068, In-
ternational Computer Science Institute, 1991.

Polylogarithmic Private Approximations and Efficient Matching 261

[16] Y. Gertner, Y. Ishai, E. Kushilevitz and T. Malkin. Protecting data privacy in
private information retrieval schemes, STOC, 1998.

[17] O. Goldreich. Secure multi-party computation, 1998. Available at
http://philby.ucsd.edu/

[18] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game, STOC,
1987.

[19] S. Goldwasser and S. Micali. Probabilistic encryption, JCSS, 1984.
[20] S. Halevi, R. Krauthgamer, E. Kushilevitz, and K. Nissim. Private approximation

of NP-hard functions, STOC 2001.
[21] R. Impagliazzo and M. Luby. One-way functions are essential for complexity-based

cryptography, FOCS, 1989.
[22] P. Indyk. High-dimensional computational geometry. PhD Thesis, Stanford Uni-

versity, 2000.
[23] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the

curse of dimensionality, STOC, 1998.
[24] P. Indyk and D. Woodruff. Polylogarithmic private approximations and efficient

matching, ECCC, Technical Report TR05-117, 2005.
[25] E. Kushilevitz, R. Ostrovsky and Y. Rabani. Efficient search for approximate

nearest neighbor in high dimensional spaces, STOC, 1998.
[26] Y. Lindell and B. Pinkas. Privacy preserving data mining, Crypto, 2000.
[27] V.D. Milman and G. Schechtman. Asymptotic Theory of Finite Dimensional

Normed Spaces. Lecture Notes in Mathematics, 1200, Springer Verlag, 1986.
[28] D. Naccache and J. Stern. A new public key cryptosystem, Eurocrypt, 1997.
[29] M. Naor and K. Nissim. Communication complexity and secure function evalua-

tion, STOC, 2001.
[30] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation, STOC,

1999.
[31] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes,

Eucrocrypt, 1999.
[32] M. Rabin. How to exchange secrets by oblivious transfer. Technical report TR81,

Aiken Computation Lab, 1981.
[33] A. C. Yao. Protocols for secure computations, FOCS, 1982.

A Cryptographic Tools

Homomorphic Encryption. An encryption scheme, E : (G1,+) → (G2, ·) is
homomorphic if for all a, b ∈ G1, E(a+ b) = E(a) · E(b). For more background
on this primitive see, for example, [19, 28]. We will make use of the Paillier ho-
momorphic encryption scheme [31].

Oblivious Transfer and SPIR. Oblivious transfer is equivalent to the notion
of symmetrically-private information retrieval (SPIR), where the latter usually
refers to communication-efficient implementations of the former. SPIR was in-
troduced in [16]. With each invocation of a SPIR protocol a user learns exactly
one bit of a binary database while giving the server no information about which
bit was learned. We rely on single-server SPIR schemes in our protocols. Such
schemes necessarily offer computational, rather than unconditional, security [9].
Applying the transformation of [30] to the PIR scheme of [6] give SPIR con-
structions with Õ(n) server work and Õ(1) communication.

262 P. Indyk and D. Woodruff

One issue is that in some of our schemes, we actually perform OT on records
rather than on bits. It is a simple matter to convert a binary OT scheme into
an OT scheme on records by running r invocations of the binary scheme in par-
allel, where r is the record size. This gives us a 1-round, Õ(r) communication,
Õ(nr) server work OT protocol on records of size r. The dependence on r can
be improved using techniques of [8].

Secure Function Evaluation. In [18, 33] it is shown how two parties hold-
ings inputs x and y can privately evaluate any circuit C with communication
O(k(|C| + |x| + |y|)), where k is a security parameter. In [5] it is shown how to
do this in one round for the semi-honest case we consider. The time complexity
is the same as the communication. We use such protocols as black boxes in our
protocols.

B Private c-Approximate NN Based on Locality Sensitive
Hashing

We give an alternative private c-approximate NN protocol, with slightly more
communication than that in section 4.2, but less work (though still polynomial).
It is based on locality sensitive hashing (LSH) [23]. The fact we need is that
there is a family of functions G : {0, 1}d → {0, 1}Õ(1) such that each g ∈ G has
description size Õ(1), and G is such that for all p, q ∈ {0, 1}d,

Pr
g∈G

[g(p) = g(q)] = Θ
(
n−Δ(p,q)/cr

)
Recall that Alice has a point q ∈ {0, 1}d and Bob has n points P ⊆ {0, 1}d.

For correctness, Alice should learn a point of Pcr provided Pr �= ∅. For privacy,
her view should be simulatable given only Pcr.

Our protocol is similar to that in section 4.2. When |Pcr| is large, one can run a
secure function evaluation with Alice’s point q as input, together with a random
sample P ′ of roughly a k/|Pcr| fraction of Bob’s points P . The circuit returns a
random point of P ′ ∩ Pcr which is non-empty with probabiity 1 − 2−Ω(k). The
communication is Õ(n/|Pcr|).

On the other hand, when |Pcr| is small, if Alice and Bob exchange functions
gi independently Õ(n1/c) times, then with overwhelming probability Pr ⊆ ∪iSi,
where Si denotes the subset of Bob’s points p with gi(p) = gi(q). Using a secure
ciruit with ROM, we can obtain these sets Si, and output a random point of Pr.
The communication is Õ(n1/c|Pcr|).

Our protocol balances these approaches to achieve Õ(n1/2+1/(2c)) communi-
cation.

There are a few technicalities dodged by this intuition. First, even though the
parties exchange Õ(n1/c) different gi, and can thus guarantee that each p is in
some Si with probability 1−2−Ω(k), it may be that whenever p ∈ Si, many points
from P \Pcr also land in Si, so that Si is very large. Even though we only expect
|P \ Pcr|O(1/n) = O(1) points from P \ Pcr in Si, since Pr[p ∈ Si] = Θ(n−1/c)

Polylogarithmic Private Approximations and Efficient Matching 263

is small, p may only be in Si when Si is large. Because the size of the Si affects
the communication of our protocol, we cannot always afford for the ROM to
receive the whole Si (sometimes we will truncate it). However, in the analysis,
we show that the average Si is small, and this will be enough to get by with low
communication.

Second, we need to extend the notion of a lookup gate given in section 2.
Instead of just mapping inputs (i, j) to output Ri[j], the jth entry in the ith
party’s ROM, we also allow j to be a key, so that the output is the record in Ri

keyed by j. This can be done efficiently using [8], and Theorem 2 is unchanged,
assuming the length of the keys is Õ(1).

LSH (q, P):

1. Set B = Õ(n1/2+1/(2c)) and C = Õ(n1/c).
2. Bob finds a random subset P ′ of P of size B .
3. For i = 1 to k,

(a) Alice and Bob agree upon C random gi,j ∈ G.
(b) Bob creates a ROM L with entries L(v) containing p s.t. g(p) = v.
(c) A secure circuit with ROM L on input (q, {gi,j}) executes:

– Compute vi,j = gi,j(q) for each j.
– Lookup the L(vi,j) one by one for the different vi,j until the

communication exceeds dB. If it is less, pad it to dB.
– Output shares S1

i , S
2
i so that S1

i ⊕ S2
i is the set of sets L(vj).

4. A secure circuit on inputs P ′, S1
i , S

2
i executes:

– Compute the set Si = S1
i ⊕ S2

i = ∪jL(vj) for all i.
– Let f(q, P) be random in Pcr ∩ P ′ if it is non-empty.
– Else let f(q, P) be random in Pr ∩ ∪iSi if it is non-empty, else set
f(q, P) = ∅.

– Output (f(q, P), null).

The communication is Õ(dB). By using homomorphic encryption, one can re-
duce the dependence on d, as per remark 3. Let E be the event that Pr ⊆ ∪iSi,
and let F be the event that Pcr ∩ P ′ is non-empty.

Correctness. Suppose Pr �= ∅. The probability s of correctness is just the
probability we don’t output ∅. Thus s ≥ Pr[F] + Pr[¬F] Pr[f(q, P) �= ∅ | ¬F].

Case |Pcr| ≥ n1/2−1/(2c): For sufficiently large B, we have s ≥ Pr[F] = 1−2−Ω(k).

Case |Pcr| < n1/2−1/(2c): It is enough to show Pr[f(q, P) �= ∅ | ¬F] = 1−2−Ω(k).
Fix i. Put Y =

∑
j |L(vi,j)|, where |L(vi,j)| denotes the number of points in

L(vi,j). The expected number of points in P \ Pcr that are in L(vi,j) is at most
n · O(1/n) = O(1). Since |Pcr| < n1/2−1/(2c), E[L(vi,j)] < n1/2−1/(2c) + O(1).
Thus E[Y] ≤ B/3 for large enough B, so Pr[Y > B] ≤ 1/3 by Markov’s in-
equality. Thus, with probability 1 − 2−Ω(k), for at least half of the i, Si is not
truncated in step 3c. Moreover, for large enough B, any i, and any p ∈ Pr,

264 P. Indyk and D. Woodruff

Pr[p ∈ Si] = 1 − 2−Ω(k) for large enough C. By a few union bounds then,
Pr[Pr ⊆ ∪iSi] = Pr[E] = 1 − 2−Ω(k). Thus,

Pr[f(q, P) �= ∅ | ¬F] ≥ Pr[f(q, P) �= ∅, E | ¬F]
= Pr[f(q, P) �= ∅ | E , ¬F] Pr[E]
≥ 1 − 2−Ω(k).

Privacy. Note that Bob gets no output, so Alice’s privacy follows from that
of the secure circuit protocol. We construct a simulator Sim(1n, Pcr, q) so that
the distributions 〈q, P, f(q, P)〉 and 〈q, P, Sim(1n, Pcr, q)〉 are statistically close.
Bob’s privacy then follows by the composition with the secure circuit protocol.

Sim (1n, Pcr, q):

1. Set B = Õ(n1/2+1/(2c)).
2. With probabiity 1 −

(
n−|Pcr|

B

)(
n
B

)−1, output a random element of Pcr.
3. Else output a random element of Pr.

Let X denote the output of Sim(1n, Pcr, q). It suffices to show that for each p ∈
P , |Pr[f(q, P) = p]−Pr[X = p]| = 2−Ω(k), since this also implies |Pr[f(q, P) =
∅] − Pr[X = ∅]| = 2−Ω(k). We have

Pr [f(q, P) = p] = Pr [f(q, P) = p,F] + Pr [f(q, P) = p,¬F]
= Pr [F] |Pcr|−1 + Pr [f(q, P) = p,¬F]

Note that Pr[F] = 1 −
(
n−|Pcr|

B

)(
n
B

)−1. Therefore,

|Pr[f(q, P) = p]−Pr[X = p]| = Pr[¬F]|Pr [f(q, P) = p | ¬F]−δ(p ∈ Pr)|Pr|−1|.

If |Pcr| ≥ n1/2−1/(2c), this is 2−Ω(k), since then Pr[¬F] = 2−Ω(k). Otherwise,
|Pcr| < n1/2−1/(2c), and as shown in the proof of correctness, we have Pr[E] =
Pr[Pr ⊆ ∪iSi] = 1 − 2−Ω(k). Thus

Pr[f(q, P) = p | ¬F]
= Pr[f(q, P) = p | E , ¬F] Pr[E] ± 2−Ω(k)

= δ(p ∈ Pr)|Pr|−1 ± 2−Ω(k)

which completes the proof.

Calibrating Noise to Sensitivity in Private Data
Analysis

Cynthia Dwork1, Frank McSherry1, Kobbi Nissim2, and Adam Smith3,�

1 Microsoft Research, Silicon Valley
{dwork, mcsherry}@microsoft.com

2 Ben-Gurion University
kobbi@cs.bgu.ac.il

3 Weizmann Institute of Science
adam.smith@weizmann.ac.il

Abstract. We continue a line of research initiated in [10, 11] on privacy-
preserving statistical databases. Consider a trusted server that holds a
database of sensitive information. Given a query function f mapping
databases to reals, the so-called true answer is the result of applying
f to the database. To protect privacy, the true answer is perturbed by
the addition of random noise generated according to a carefully chosen
distribution, and this response, the true answer plus noise, is returned
to the user.

Previous work focused on the case of noisy sums, in which f =∑
i g(xi), where xi denotes the ith row of the database and g maps

database rows to [0, 1]. We extend the study to general functions f ,
proving that privacy can be preserved by calibrating the standard devi-
ation of the noise according to the sensitivity of the function f . Roughly
speaking, this is the amount that any single argument to f can change its
output. The new analysis shows that for several particular applications
substantially less noise is needed than was previously understood to be
the case.

The first step is a very clean characterization of privacy in terms of
indistinguishability of transcripts. Additionally, we obtain separation re-
sults showing the increased value of interactive sanitization mechanisms
over non-interactive.

1 Introduction

We continue a line of research initiated in [10, 11] on privacy in statistical
databases. A statistic is a quantity computed from a sample. Intuitively, if the
database is a representative sample of an underlying population, the goal of
a privacy-preserving statistical database is to enable the user to learn proper-
ties of the population as a whole while protecting the privacy of the individual
contributors.

We assume the database is held by a trusted server. On input a query function
f mapping databases to reals, the so-called true answer is the result of applying f
� Supported by the Louis L. and Anita M. Perlman Postdoctoral Fellowship.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 265–284, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

266 C. Dwork et al.

to the database. To protect privacy, the true answer is perturbed by the addition
of random noise generated according to a carefully chosen distribution, and this
response, the true answer plus noise, is returned to the user.

Previous work focused on the case of noisy sums, in which f =
∑

i g(xi),
where xi denotes the ith row of the database and g maps database rows to [0, 1].
The power of the noisy sums primitive has been amply demonstrated in [6], in
which it is shown how to carry out many standard datamining and learning tasks
using few noisy sum queries.

In this paper we consider general functions f mapping the database to vectors
of reals. We prove that privacy can be preserved by calibrating the standard
deviation of the noise according to the sensitivity of the function f . This is the
maximum amount, over the domain of f , that any single argument to f , that is,
any single row in the database, can change the output.

We begin by defining a new notion of privacy leakage, ε-indistinguishability.
An interaction between a user and a privacy mechanism results in a transcript.
For now it is sufficient to think of transcripts corresponding to a single query
function and response, but the notion is completely general and our results will
handle longer transcripts.

Roughly speaking, a privacy mechanism is ε-indistinguishable if for all tran-
scripts t and for all databases x and x′ differing in a single row, the probability
of obtaining transcript t when the database is x is within a (1 + ε) multiplica-
tive factor of the probability of obtaining transcript t when the database is x′.
More precisely, we require the absolute value of the logarithm of the ratios to be
bounded by ε. In our work, ε is a parameter chosen by policy.

We then formally define the sensitivity S(f) of a function f . This is a quantity
inherent in f ; it is not chosen by policy. Note that S(f) is independent of the
actual database.

We show a simple method of adding noise that ensures ε-indistinguishability
of transcripts; the noise depends only on ε and S(f), and is independent of the
database and hence of its size. Specifically, to obtain ε-indistinguishability it
suffices to add noise according to the following distribution: Pr[y] ∝ e−ε|y|/S(f).

The extension to privacy-preserving approximations to “holistic” functions f
that operate on the entire database broadens the scope of private data analysis
beyond the orignal motivation of a purely statistical, or “sample population”
context. Now we can view the database as an object that is itself of intrinsic in-
terest and that we wish to analyze in a privacy-preserving fashion. For example,
the database may describe a concrete interconnection network – not a sample
subnetwork – and we wish to learn certain properties of the network without re-
leasing information about individual edges, nodes, or subnetworks. The technol-
ogy developed herein therefore extends the scope of the line of research, beyond
privacy-preserving statistical databases to privacy-preserving analysis of data.

1.1 Additional Contributions

Definitions of Privacy. Definition of privacy requires care. In addition to our
indistinguishability-based definition mentioned above we also consider notions

Calibrating Noise to Sensitivity in Private Data Analysis 267

based on semantic security and simulation and prove equivalences among these.
A simple hybrid argument shows that utility requires non-negligible informa-
tion leakage, hence all our definitions differ from their original cryptographic
counterparts in that we accommodate non-negligible leakage. In particular,
the standard measure of statistical difference is not a sufficiently good metric
in our setting, and needs to be replaced with a more delicate one.

In previous work [10, 11, 6], the definitions were based on semantic se-
curity but the proofs were based on indistinguishability, so our move to
ε-indistinguishability is a simplification. Also, semantic security was proved
against informed adversaries. That is, an adversary with knowledge of the
entire database except a single row, say, row i, could not glean any addi-
tional information about row i beyond what it knew before interaction with
the privacy mechanism. This is fine; it says that without the database, see-
ing that X smokes does not necessarily increase our gambling odds that X
will develop heart disease, but if the database teaches the correlation be-
tween smoking and heart disease improving our guessing odds should not
be considered a violation of privacy. However, the new formulation imme-
diately gives indistinguishability against an adversary with any amount of
prior knowledge, and the above explanation is no longer necessary.

Examples of Sensitivity-Based Analysis. To illustrate our approach, we
analyze the sensitivity of specific data analysis functions, including his-
tograms, contingency tables, and covariance matrices, all of which have very
high-dimensional output, and show that their sensitivities are independent of
the dimension. Previous privacy-preserving approximations to these quanti-
ties used noise proportional to the dimension; the new analysis permits noise
of size O(1). We also give two general classes of functions which have low
sensitivity: functions which estimate distance from a set (e.g minimum cut
size in a network) and functions which can be approximated from a random
sample.

Limits on Non-Interactive Mechanisms. There are two natural models of
data sanitization: interactive and non-interactive. In the non-interactive set-
ting, the data collector—a trusted entity—publishes a “sanitized” version of
the collected data; the literature uses terms such as “anonymization” and
“de-identification”. Traditionally, sanitization employed some perturbation
and data modification techniques, and may also have included some accom-
panying synopses and statistics. In the interactive setting, the data collector
provides a mechanism with which users may pose queries about the data,
and get (possibly noisy) answers.

The first of these seems quite difficult (see [12, 7, 8]), possibly due to the
difficulty of supplying utility that has not yet been specified at the time the
sanitization is carried out. In contrast, powerful results for the interactive
approach have been obtained ([11, 6] and the present paper). We show that
for any non-interactive mechanism San satisfying our definition of privacy,
there exist low-sensitivity functions f(x) which cannot be approximated at
all based on San(x), unless the database is very large: If each database entry
consists of d bits, then the database must have 2Ω(d) entries in order to

268 C. Dwork et al.

answer all low-sensitivity queries—even to answer queries from a restricted
class called sum queries. In other words, a non-interactive mechanism must
be tailored to suit certain functions to the exclusion of others. This is not
true in the interactive setting, since one can answer the query f with little
noise regardless of n1.

The separation results are significant given that the data-mining litera-
ture has focused almost exclusively on non-interactive mechanisms, specifi-
cally, randomized response (see Related Work below) and that statisticians
have traditionally operated on “tables” and have expressed to us a strong
preference for non-interactive “noisy tables” over an interactive mechanism.

1.2 Related Work

The literature in statistics and computer science on disseminating statistical data
while preserving privacy is extensive; we discuss only directly relevant work here.
See, e.g., [5] for pointers to the broader literature.

Privacy from Perturbation. The venerable idea of achieving privacy by
adding noise is both natural and appealing. An excellent and detailed exposi-
tion of the many variants of this approach explored in the context of statistical
disclosure control until 1989, many of which are still important elements of the
toolkit for data privacy today, may be found in the survey of Adam and Wort-
mann [1]. The “classical” antecedent closest in spirit to our approach is the work
of Denning [9].

Perturbation techniques are classified into two basic categories: (i) Input per-
turbation techniques, where the underlying data are randomly modified, and
answers to questions are computed using the modified data; and (ii) Output per-
turbation, where (correct) answers to queries are computed exactly from the real
data, but noisy versions of these are reported. Both techniques suffer from certain
inherent limitations (see below); it seems that these limitations caused a decline
in interest within the computer science community in designing perturbation
techniques for achieving privacy2.

The work of Agrawal and Srikant [3] rekindled this interest; their principal
contribution was an algorithm that, given an input-perturbed database, learns
the original input distribution. Subsequent work studied the applicability and
limitations of perturbation techniques, and privacy definitions have started to
evolve, as we next describe.

Definitional Work. Several privacy definitions have been put forward since
[3]. Their definition measured privacy in terms of the noise magnitude added to
a value. This was shown to be problematic, as the definition ignored what an
1 It is also not true if one employs weaker definitions of security; the connection be-

tween the definitions and the separation between models of interaction is subtle and,
in our view, surprising. See Section 4.

2 The same is not true of the statistics community; see, for example, the work of
Roque [14].

Calibrating Noise to Sensitivity in Private Data Analysis 269

adversary knowing the underlying probability distribution might infer about the
data [2]. Evfimievsky et al. [12] noted, however, that such an average measure
allows for infrequent but noticeable privacy breaches, and suggested measuring
privacy in terms of the worst-case change in an adversary’s a-priori to a-posteriori
beliefs. Their definition is a special case of Definition 1 for input perturbation
protocols of a limited form. A similar, more general definition was suggested in
[10, 11, 6]. This was modeled after semantic security of encryptions.

Our basic definition of privacy, ε-indistinguishability, requires that a change in
one database entry induce a small change in the distribution on the view of the
adversary, under a specific, “worst-case” measure of distance. It is the same as in
[12], adapted to general interactive protocols. An equivalent, semantic-security-
flavored formulation is a special case of the definition from [10, 11, 6]; those
definitions allowed a large loss of privacy to occur with negligible probability.

We note that k-anonymity [15] and the similarly motivated notion of protec-
tion against isolation [7, 8]) have also been in the eye of privacy research. The
former is a syntactic characterization of (input-perturbed) databases that does
not immediately capture semantic notions of privacy; the latter definition is a
geometric interpretation of protection against being brought to the attention of
others. The techniques described herein yield protection against isolation.

Sum Queries. A cryptographic perspective on perturbation was initiated by
Dinur and Nissim [10]. They studied the amount of noise needed to maintain
privacy in databases where a query returns (approximately) the number of 1’s
in any given subset of the entries. They showed that if queries are not restricted,
the amount of noise added to each answer must be very high – linear (in n, the
size of the database) for the case of a computationally unbounded adversary, and
Ω(

√
n) for a polynomially (in n) bounded adversary. Otherwise, the adversary

can reconstruct the database almost exactly, producing a database that errs on,
say, 0.01% of the entries. In contrast, jointly with Dwork, they initiated a se-
quence of work [10, 11, 6] which showed that limiting the users to a sublinear
(in n) number of queries (“SuLQ”) allows one to release useful global informa-
tion while satisfying a strong definition of privacy. For example, it was shown
that the computationally powerful noisy sum queries discussed above, that is,∑n

i=1 g(i, xi), where g maps rows to values in [0, 1], can be safely answered by
adding o(

√
n) noise (from a gaussian, binomial, or Laplace distribution)— a level

well below the sampling error one would expect in the database initially.

2 Definitions

We model the adversary as a probabilistic interactive Turing machine with an
advice tape. Given a database access protocol San, an adversary A, and a par-
ticular database x, let the random variable TSan,A(x) denote the transcript. The
randomness in TSan,A(x) comes from the coins of San and of A. Note that for
non-interactive schemes, there is no dependence on the adversary A. We will
drop either or both of the subscripts San and A when the context is clear.

270 C. Dwork et al.

We model the database as a vector of n entries from some domain D. We
typically consider domains D of the form {0, 1}d or Rd. The Hamming distance
dH(·, ·) over Dn is the number of entries in which two databases differ.

Our basic definition of privacy requires that close databases correspond to
close distributions on the transcript. Specifically, for every transcript, the prob-
abilities of it being produced with the two possible databases are close. We
abuse notation somewhat and use Pr[A = a] to denote probability density for
both continuous and discrete random variables.

Definition 1. A mechanism is ε-indistinguishable if for all pairs x,x′ ∈ Dn

which differ in only one entry, for all adversaries A, and for all transcripts t:∣∣∣∣ln(
Pr[TA(x) = t]
Pr[TA(x′) = t]

)
∣∣∣∣ ≤ ε. (1)

We sometimes call ε the leakage. When ε is small, ln(1 + ε) ≈ ε, and so the defi-
nition is roughly equivalent to requiring that for all transcripts t, Pr[TA(x)=t]

Pr[TA(x′)=t] ∈
1 ± ε.

The definition is unusual for cryptography, in that in most cryptographic
settings it is sufficient to require that distributions be statistically close (i.e. have
small total variation distance) or that they be computationally indistinguishable.
However, the requirement of Definition 1 is much more stringent than statistical
closeness: one can have a pair of distributions whose statistical difference is
arbitrarily small, yet where the ratio in Eqn. 1 is infinite (by having a point
where one distribution assigns probability zero and the other, non-zero). We
chose the more stringent notion because (a) it is achievable at very little cost,
and (b) more standard distance measures do not yield meaningful guarantees in
our context, since, as we will see, the leakage must be non-negligible. As with
statistical closeness, Definition 1 also has more “semantic” formulations; these
are discussed in Appendix A.

As we will next show, it is possible to release quite a lot of “global” information
about the database while satisfying Definition 1. We first define the Laplace
distribution, Lap(λ). This distribution has density function h(y) ∝ exp (−|y|/λ),
mean 0, and standard deviation λ.

Example 1 (Noisy Sum). Suppose x ∈ {0, 1}n, and the user wants to learn
f(x) =

∑
i xi, the total number of 1’s in the database. Consider adding noise to

f(x) according to a Laplace distribution:

T (x1, . . . , xn) =
∑

i

xi + Y, where Y ∼ Lap(1/ε).

This mechanism is ε-indistinguishable. To see why, note that for any real numbers
y, y′ we have h(y)

h(y′) ≤ eε|y−y′|. For any two databases x and x′ which differ in a
single entry, the sums f(x) and f(x′) differs by one. Thus, for t ∈ R, the ratio
Pr(T (x)=t)
Pr(T (x′)=t) = h(t−f(x))

h(t−f(x′)) is at most eε|f(x)−f(x′)| ≤ eε, as desired.

Calibrating Noise to Sensitivity in Private Data Analysis 271

Non-negligible Leakage and the Choice of Distance Measure. In the
example above it is clear that even to get a constant-factor approximation to
f(x), we must have ε = Ω(1/n), quite large by cryptographic standards where
the usual requirement is for the leakage to drop faster than any polynomial
in the lengths of the inputs. However, non-negligible or leakage is inherent for
statistical utility: If the distance ε between the distributions induced by close
databases is o(1/n), then the distance between the distributions induced by
any two databases is o(1) and no statistic about the database can be usefully
approximated.

Average-case distance measures such as statistical difference do not yield
meaningful guarantees when ε = Ω(1/n).

Example 2. Consider the candidate sanitization

T (x1, ..., xn) = (i, xi) where i ∈R {1, ..., n} .

If x and x′ differ in a single position, the statistical difference between T (x) and
T (x′) is 1/n, and yet it is clear that every transcript reveals private information
about some individual.

Indeed, Definition 1 is not satisfied in this example, since if x and x′ differ, say,
in the ith coordinate, then the transcript (i, xi) has probability zero when the
database is x′.

3 Sensitivity and Privacy

We now formally define sensitivity of functions, described informally in the In-
troduction. We will prove that choosing noise according to Lap(S(f)/ε) ensures
ε-indistinguishability when the query function f has sensitivity S(f). We extend
the analysis to vector-valued functions f , and even to adaptively chosen series of
query functions. Intuitively, if ε is a “privacy budget” then this analysis explains
how the budget is spent by a sequence of queries.

Definition 2 (L1 Sensitivity). The L1 sensitivity of a function f : Dn → Rd

is the smallest number S(f) such that for all x,x′ ∈ Dn which differ in a single
entry,

‖f(x) − f(x′)‖1 ≤ S(f) .

Sensitivity is a Lipschitz condition on f : if dH(·, ·) is the Hamming metric on
Dn, then for all pairs of databases x,x′ ∈ Dn: ‖f(x)−f(x′)‖1

dH(x,x′) ≤ S(f). One can
define sensitivity with respect to any metric on the output space; see Section 3.3.

Example 3 (Sums and Histograms). Consider the sum functionality above: if
D = {0, 1} and f(x) =

∑n
i=1 xi (viewed as an real number), then the sensitivity

of f with respect to the usual metric on R is SL1(f) = 1.
Now consider an arbitrary domain D which has been partitioned into d dis-

joint bins B1, ..., Bd. The function f : Dn → Zd which computes the number

272 C. Dwork et al.

of database points which fall into each bin is called a histogram for B1, ..., Bm.
Changing one point in the database can change at most two of these counts —
one bin loses a point, another bin gains one. The L1 sensitivity of f is thus 2,
independent of d.

3.1 Calibrating Noise According to S(f)

Recall that if the noise Y is drawn from the Laplace distribution, then h(y)/h(y′)
is at most e|y−y′|/λ. A similar phenomenon holds in higher dimension. If Y is a
vector of d independent Laplace variables, the density function at y is propor-
tional to exp(−‖y‖1/λ). A simple but important consequence is that the random
variables z + Y and z′ + Y are close in the sense of Definition 1: for all t ∈ Rd,

Pr(z + Y = t)
Pr(z′ + Y = t)

∈ exp(±‖z − z′‖1

λ
).

Thus, to release a (perturbed) value f(x) while satisfying privacy, it suffices
to add Laplace noise with standard deviation S(f)/ε in each coordinate.

Proposition 1 (Non-interactive Output Perturbation). For all f : Dn →
Rd, the following mechanism is ε-indistinguishable:
Sanf (x) = f(x) + (Y1, ..., Yd) where the Yi are drawn i.i.d. from Lap(S(f)/ε)

The proposition is actually a special case of the privacy of a more general,
possibly adaptive, interactive process.

Before continuing with our discussion, we will need to clarify some of the no-
tation to highlight subtleties raised by adaptivity. Specifically, adaptivity com-
plicates the nature of the “query function”, which is no longer a predetermined
function, but rather a strategy for producing queries based on answers given
thus far. For example, an adaptive histogram query might ask to refine those
regions with a substantial number of respondents, and we would expect the set
of such selected regions to depend on the random noise incorporated into the
initial responses.

Recalling our notation, a transcript t = [Q1, a1, Q2, a2 . . . , Qd, ad] is a se-
quence of questions and answers. For notational simplicity, we will assume that
Qi is a well defined function of a1, . . . , ai−1, and that we can therefore truncate
our transcripts to be only a vector t = [a1, a2, . . . , ad]3. For any transcript t, we
will let ft : D → Rd be the function whose ith coordinate reflects the query Qi,
which we assume to be determined entirely by the first i−1 components of t. As
we now see, we can bound the privacy of an adaptive series of questions using
the largest diameter among the functions ft.

Consider a trusted server, holding x, which receives an adaptive sequence of
queries f1, f2, f3, ..., fd, where each fi : Dn → R. For each query, the server San
either (a) refuses to answer, or (b) answers fi(x) + Lap(λ). The server can limit
the queries by refusing to answer when S(ft) is above a certain threshold. Note
3 Although as written the choice of query is deterministic, this can be relaxed by

adding coins to the transcript.

Calibrating Noise to Sensitivity in Private Data Analysis 273

that the decision whether or not to respond is based on S(ft), which can be
computed by the user, and hence is not disclosive.

Theorem 1. For an arbitrary adversary A, let ft(x) : Dn → Rd be its query
function as parameterized by a transcript t. If λ = maxt S(ft)/ε, the mechanism
above is ε-indistinguishable.

Proof. Using the law of conditional probability, and writing ti for the indices of t,

Pr[Sanf (x) = t]
Pr[Sanf (x′) = t]

=
∏

i

Pr[Sanf (x)i = ti|t1, . . . , ti−1]
Pr[Sanf (x′)i = ti|t1, . . . , ti−1]

For each term in the product, fixing the first i − 1 coordinates of t fixes the
values of ft(x)i and ft(x′)i. As such, the conditional distributions are simple
laplacians, and we can bound each term and their product as∏

i

Pr[Sanf (x)i = ti|t1, . . . , ti−1]
Pr[Sanf (x′)i = ti|t1, . . . , ti−1]

≤
∏

i

exp(|ft(x)i − ft(x′)i|/λ)

= exp(‖ft(x) − ft(x′)‖1/λ)

We complete the proof using the bound S(ft) ≤ λε, for all t.

3.2 Specific Insensitive Functions

We describe specific functionalities which have low sensitivity, and which conse-
quently can be released with little added noise using the protocols of the previous
section.

Histograms and Disjoint Analyses. There are many types of analyses that
first partition the input space into disjoint regions, before proceeding to analyze
each region separately. One very simple example of such an analysis is a his-
togram, which simply counts the number of elements that fall into each region.
Imagining that D is subdivided into d disjoint regions, and that f : Dn → Zd

is the function that counts the number of elements in each region, we saw in
Example 3 that S(f) = 2. Notice that the output dimension, d, does not play
a role in the sensitivity, and hence in the noise needed in an ε-indistinguishable
implementation of a histogram. Comparing this with what one gets by applying
the framework of [6] we note a significant improvement in the noise. Regarding
each bin value as a query, the noise added in the original framework to each
coordinate is O(

√
d/ε), and hence the total L1 error is an O(

√
d) factor larger

than in our scheme. This factor is especially significant in applications where bins
outnumber the data points (which is often the case with contingency tables).

Clearly any analysis that can be run on a full data set can be run on a subset,
and we can generalize the above observation in the following manner. Letting
D be partitioned into d disjoint regions, let f : Dn → Rd be a function whose
output coordinates f(x)i depend only on those elements in the ith region. We
can bound S(f) ≤ 2maxi S(fi). Again, and importantly, the value of d does not
appear in this bound.

274 C. Dwork et al.

Linear Algebraic Functions. One very common analysis is measuring the
mean and covariance of attributes of the data. If v : D → Rd is some function
mapping rows in the database to column vectors in Rd, the mean vector μ and
covariance matrix C are defined as

μ = μ(x1, . . . , xn) = avg
i
v(xi)

and C = C(x1, . . . , xn) = avg
i
v(xi)v(xi)T − μμT .

These two objects have dimension d and d2, respectively, and a crude bound on
their sensitivity would incorporate these terms. However, if we are given an upper
bound γ = maxx ‖v(x)‖1, then we can incorporate it into our sensitivity bounds.

Specifically, the mean is simply a sum, and an arbitrary change to a single
term results in a vector μ+δ where ‖δ‖1 ≤ 2γ/n. The covariance matrix is more
complicated, but is also a sum at heart. Using the L1 norm on matrices as one
might apply the L1 to a d2 dimensional vector, we see that an arbitrary change
to a single xi can change the μμT term by at most

μμT − (μ+ δ)(μ+ δ)T = μδT + δμT + δδT (2)
= μδT + δ(μ+ δ)T (3)

The first and second terms each have L1 norm at most 2γ2/n. An arbitrary
change to xi can alter a v(xi)v(xi)T term by at most 4γ2. Hence a total L1
change of 8γ2/n.

Again, we witness an improvement in the noise magnitude when compared to
applying the framework of [6]. As computing C amounts to performing d2 queries,
we get L1 noise that is O(d) factor larger than with the current analysis.

Distance from a Property. The functionalities discussed until now had a
simple representation as sums of vectors, and the sensitivity was then (at most)
twice the maximum L1 norm of one of these vectors. However, one can bound
the sensitivity of much more complex functions.

Given a setS ⊆ Dn, the distance fS(x) between a particular databasex andS is
the Hamming distance (inDn) between x and the nearest point x′ in S. For any set
S, fS(x) has sensitivity 1. We can safely release fS(x) + Y where Y ∼ Lap(1/ε).

As an example, we could imagine social network described as a database
of links between pairs of individuals. We might like to measure how “robust”
the network is: how many social links would have to change (either added or
removed) for the graph to become disconnected, non-expansive, or poorly clus-
tered? Each of these counts, which change by at most one when a single edge is
altered, can be released with only a small amount of noise added.

Suppose that n =
(
m
2

)
, D = [0, 1], and we interpret the entries of the database

as giving the weights of edges in a graph with m vertices (that is, the “individu-
als” here are the edges). Then the weight of the minimum edge-cut in the graph,
which is the distance from the nearest disconnected graph, is a 1-sensitive func-
tion. It is easily computable, and so one can safely release this information about
a network (approximately) without violating the privacy of the component edges.

Calibrating Noise to Sensitivity in Private Data Analysis 275

Other interesting graph functionalities also have low sensitivity. For example,
if D = [0, 1], the weight of the minimum spanning tree is 1-sensitive.

Functions with Low Sample Complexity. Any function f which can be
accurately approximated by an algorithm which looks only at a small fraction
of the database has low sensitivity, and so the value can be released safely with
relatively little noise. In particular, functions which can be approximated based
on a random sample of the data points fit this criterion.

Lemma 1. Let f : Dn → Rd. Suppose there is a randomized algorithm A such
that for all inputs x, (1) for all i, the probability that A reads xi is at most α
and (2) ‖A(x)− f(x)‖1 ≤ σ with probability at least β = 1+α

2 . Then S(f) ≤ 2σ.

The lemma translates a property of f related to ease of computation into a
combinatorial property related to privacy. It captures many of the low-sensitivity
functions described in the preceding sections, although the bounds on sensitivity
given by the lemma are often quite loose.

Proof. For any particular entry i ∈ {1, ..., n}, denote by A(x)
∣∣
−i

the distribution
on the outputs of A conditioned on the event that A does not read position i. By
the definition of conditional probability, we get that for all x the probability that
A(x)

∣∣
−i

is within distance σ of f(x) is strictly greater than (β−α)/(1−α) ≥ 1
2 .

Pick any x,x′ which only differ in the ith position. By the union bound, there
exists some point p in the support of A(x)

∣∣
−i

which is within distance σ of both
f(x) and f(x′), and hence ‖f(x) − f(x′)‖1 ≤ ‖f(x) − p‖1 + ‖p− f(x′)‖1 ≤ 2σ.

One might hope for a converse to Lemma 1, but it does not hold. Not all func-
tions with low sensitivity can be approximated by an algorithm with low sample
complexity. For example, let D = GF (2�log n�) and let f(x) denote the Ham-
ming distance between x and the nearest codeword in a Reed-Solomon code of
dimension k = n(1 − o(1)). One cannot learn anything about f(x) using fewer
than k queries, and yet f has sensitivity 1 [4].

3.3 Sensitivity in General Metric Spaces

The intuition that insensitive functions of a database can be released privately
is not specific to the L1 distance. Indeed, it seems that if changing one entry
in x induces a small change in f(x) — under any measure of distance on f(x)
— then we should be able to release f(x) privately with relatively little noise.
We formalize this intuition for (almost) any metric dM on the output f(x).
We will use symmetry, i.e. dM(x, y) = dM(y, x), and the triangle inequality:
dM(x, y) ≤ dM(x, z) + dM(z, y).

Definition 3. Let M be a metric space with a distance function dM(·, ·). The
sensitivity SM(f) of a function f : Dn → M is the amount that the function
value varies when a single entry of the input is changed.

SM(f) def= sup
x,x′: dH(x,x′)=1

dM(f(x), f(x′))

276 C. Dwork et al.

Given a point z ∈ M, (and a measure on M) we can attempt to define a
probability density function

hz,ε(y) ∝ exp
(
ε · dM(y, z)
2 · SM(f)

)
.

There may not always exist such a density function, since the right-hand ex-
pression may not integrate to a finite quantity. However, if it is finite then the
distribution given by hz,ε() is well-defined.

To reveal an approximate version of f(x) with sensitivity S, one can sample
a value according to hf(x),ε/S().

Pr[T (x) = y] =
exp

(
ε

2SM(f) · dM(y, f(x))
)

∫
y∈M exp

(
ε

2SM(f) · dM(y, f(x))
)
dy
. (4)

Theorem 2. In a metric space where hf(x),ε() is well-defined, adding noise to
f(x) as in Eqn. 4 yields an ε-indistinguishable scheme.

Proof. Let x and x′ be two databases differing in one entry. The distance
dM(f(x), f(x′)) is at most S(f). For any y, the ratio exp(dM(y,f(x)))

exp(dM(y,f(x′))) is thus at

most eS(f), by the triangle inequality. Similarly, the ratio
exp(ε

2S(f) ·dM(y,f(x)))
exp(ε

2S(f) ·dM(y,f(x′)))

is at most eε/2. Finally, the normalization constant
∫

y∈M exp
(

ε·dM(y,f(x))
2S(f)

)
dy

also differs by a factor of at most eε/2 between x and x′, since at all points in the
space the integrand differs by at most eε/2. The total ratio hf(x),ε(y)

/
hf(x′),ε(y)

differs by at most eε/2 · eε/2 = eε, as desired.

Remark 1. One can get rid of the factor of 2 in the definition of hz,ε() in cases
where the normalization factor does not depend on z. This introduces slightly
less noise.

As a simple example, consider a function whose output lies in the Hamming
cube {0, 1}d. By Theorem 2, one can release f(x) safely by flipping each bit of
the output f(x) independently with probability roughly 1

2 − ε
2S(f) .

4 Separating Interactive Mechanisms from
Non-interactive Ones

In this section, we show a strong separation between interactive and non-
interactive database access mechanisms. Consider the interactive setting of [10,
11, 6], that answers queries of the form fg(x) =

∑n
i=1 g(i, xi) where g : [n]×D →

[0, 1]. As the sensitivity of any fg is 1, an interactive access mechanism can an-
swer any such query with accuracy about 1/ε. This gives a good approximation
to f(x) as long as ε is larger than 1/n.

Calibrating Noise to Sensitivity in Private Data Analysis 277

Suppose the domain D is {0, 1}d. We show below that for any non-interactive,
ε-indistinguishable mechanism San, there are many functions fg which cannot be
answered by TSan unless the database consists of at least 2Ω(d) points. For these
queries, it is not possible to distinguish the sanitization of a database in which
all of the n entries satisfy g(i, xi) = 0 from a database in which all of the entries
satisfy g(i, xi) = 1. We will consider Boolean functions gr of a specific form.
Given n non-zero binary strings r = (r1, r2, ..., rn), ri ∈ {0, 1}d, we define gr(i, x)
to be the inner product, modulo 2, of ri and x, that is gr(i, x) =

⊕
j x

(j)r
(j)
i ,

denoted ri / x. In the following we will usually drop the subscript r and write g
for gr.

Theorem 3 (Non-interactive Schemes Require Large Databases). Sup-
pose that San is an ε-indistinguishablenon-interactive mechanism with domain
D = {0, 1}d. For at least 2/3 of the functions of the form fg(x) =

∑
i g(i, xi),

the following two distributions have statistical difference O(n4/3ε2/32−d/3):

Distribution 0: TSan(x) where x ∈R {x ∈ Dn : fg(x) = 0}
Distribution 1: TSan(x) where x ∈R {x ∈ Dn : fg(x) = n}

In particular, if n = o(2d/4
√

ε
), for most functions g(i, x) = ri/x, it is impossible

to learn the relative frequency of database items satisfying the predicates g(i, xi).
We prove Theorem 3 below. First, a few remarks:

1. The order of the quantifiers is important: for any particular fg(), it is easy
to design a non-interactive scheme which answers that query accurately.
However, no single non-interactive scheme can answer most queries of this
form, unless n ∈ exp(d).

2. The strong notion of ε-indistinguishability in Definition 1 is essential to The-
orem 3. For example, consider the candidate sanitization which outputs m
pairs (i, xi) chosen at random from the database. When m = θ(1) this is
essentially Example 2; it fails to satisfy Definition 1 but yields O(1/n)-close
distributions O(1/n) on neighboring databases. However, it does permit es-
timating fg with accuracy about n/

√
m (the order of quantifiers is again

important: for any particular query, the sample will be good with high prob-
ability). Thus, even for constant m, this is better than what is possible for
any ε-indistinguishable scheme with n = 2o(d).

4.1 A Stronger Separation for Randomized Response Schemes

”Randomized response” refers to a special class of non-interactive schemes, in
which each user’s data is perturbed individually, and then the perturbed values
are published. That is, there exists a randomization operator Z : D → {0, 1}∗
such that

TSan(x1, ..., xn) = Z(x1), ..., Z(xn).

This approach means that no central server need ever see the users’ private data:
each user i computes Z(xi) and releases only that.

278 C. Dwork et al.

We can strengthen Theorem 3 for randomized response schemes. We can
consider functions fg where the same predicate g : D → {0, 1} is applied to all
the entries in x. I.e. f(x) =

∑
i g(xi) (e.g. “how many people in the database

have blue eyes?”). For most vectors r, the parity check gr(x) = r / x will be
difficult to learn from Z(x), and so f(x) will be difficult to learn from TSan(x)
unless n is very large.

Proposition 2 (Randomized Response). Suppose that San is a ε-indisting-
uishable randomized response mechanism. For at least 2/3 of the values r ∈
{0, 1}d \ {0d}, the following two distributions have statistical difference O(nε2/3

2−d/3):

Distribution 0: TSan(x) where each xi ∈R

{
x ∈ {0, 1}d : r / x = 0

}
Distribution 1: TSan(x) where each xi ∈R

{
x ∈ {0, 1}d : r / x = 1

}
In particular, if n = o(2d/3/ε2/3), no user can learn the relative frequency of

database items satisfying the predicate gr(x) = r / x, for most values r.

4.2 Proving the Separation Results

The two proofs have the same structure: a hybrid argument with a chain of
length 2n, in which the bound on statistical distance at each step in the chain
is given by Lemma 2 below. Adjacent elements in the chain will differ according
to the domain from which one of the entries in the database is chosen, and the
elements in the chain are the probability distributions of the sanitizations when
the database is chosen according to the given n-tuple of distributions.

For any r, partition the domainD into two sets:Dr =
{
x∈{0, 1}d : r / x = 0

}
,

and D̄r = D \ Dr =
{
x ∈ {0, 1}d : r / x = 1

}
. We abuse notation and let Dr

also stand for a random vector chosen uniformly from that set (similarly for D
and D̄r).

The intuition for the key step is as follows. Given a randomized map Z : D →
{0, 1}∗, the quantity Pr[Z(Dr) = z] is with high probability an estimate
for Pr[Z(D) = z]. That is because when r is chosen at random, Dr consists of 0d,
along with 2d−1−1 points chosen pairwise independently in {0, 1}d. This allows us
to show that the variance of the estimator Pr[Z(Dr) = z] is very small, as long asZ
satisfies a strong indistinguishability condition implied by ε-indistinguishability.
As a result, the distribution Z(Dr) will be very close to Z(D).

Lemma 2. Let Z : D → {0, 1}∗ be a randomized map such that for all pairs
x, x′ ∈ D, and all outputs z, Pr[Z(x)=z]

Pr[Z(x′)=z] ∈ exp(±ε). For all α > 0: with probability
at least 1 − α over r ∈ {0, 1}d \

{
0d

}
,

SD (Z(Dr) , Z(D)) ≤ O
(ε2

α · 2d

)1/3
.

The same statement holds for D̄r.

Calibrating Noise to Sensitivity in Private Data Analysis 279

The lemma is proved below, in Section 4.3. We first use it to prove the two
separation results.

Proof (Proof of Theorem 3). “Distribution 0” in the statement is TSan(Dr1 , ...,
Drn

). We show that with high probability over the choice of the ri’s, this is
close the transcript distribution induced by a uniform input, i.e. T (D, ...,D).
We proceed by a hybrid argument, adding one constraint at a time. For each i,
we want to show

TSan(Dr1 , ..., Dri
, D ,D, ...,D) is close to

TSan(Dr1 , ..., Dri
, Dri+1 , D, ...,D).

Suppose that we have chosen r1, ..., ri already. For any x ∈ {0, 1}d, consider
the randomized map where the (i+ 1)-th coordinate is fixed to x:

Z(x) = TSan(Dr1 , ..., Dri
, x ,D, ...,D) (5)

Note that Z(D) is equal to the i-th step in the hybrid, and Z(Dri+1) is equal to
the (i+ 1)-st step.

The ε-indistinguishabilityof San implies thatZ() satisfies Pr[Z(x)=z]
Pr[Z(x′)=z] ∈exp(±ε).

Applying Lemma 2 shows that with probability at least 1− 1
6n over ri+1, Z(Dri

)
is within statistical difference σ of Z(D), where σ = O(3

√
nε22−d). That is, adding

the i-th constraint on the inputs changes the output distribution by at most σ. By
a union bound, all the steps in the hybrid have size at most σ with probability at
least 5

6 . In that case, the total distance is nσ.
We can apply exactly the same reasoning to a hybrid starting with Distribu-

tion 1, and ending with T (D, ...,D). Again, with probability at least 5
6 , the total

distance is nσ. With probability at least 2/3, both chains of hybrids accumulate
statistical difference bounded by nσ, and the distance between Distributions 0
and 1 is at most 2nσ = O(n4/3ε2/32−d/3).

Proof (Proof of Proposition 2). If TSan is a randomized response scheme, then
there is a randomized map Z() from D to {0, 1}∗, such that TSan(x1, ..., xn) =
Z(x1), ..., Z(xn). If TSan is ε-indistinguishable, then for all pairs x, x′ ∈ D, and
for all outputs z, Pr[Z(x)=z]

Pr[Z(x′)=z] ∈ exp(±ε).
It is sufficient to show that with probability at least 2/3 over a random choice

r, r �= 0d, the distributions Z(Dr) and Z(D̄r) are within statistical difference
O(ε2/32−d/3). This follows by applying Lemma 2 with α = 1/3. By a hybrid argu-
ment, the difference between Distributions 0 and 1 above is then O(nε2/32−d/3).

4.3 Proving that Random Subsets Approximate the Output
Distribution

Proof (Proof of Lemma 2). Let p(z|x) denote the probability that Z(x) = z. If
x is chosen uniformly in {0, 1}d, then the probability of outcome z is p(z) =
1
2d

∑
x p(z|x).

280 C. Dwork et al.

For symmetry, we will pick not only the string r but an offset bit b, and
look at the set Dr,b =

{
x ∈ {0, 1}d : r / x = b

}
. This simplifies the calculations

somewhat.
One can think of Pr[Z(Dr,b) = z] as estimating p(z) by pairwise-independently

sampling 2d/2 values from the set D and only averaging over that subset. Since,
by the assumption on Z, the values p(z|x) all lie in an interval of width about
ε · p(z) around p(z), this estimator will have small standard deviation. We will
use this to bound the statistical difference.

Let p̂(z) = Pr[Z(Dr,b) = z], where the probability is taken over the coin
flips of Z and the choice of x ∈ Dr,b. For a fixed z, p̂(z) is a random variable
depending on the choice of r, b, and Er,b [p̂(z)] = p(z).

Claim 1. Varr,b [p̂(z)] ≤ 2 · ε̃2 · p(z)2
2d

, where ε̃ = eε − 1.

The proof of Claim 1 appears below. We now complete the proof of Lemma 2.
We say that a value z is δ-good for a pair (r, b) if p̂(z) − p(z) ≤ δ · p(z). By the
Chebyshev bound, for all z,

Pr
r,b

[z is not δ-good for (r, b)] ≤ Var [p̂(z)]
δ2p(z)2

≤ 2ε̃2

δ22d
.

If we take the distribution on z given by p(z), then with probability at least
1 − α over pairs (r, b), the fraction of z’s (under p(·)) which are good is at least
1 − 2ε̃2

αδ22d .
Finally, if a 1 − γ fraction of the z’s are δ-good for a particular pair (r, b),

then the statistical difference between the distribution p̂(z) and p(z) is at most

2(γ + δ). Setting δ = 3

√
2αε̃2

2d , we get a total statistical difference of at most
4δ. Since ε̃ < 2ε for ε ≤ 1, the total distance between p̂(·) and p(·) is at most
4 3
√

12ε22−d, for at least a 1−α fraction of the pairs (r, b). The bit b is unimportant
here since it only switches Dr and its complement D̄r. The distance between
Z(Dr) and Z(D) is exactly the same as the distance between Z(D̄r) and Z(D),
since Z(D) is the mid-point between the two. Thus, the statement holds even
over pairs of the form (r, 0). This proves Lemma 2.

Proof (Proof of Claim 1). Let p∗ be the minimum over x of p(z|x). Let qx =
p(z|x)−p∗ and q̄ = p(z)−p∗. The variance of p̂(z) is the same as the variance of
p̂(z)−p∗. We can write p̂(z)−p∗ as 2

2d

∑
x qxχ0(x), where χ0(x) is 1 if x ∈ Dr,b.

The expectation of p̂(z) − p∗ is q̄, which we can write 1
2d

∑
x qx.

Var
r,b

[p̂(z)]= E
r,b

[(
2
2d

∑
x

qxχ0(x) − 1
2d

∑
x

qx

)2
]

= E
r,b

[(
1
2d

∑
x

qx

(
2χ0(x) − 1

))2
]

(6)
Now

(
2χ0(x) − 1

)
= (−1)r�x⊕b. This has expectation 0. Moreover, for x �= y,

the expectation of
(
2χ0(x) − 1

)(
2χ0(y) − 1

)
is exactly 1/2d (if we chose r with

Calibrating Noise to Sensitivity in Private Data Analysis 281

no restriction it would be 0, but we have the restriction that r �= 0d). Expanding
the square in Eqn. 6,

Var
r,b

[p̂(z)] = 1
22d

∑
x

q2x + 1
23d

∑
x�=y

qxqy

=
1− 1

2d

22d

∑
x

q2x + 1
2d

(
1
2d

∑
x

qx

)2

≤ 1
2d

(
max

x
q2x + q̄2

)
.

By the indistinguishability condition, both (maxx qx) and q̄ are at most (eε −
1)p∗ ≤ ε̃ · p(z). Plugging this into the last equation proves Claim 1.

References

[1] N. R. Adam and J. C. Wortmann. Security-control methods for statistical
databases: a comparative study. ACM Computing Surveys, 25(4), December 1989.

[2] Dakshi Agrawal and Charu C. Aggarwal. On the design and quantification of
privacy preserving data mining algorithms. In Proceedings of the Twentieth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems. ACM, 2001.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In
Weidong Chen, Jeffrey F. Naughton, and Philip A. Bernstein, editors, SIGMOD
Conference, pages 439–450. ACM, 2000.

[4] Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhodnikova. Some 3cnf properties
are hard to test. In STOC, pages 345–354. ACM, 2003.

[5] Web page for the Bertinoro CS-Statistics workshop on privacy and confidentiality.
Available from http://www.stat.cmu.edu/∼hwainer, July 2005.

[6] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical
privacy: The sulq framework. In PODS, 2005.

[7] Shuchi Chawla, Cynthia Dwork, Frank McSherry, Adam Smith, and Hoeteck
Wee. Toward privacy in public databases. In Theory of Cryptography Confer-
ence (TCC), pages 363–385, 2005.

[8] Shuchi Chawla, Cynthia Dwork, Frank McSherry, and Kunal Talwar. On the
utility of privacy-preserving histograms. In 21st Conference on Uncertainty in
Artificial Intelligence (UAI), 2005.

[9] Dorothy E. Denning. Secure statistical databases with random sample queries.
ACM Transactions on Database Systems, 5(3):291–315, September 1980.

[10] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In
Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 202–210, 2003.

[11] Cynthia Dwork and Kobbi Nissim. Privacy-preserving datamining on vertically
partitioned databases. In Matthew K. Franklin, editor, CRYPTO, volume 3152
of Lecture Notes in Computer Science, pages 528–544. Springer, 2004.

[12] Alexandre V. Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting
privacy breaches in privacy preserving data mining. In Proceedings of the Twenty-
Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pages 211–222, 2003.

282 C. Dwork et al.

[13] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, April 1984.

[14] Gina Roque. Masking microdata with mixtures of normal distributions. University
of California, Riverside, 2000. Doctoral Dissertation.

[15] Latanya Sweeney. k-anonymity: A model for protecting privacy. International
Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557–570,
2002.

Appendix

A “Semantically” Flavored Implications of Definition 1

Definition 1 equates privacy with the inability to distinguish two close databases.
Indistinguishability is a convenient notion to work with (as is indistinguishability
of encryptions [13]); however, it does not directly say what an adversary may do
and learn. In this section we present some “semantically” flavored definitions of
privacy, and their equivalence to Definition 1.

Because of the need to have some utility conveyed by the database, it is not
possible to get as strong a notion of security as we can, say, with encryption. We
discuss two definitions which we consider meaningful, suggestively named sim-
ulatability and semantic security. The natural intuition is that if the adversary
learns very little about xi for all i, then privacy is satisfied. Recall the discussion
of smoking and heart disease, from the Introduction. What is actually shown is
that the adversary cannot learn much more about any xi than she could learn
from knowing almost all the data points except xi.

Extending terminology from Blum et al. [6], we say an adversary is informed
if she knows some set of n−k database entries before interacting with the mech-
anism, and tries to learn about the remaining ones. The parameter k measures
her remaining uncertainty.

Definition 4. A mechanism San is (k, ε)-simulatable if for every adversary A,
and for every set I ⊆ [n] of size n − k, there exists an informed adversary A′

such that for any x ∈ Dn:∣∣∣∣∣ln(
Pr[TSan,A(x) = t]
Pr[A′(x

∣∣
I
) = t]

)

∣∣∣∣∣ ≤ ε

where x
∣∣
I

denotes the restriction of x to the index set I.

For convenience in stating implications among definitions, we extend the def-
inition of indistinguishability (Definition 1) to pairs of databases at Hamming
distance k:

Definition 5. A mechanism is (k, ε)-indistinguishable if for all pairs x,x′ which
differ in at most k entries, for all adversaries A and for all transcripts t,∣∣∣ln(Pr[TA(x)=t]

Pr[TA(x′)=t])
∣∣∣ ≤ ε.

Calibrating Noise to Sensitivity in Private Data Analysis 283

Any (1, ε
k)-indistinguishable mechanism is also (k, ε)-indistinguishable. To see

why, consider a chain of at most k databases connecting x and x′, where only
one entry changes at each step. The probabilities change by a factor of exp(±ε/k)
at each step, so Pr[TA(x)=t]

Pr[TA(x′)=t] ∈ exp(±ε/k)k = exp(±ε).

Claim 2.

1. A (k, ε)-indistinguishable mechanism is (k, ε)-simulatable.
2. A (k, ε)-simulatable mechanism is (k, 2ε)-indistinguishable.

Proof. (1) A mechanism that is (k, ε)-indistinguishable is (k, ε)-simulatable. The
simulator fills in the missing entries of x with default values to obtain x′ which
differs from x in at most k entries, then simulates an interaction between San(x′)
and A.
(2) A mechanism that is (k, ε)-simulatable is (k, 2ε)-indistinguishable. Suppose
that x′,x′′ agree in a set I of n − k positions. Definition 4 says that for all A
and all subsets I of n− k indices, there exists an A′ that, seeing only the rows
indexed by I, can relatively accurately simulate the distribution of transcripts
induced when A interacts with the full database. Since x′∣∣

I
= x′′∣∣

I
the behavior

of A′ is close to both that of the privacy mechanism interacting with A on x′

and A on x′′:∣∣∣∣ln(
Pr[TA(x′) = t]
Pr[TA(x′′) = t]

)
∣∣∣∣ ≤

∣∣∣∣∣ln(
Pr[TA(x′) = t]
Pr[A′(x′

∣∣
I
) = t]

)

∣∣∣∣∣ +

∣∣∣∣∣ln(
Pr[A′(x′′∣∣

I
) = t]

Pr[TA(x′′) = t]
)

∣∣∣∣∣ ≤ 2ε.

(7)

Simulatability states that for any i, little more is learned about individual
i by an adversary interacting with the access mechanism than what she might
learn from studying the rest of the world.

Simulatability still leaves implicit what, exactly, the adversary can compute
about the database. Semantic security captures a more computationally-flavored
meaning of privacy. Given an informed adversary, who knows x

∣∣
I
, we say a x′ ∈

Dn is consistent if it agrees with the adversary’s knowledge; i.e. x′∣∣
I

= x
∣∣
I
. A

consistent probability distribution D is a probability distribution over consistent
databases.

Definition 6. A mechanism is (k, ε)-semantically secure if every interaction
with an informed adversary results in a bounded change in the a-posteriori prob-
ability distribution. That is, for all informed adversaries A, for all consistent
distributions D, for all transcripts t, and for all predicates f : Dn → {0, 1} :∣∣∣∣ln(

Pr[f(x′) = 1]
Pr[f(x′) = 1|TA(x′) = t]

)
∣∣∣∣ ≤ ε. (8)

The probabilities are taken over the coins of A,San and choices of consistent x′

according to D.

Claim 3. A mechanism is (k, ε)-indistinguishable iff it is (k, ε)-semantically-
secure.

284 C. Dwork et al.

Proof. (1) Let San be a (k, ε)-indistinguishable mechanism, and assume San is
not (k, ε)-semantically-secure. Using Bayes’ rule, we get that for some f and t:

ln(
Pr[f(x) = 1]

Pr[f(x) = 1|TA(x) = t]
) = ln(

Pr[TA(x) = t]
Pr[TA(x) = t|f(x) = 1]

) > ε. (9)

Pick a consistent x0 that maximizes Pr[T (x0) = t] subject to f(x0) = 0.
Clearly, Pr[T (x0) = t] ≥ Pr[TA(x) = t]. Similarly, pick a consistent x1 ∈ D that
minimizes Pr[T (x1) = t] subject to f(x1) = 1. We get that

ln(
Pr[TA(x0) = t]
Pr[TA(x1) = t]

) > ε. (10)

Noting that dH(x1,x2) ≤ k we get a contradiction to the mechanism being
(k, ε)-indistinguishable.
(2) Let San be a (k, ε)-semantically-secure mechanism, and assume San is not
(k, ε′)-indistinguishable. That is, there exist x0,x1 such that dH(x0,x1) ≤ k and
a possible transcript t such that∣∣∣∣ln(

Pr[TA(x1) = t]
Pr[TA(x0) = t]

)
∣∣∣∣ > ε. (11)

Wlog, assume Pr[TA(x0) = t] > Pr[TA(x1) = t], and that x0,x1 agree on their
first K = n − k coordinates. Let A be an informed adversary that knows these
entries, and D be a consistent distribution that assigns probability α to x0 and
1−α to x1. Finally, take f to be any predicate such that f(xb) = b. We get that

Pr[f(x′) = 1|TA(x′) = t] =
Pr[TA(x1) = t] · Pr[f(x′) = 1]

α · Pr[TA(x0) = t] + (1 − α) · Pr[TA(x1) = t]
, (12)

and hence

ln(
Pr[f(x′) = 1]

Pr[f(x′) = 1|TA(x′) = t]
)=ln(1 − α+ α

Pr[TA(x0) = t]
Pr[TA(x1) = t]

) > ln(1 − α+ αeε).

(13)
Taking α → 1 yields the claim.

Unconditionally Secure Constant-Rounds
Multi-party Computation for Equality,
Comparison, Bits and Exponentiation

Ivan Damgård1, Matthias Fitzi1,�, Eike Kiltz2,��,
Jesper Buus Nielsen1,���, and Tomas Toft1,†

1 University of Aarhus,
Department of Computer Science,

DK-8200 Aarhus N, Denmark
2 CWI Amsterdam,
The Netherlands

Abstract. We show that if a set of players hold shares of a value a ∈ Fp

for some prime p (where the set of shares is written [a]p), it is possible
to compute, in constant rounds and with unconditional security, shar-
ings of the bits of a, i.e., compute sharings [a0]p, . . . , [a�−1]p such that
	 = �log2 p�, a0, . . . , a�−1 ∈ {0, 1} and a = �−1

i=0 ai2i. Our protocol is
secure against active adversaries and works for any linear secret sharing
scheme with a multiplication protocol. The complexity of our protocol
is O(log) invocations of the multiplication protocol for the underlying
secret sharing scheme, carried out in O(1) rounds.

This result immediately implies solutions to other long-standing open
problems such as constant-rounds and unconditionally secure protocols
for deciding whether a shared number is zero, comparing shared numbers,
raising a shared number to a shared exponent and reducing a shared
number modulo a shared modulus.

1 Introduction

Assume that n parties have shared values a1, . . . , a� from some field F using
some linear secret sharing scheme, such as Shamir’s. Let f : F� → Fm. By

� Supported by SECOQC, Secure Communication based on Quantum Cryptography,
under the Information Societies Technology Programme of the European Commis-
sion, IST-2003-506813.

�� The paper was written while the author was a visitor at University of California,
San Diego, supported by a DAAD postdoc fellowship.

��� Supported by FICS, Foundations In Cryptology and Security, centre of the Danish
National Science Research Council and ECRYPT, European Network of Excellence
in Cryptology, under the Information Societies Technology Programme of the Eu-
ropean Commission, IST-2002-507932.

† Supported by SCET, Secure Computing, Economy, and Trust, Alexandra Insti-
tuttet A/S.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 285–304, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

286 I. Damgård et al.

computing f with unconditional security on the sharings we mean that the par-
ties run among themselves a protocol using a network with perfectly secure
point-to-point channels. The protocol results in the parties obtaining sharings of
(b1, . . . , bm) = f(a1, . . . , a�), while leaking no information on the values a1, . . . , a�

or b1, . . . , bm. The question which functions can be computed with unconditional
security on sharings, using a constant rounds protocol is a long-standing open
problem [BB89].

However, a number of functions are known to have unconditionally secure,
constant-rounds protocols. The most general class with known solutions are
functions with a constant-depth arithmetic circuit (counting unbounded fan-in
addition and unbounded fan-in multiplication as one gate towards the depth).

The only non-trivial part needed in these solutions is unbounded fan-in multi-
plication b =

∏�
i=1 ai. This can be done in constant rounds using the techniques

by Bar-Ilan and Beaver [BB89], assuming a single multiplication can be done in
constant rounds, which is indeed the case for standard linear (verifiable) secret-
sharing schemes.

However, a number of functions do not have small constant-depth arithmetic

solutions. Consider, e.g., the function
?
<: Fp × Fp → Fp, where (a

?
< b) ∈ {0, 1}

and (a
?
< b) = 1 iff a < b (where a and b are considered as residues a, b ∈

{0, 1, . . . , p− 1}). This function has a huge number of zeros and is not constant
zero. Therefore we cannot hope for an efficient arithmetic solution to computing
?
< (the function can of course be expressed as a polynomial over the field, and
thus a constant-depth circuit, but the circuit would have a number of gates
proportional to the size of the field).

On the other hand a number of results are known where if the inputs are given
in a particular form, then any function which can be expressed by a binary
Boolean circuit with g gates and depth d, can be computed unconditionally
securely in constant rounds, by evaluating a constant-depth arithmetic circuit
with O(2dg) gates (see e.g [BB89, IK00, IK02]).

If, in particular, the input a is delivered as bitwise sharings [a0]p, . . . , [a�−1]p
and b = f(a) can be computed using a binary Boolean circuit with depth d and
g gates, then sharings of the bits of b = f(a) can be computed with complex-
ity1 O(2dg), unconditionally secure in constant rounds. This can e.g. be done
using Yao’s circuit scrambling technique with an unconditionally secure encryp-
tion scheme — an observation first made by [IK02]. This would e.g. allow to

compute the function
?
<: (Fp)� × (Fp)� → Fp, ((a0, . . . , a�−1), (b0, . . . , b�−1)) �→∑�−1

i=0 ai2i
?
<

∑�−1
i=0 bi2

i unconditionally securely in constant rounds.
So, different representations of the inputs allow different classes of functions

to be computed unconditionally securely in constant rounds — at least with the

1 For the rest of the paper we measure the complexity of protocols by the maximal
number of invocations of the multiplication protocol, which is typically the domi-
nating term in the communication complexity. The exact communication complexity
then depends on the communication complexity of the multiplication protocol used.

Unconditionally Secure Constant-Rounds Multi-party Computation 287

current knowledge of the area. It would therefore be very useful to be able to
change representations efficiently. Previously it was not known how to do this.
For instance, this was the reason why the protocols of Cramer and Damgård [CD01]
for linear algebra in constant rounds could not handle fields with large character-
istic without assuming that the input was shared bitwise to begin with, which
limits the applicability of those protocols. In this paper, we therefore investi-
gate the problem of changing between sharings modulo a prime p and bitwise
sharings.

1.1 Our Results

Given a prime p, let � = $log2 p�. We will show how to compute, uncondi-
tionally secure and in constant rounds, [a0]p, . . . , [a�−1]p from [a]p such that
a0, . . . , a�−1 ∈ {0, 1} ⊆ Zp and such that a =

∑�−1
i=0 ai2i. The complexity is

bounded by O(1) rounds and O(� log2 �) invocations of the multiplication pro-
tocol.

The only assumptions we need about the underlying secret sharing scheme
are the following: 1) the secret sharing scheme is linear (i.e., given sharings [a]p
and [b]p and public constants c, d ∈ Zp, the parties can securely compute a shar-
ing [ac + bd mod p]p without interaction) and 2) there exists a constant-round
multiplication protocol for the secret sharing scheme (i.e., given sharings [a]p
and [b]p, the parties can securely compute a sharing [ab mod p]p by interacting).
If the multiplication protocol (and the secret sharing scheme) is secure against
active adversaries, our protocols will be actively secure too. Likewise, if secret
sharing scheme and multiplication protocol are adaptively secure, our protocols
inherit this property. The assumption on multiplication implies that the adver-
sary structure must be Q2 which, in the standard threshold case, means that we
need honest majority.

This result immediately implies efficient constant-rounds protocols for some
interesting problems. In particular, we can also compute, in constant rounds,
outputs from the following functions in shared form:

– The equality function asking whether a shared input value is zero or not.
This function was exactly what was missing in [CD01] in order to handle
fields with large characteristics.

– The less-than comparison function of two numbers from Fp, when considered
residues in {0, 1, . . . , p− 1}.

– Modulo reduction, performing a discrete modulo reduction (with respect to
a public/shared modulus).

– Discrete Exponentiation (with respect to a public/shared exponent and mod-
ulus).

We note that, while unconditional security is typically defined by requiring
that the information leaked by the protocol is exponentially small in some se-
curity parameter κ, our protocols obtain a slightly stronger notion, which has
also been considered in the literature. In particular, our protocols are perfectly

288 I. Damgård et al.

secure except with probability O(2−κ) — i.e. with probability 1−O(2−κ) no in-
formation is leaked at all. Furthermore, the parties will be able to detect when a
run of the protocol is in progress which would leak information if completed, and
have the power to abort such a run. This yields a perfectly secure protocol, except
that with probability O(2−κ) it might terminate with some abort symbol ⊥.2

1.2 Related Work

There has been a considerable amount of previous work on unconditionally se-
cure constant-rounds multi-party computation with honest majority (c.f. [BB89]
and [FKN94, IK97, CD01, Bea00, IK00, IK02]). As mentioned, this work has
shown that some functions can indeed be computed in constant rounds with un-
conditional security, but this has been limited to restricted classes of functions,
such as NC1 or non-deterministic log-space.

In [ACS02] Algesheimer, Camenisch and Shoup also present a protocol for se-
curely computing the bit-decomposition [a]p �→ ([a0]p, . . . , [a�−1]p). It however
only provides correctness and privacy when a is guaranteed to be noticeably smaller
than p. Furthermore, it is only passively secure and is not constant rounds.

1.3 Organization

In Section 2 we give some technical preliminaries. In Section 3 we give the high-
level protocol for bit decomposition, assuming a number of results from subse-
quent sections, in particular that it is possible to add bitwise-shared numbers
and compare bitwise-shared number within certain complexities. In Section 4 we
show how to generate the sharing of a uniformly random bit. In Section 5 we
give the protocol for comparing two bitwise-shared numbers and in Section 6 we
give the protocol for adding two bitwise-shared numbers. Finally, in Section 7
we mention a couple of applications of the new bit-decomposition protocol.

2 Preliminaries

In this section we introduce some notation and some known techniques.
We assume that n parties are connected by perfectly secure channels in a

synchronous network. Let Fp denote the finite field with p elements where p is
2 Choosing between unconditional (but imperfect) termination, correctness or privacy,

we find that settling for imperfect termination but perfect correctness (on termina-
tion) and perfect privacy is the better choice. Simply because the other unconditional
notions can be obtained from such a solution. To get perfect termination and perfect
correctness but only unconditional privacy: when the protocol aborts, reconstruct
the inputs and compute the results. This yields a protocol which is perfect except
that it leaks information with small probability. To get perfect termination, perfect
privacy but only unconditional correctness: when the protocol aborts, simply return
with some dummy guess at the results. This yields a protocol which is perfect except
that it is incorrect with small probability. Finally, to get a perfectly secure protocol:
rerun the protocol when it aborts. This gives a perfectly secure protocol. It, however,
only runs in expected constant rounds.

Unconditionally Secure Constant-Rounds Multi-party Computation 289

a prime, and let � = $log2 p�. We will assume throughout that p > 2κ, and
so whenever one of our protocols abort with a probability that is O(1/p), this
will be considered negligible and will be ignored. If one needs to execute our
(sub)protocol(s) with a given (small) prime p, one can always execute in parallel
a sufficiently large number of instances to make the failure probability small
enough.

By [a]p we denote a secret sharing of a ∈ Fp over Fp. We assume that the
secret-sharing scheme allows to compute a sharing [a+ b mod p]p from [a]p and
[b]p without communication, and that it allows to compute [ab mod p]p from
a ∈ Fp and [b]p without communication; We write

[a+ b mod p]p ← [a]p + [b]p

and
[ab mod p]p ← a[b]p

for these operations. The secret-sharing scheme should of course also allow to
take a sharing [c]p and reveal the value c ∈ Fp to all parties; We write

c← reveal([c]p) .

We also assume that the secret sharing scheme allows to compute a shar-
ing [ab mod p]p from [a]p and [b]p with unconditional security. We denote the
multiplication protocol by mult, and write

[ab mod p]p ← mult([a]p, [b]p) .

Sometimes we will also write

[b mod p]p ← mult([a1]p, . . . , [al]p) ,

to avoid writing b2 ← mult([a1]p, [a2]p), b3 ← mult([b2]p, [a3]p), . . ., b ←
mult([bl−1]p, [al]p). This costs l − 1 rounds and l − 1 invocations of mult.

We will express the protocols’ round complexities as the number of sequential
rounds of mult invocations — and their communication complexities as the
overall number of mult invocations. I.e., if we first run a copies of mult in
parallel and then run b copies of mult in parallel, then we say that we have
round complexity 2 and communication complexity a + b. Note that standard
linear (verifiable) secret-sharing schemes have efficient constant-rounds protocols
for multiplication.

For our protocols to be actively secure, the secret sharing scheme and the
multiplication protocol should be actively secure. This in particular means that
the adversary structure must be Q2. By the adversary structure we mean the
set A of subsets C ⊂ {1, . . . , n} which the adversary might corrupt; It is Q2 if
it holds for all C ∈ A that {1, . . . , n} \ C �∈ A.

All our protocols can be proven secure in the UC model [Can01]. In the UC
model our protocols can be expressed in a hybrid model with an ideal function-
ality F allowing the parties to privately load values in Fp into F and allowing

290 I. Damgård et al.

the parties to add, multiply and output loaded and/or computed values. For an
approach to formulate such an ideal functionality, see e.g., the Arithmetic Black-
Box (ABB) from [DN03]. It can then be shown that an information theoretic
VSS with a multiplication protocol implements this ideal functionality (as an ex-
ample the VSS schemes from [CDM00] will do). The full version of this paper will
contain more details on how our protocols can be proven secure in the UC model.

2.1 Some Known Techniques

The following known techniques will be of importance later on.

Random Elements. The parties can share a uniformly random, unknown field
element. We write

[a]p ← ranp() .

This is done by letting each party Pi deal a sharing [ai]p of a uniformly random
ai ∈ Fp. Then the parties compute the sharing [a]p =

∑n
i=1[ai]p. The commu-

nication complexity of this is given by n dealings, which we assume is upper
bounded by the complexity of one invocation of the multiplication protocol.

If passive security is considered, this is trivially secure. If active security is
considered and some party refuses to contribute with a dealing, the sum is just
taken over the contributing parties. This means that the sum is at least taken
over ai for i ∈ H , where H = {1, . . . , n} \ C for some C ∈ A. Since A is Q2 it
follows that H �∈ A. So, at least one honest party will contribute to the sum,
implying randomness and privacy of the sum.

Random Invertible Elements. Using [BB89] the parties can share a uniformly
random, unknown, invertible field element along with a sharing of its inverse.
We write

([a]p, [a−1]p) ← ran∗
p() ,

and it proceeds as follows: [a]p←ranp() and [b]p←ranp(). [c]p =mult([a]p, [b]p).
c← reveal([c]p). If c �∈ F∗

p, then abort. Otherwise, proceed as follows: [a−1 mod
p]p ← (c−1 mod p)[a]p. Output ([a]p, [a−1]p).

The correctness is straightforward. As for privacy, if c ∈ F∗, then (a, b) is a
uniformly random element from F∗ × F∗ for which ab mod p = c, and thus a is
a uniformly random element in F∗

p. If c �∈ F∗, then the algorithm aborts. This
happens with probability less than 2/p. The complexity is (at most) 2 rounds
and 3 invocations of mult.

Unbounded Fan-In Multiplication. Using the technique from [BB89] it is pos-
sible to do unbounded fan-in multiplication in constant rounds. For the spe-
cial case where we compute all “prefix products”

∏m
i=1 ai (m = 1, . . . , �), we

write
([a1]p, . . . , [(a1a2 · · ·a�) mod p]p) ← mult∗([a1]p, . . . , [a�]p) .

In the following, we only need the case where we have inputs [a1]p, . . . , [a�]p,
where ai ∈ F∗

p. For 1 ≤ i0 ≤ i1 ≤ �, let ai0,i1 =
(∏i1

i=i0
ai

)
mod p. We are often

Unconditionally Secure Constant-Rounds Multi-party Computation 291

only interested in computing a1,�, but the method allows to compute any other
ai0,i1 at the cost of one extra multiplication. For the complexity analysis, let A
denote the number of ai0,i1 ’s which we want to compute.

First run ran∗
p �+1 times in parallel, to generate [b0∈R F∗]p, [b1∈R F∗]p, . . . , [b�

∈R F∗]p, along with [b−1
0]p, [b−1

1]p, . . . , [b−1
�]p, using 2 rounds and 3(�+ 1) invoca-

tions of mult. For simplicity we will use the estimate of 3� invocations.
Then for i = 1, . . . , � compute and reveal [di]p = mult([bi−1]p, [ai]p, [b−1

i]p),
using 2 rounds and 2� invocations of mult.

Now we have that di0,i1 =
∏i1

i=i0
di = bi0−1(

∏i1
i=i0

ai)b−1
i1

= bi0−1ai0,i1b
−1
i1

(mod p), so we can compute [ai0,i1]p = di0,i1mult([b−1
i0−1]p, [bi1]p), using 1 round

and A invocations of mult.
The overall complexity is 5 rounds and 5�+A invocations of mult.

3 Bit-Decomposition

Let p be a prime p ∈ [2�−1, 2�]. We look at the bit-decomposition function
bits : Fp → (Fp)�, a �→ (a0, . . . , a�−1) given by a0, . . . , a�−1 ∈ {0, 1} ⊆ Fp and
a =

∑�−1
i=0 ai2i, where a ∈ Fp is considered a residue a ∈ {0, 1, . . . , p − 1}. We

denote a run of this protocol by

([a0]p, . . . , [a�−1]p) ← bits([a]p) .

The protocol for bit decomposition makes use of various sub-protocols which
in turn draw on further sub-protocols. The dependency between the building
blocks can be seen in Fig. 1. We now describe the highest level sub-protocols:

• Random solved bits. This protocol has no inputs, and has outputs

([b0]p, . . . , [b�−1]p, [b]p) ← solved-bits() ,

where b is a uniformly random element b ∈ Fp and (b0, . . . , b�−1) = bits(b).
As shown in the next subsection, this can be done using 21 rounds and 96�
invocations of the multiplication protocol.

• Bitwise sum. Let [x]B = [x0]p, . . . , [xl−1]p denote a bitwise sharing of an
integer x. We use

[z]B ← bit-add([x]B, [y]B)

to denote the computation of a bitwise sharing [z]B = [z0]p, . . . , [zl]p of x+ y
from bitwise sharings, [x]B = [x0]p, . . . , [xl−1]p and [y]B = [y0]p, . . . , [yl−1]p,
of integers x and y. The length l need not be the length � of the prime p.
In Section 6 it is shown how to implement bit-add unconditionally securely
in constant rounds. When x, y ∈ {0, . . . , 2l − 1} the complexity is 37 rounds
and 55l log2 l invocations of the multiplication protocol.

• Bitwise less-than. Finally we use

[x
?
< y]p ← bit-lt([x]B, [y]B)

292 I. Damgård et al.

bits

solved-bits bit-add

bit-ltran carries

pre◦

pre∨ / pre∧

Fig. 1. Protocol hierarchy

to denote the computation of a sharing of the bit (x
?
< y) ∈ {0, 1}, where

(x
?
< y) = 1 iff x < y, starting from bitwise sharings, [x]B = [x0]p, . . . , [xl−1]p

and [y]B = [y0]p, . . . , [yl−1]p, of integers x and y; Again l need not be �. In
Section 5 it is shown how to implement bit-lt unconditionally securely in
constant rounds. The complexity is 19 rounds and 22l invocations of the
multiplication protocol.

We sometimes run the above protocols on non-shared inputs. If e.g. x is an
integer known by all parties, then we let

[z]B ← bit-add(x, [y]B) ,

mean the following: first compute the bitwise representation (x0, x1, . . . , xl−1) of
x, then let [x]B = ([x0]p, . . . , [xl−1]p) be some dummy bitwise sharing of x, and
then run [z]B ← bit-add([x]B, [y]B).

The bit decomposition of [a]p now proceeds as follows.

Protocol [a]B ← bits([a]p)

1. The input is [a]p, where a ∈ Fp.
2. ([b0]p, . . . , [b�−1]p, [b]p) ← solved-bits().
3. [a− b]p ← [a]p − [b]p.
4. c← reveal([a− b]p), where c ∈ Fp.
5. [d]B ← bit-add(c, [b]B), where [d]B = ([d0]p, . . . , [d�]p).
6. [q]p ← bit-lt(p, [d]B).
7. (f0, . . . , f�−1) = bits(2� − p), the bitwise representation of the posi-

tive integer 2� − p.
8. For i = 0, . . . , �− 1 in parallel: [gi]p = fi[q]p.
9. [g]B = ([g0]p, . . . , [g�−1]p).

10. [h]B ← bit-add([d]B, [g]B), where [h]B = ([h0]p, . . . , [h�+1]p).
11. [a]B = ([h0]p, . . . , [h�−1]p).
12. Output [a]B.

Unconditionally Secure Constant-Rounds Multi-party Computation 293

As for the privacy, notice that assuming that the sub-protocols leak no in-
formation, the only place where information is potentially leaked is in Step 4,
where c is leaked. Since b is assumed to be a uniformly random, unknown value
from Fp, independent of a, it however follows that c is uniformly random in Fp

and leaks no information about a.
As for the correctness, notice that c = a − b mod p and d = c + b (in the

integers). Therefore d = a+ qp for some q ∈ {0, 1}. Since a ∈ {0, 1, . . . , p− 1} it
follows that q = 1 iff p < d. A sharing of this q is computed in Step 6. Then let
f = 2� − p, let g ∈ Z be the integer which is bitwise shared in Step 9, and let
h ∈ Z be the integer which is bitwise shared in Step 10. Clearly, g = qf = q2�−qp
(in the integers). Therefore h = d+g = (a+qp)+(q2�−qp) = a+q2�. In Step 11
we then compute a as h mod 2� by dropping the two most significant bits of h.

As for the complexity, we generated one solved bits, had two applications of
bit-add and one application of bit-lt. This yields a total complexity of 114
rounds and 110� log2 �+ 118� invocations.

3.1 Generating Random Solved bits

We now describe the protocol solved-bits. As a sub-protocol we use a protocol
ran2 for generating uniformly random shared bits. This protocol has no inputs,
and outputs a sharing [a]p, where a ∈ {0, 1} ⊆ Fp is uniformly random. We
write

[a]p ← ran2() .

In Section 4, we show how to implement ran2 in 2 rounds and 2 invocations
of the multiplication protocol.

The generation of a random input/output pair for bits proceeds as follows.

Protocol ([b]B, [b]p) ← solved-bits()

1. For i = 0, . . . , �− 1 in parallel: [bi]p ← ran2().
2. [b]B = ([b0]p, . . . , [b�−1]p).
3. [c]p ← bit-lt([b]B, p).
4. c← reveal([c]p).
5. If c = 0, then abort. Otherwise proceed as below.
6. [b]p ←

∑�−1
i=0 2i[bi]p.

7. Output ([b]B, [b]p).

As for the correctness, notice that [b]B is by construction the bit-wise sharing
of [b]p. Furthermore, b is uniformly random from {0, 1, . . . , 2� − 1}. So under
the condition that solved-bits does not abort, b is uniformly random from
{0, 1, . . . , p− 1}, as desired.

As for the privacy, when solved-bits does not abort, the only information
leaked is that b < p. This is however an a priory fact by the output requirement
on solved-bits.

294 I. Damgård et al.

Let us examine the probability that solved-bits aborts. In case one is able
to control the choice of the prime p, an optimal choice would be to let p be a
Mersenne prime p = 2� − 1 for some � > κ. In that case the probability that
b ≥ p is less than 2−κ. Although the Mersenne primes soon become sparse, this
would at least work for small values of �. At the time of writing p = 225964951−1
is the largest p for which we know that this works [NWKo]. Other primes close
to powers of two work almost as nicely.

In the worst-case, where we have no control over p, our only guarantee is
that p ∈ [2�−1, 2�] for some �. In that case the probability that b ≤ p when
b ∈R {0, 1, . . . , 2� − 1} can be as large as 1/2. Using a Chernoff bound it can
be seen that if one generates n = 12κ candidates, then the probability that less
than n/4 of them satisfy b < p is upper bounded by 2−κ.

As for the complexity, one run of the basic solved-bits requires � calls of
ran2 and one call of bit-lt, neglecting the cost of the one call to reveal.
This gives a complexity of 21 rounds and 24� invocations of the multiplication
protocol. If the basic protocol has to be repeated in parallel to get a lower abort
probability, the round complexity is still 21, and the amortized communication
complexity goes up to 96�.

4 Random Bits

We now describe a protocol ran2 for securely generating a sharing of a uniformly
random bit. The protocol has no inputs, and the output is a sharing [a]p of a
uniformly random a ∈ {0, 1} ⊆ Fp. We assume that p > 2 such that Fp does not
have characteristic 2.

First some notation. Let F∗
p be the set of non-zero elements of Fp and let

Qp ⊂ F∗
p be the subset of squares. For a ∈ Qp, let

√
a be the unique b ∈

{1, . . . , (p − 1)/2} where b2 mod p = a. We define S : F∗
p → Fp by S(x) = 1 if

0 < x < p/2 and S(x) = −1 if p/2 < x < p. Note that it holds for all x ∈ F∗
p that

x = S(x)
√
x2 mod p. Clearly, if a ∈R F∗

p is a uniformly random non-zero element,
then S(a) is uniformly random in {1,−1} and, furthermore, S(a) = a(

√
a2)−1.

This suggests the following protocol.

Protocol [d]p ← ran2()

1. [a]p ← ranp().
2. [a2 mod p]p = mult([a]p, [a]p).
3. a2 mod p ← reveal([a2 mod p]p).
4. If a2 mod p = 0, then abort. Otherwise, proceed as below.
5. b =

√
a2 mod p.

6. [c]p ← (b−1 mod p)[a]p.
7. [d]p ← 2−1([c]p + 1).
8. Output [d]p.

Unconditionally Secure Constant-Rounds Multi-party Computation 295

As for correctness, notice that when ran2 does not abort, then c = S(a),
where c is the value shared in Step 6. Therefore c is uniformly random in {1,−1}.
It then easily follows that d is uniformly random in {0, 1}.

As for privacy, note that when the protocol does not abort, then a is uni-
formly random from F∗

p, and we are essentially using S(a) as output. The only
information leaked about a is a2 mod p, which is independent of S(a) when a is
uniformly random in F∗

p.
If a = 0, then the protocol aborts. This happens with probability 1/p.
The complexity of generating [a]p is bounded by the complexity of one mul-

tiplication. Then one multiplication is needed to compute [a2 mod p]p. The rest
is essentially for free. This gives a complexity of 2 rounds and 2 invocations.

5 Bitwise Less-Than

We show how to compare two bitwise-shared numbers in constant rounds. We
first present two sub-protocols.

5.1 Symmetric Functions

Assume that we have inputs [a1]p, . . . , [a�]p, where a1, . . . , a� ∈ {0, 1} ⊆ Fp, and
want to compute a symmetric Boolean function f on these. We also need to
assume that Fp has characteristic larger than �+ 1, which here just means that
we need that � < p− 1.

A symmetric Boolean function only depends on the number of 1’s in its input,
it can therefore be written as f(x1, . . . , x�) = φ(1 +

∑�
i=1 xi) for some function

φ : {1, 2, . . . , � + 1} → {0, 1}. By Lagrange interpolation, we can construct a
polynomial with coefficients α0, . . . , α� such that φ(X) =

∑�
i=0 αiX

i mod p for
X ∈ {1, 2, . . . , �+ 1}. This allows a particularly efficient secure computation, as
follows.

Protocol [f(a1, . . . , a�) mod p]p ← f([a1]p, . . . , [a�]p)

1. [a]p ← 1 +
∑�

i=1[ai]p.
2. ([a]p, [a2 mod p]p, . . . , [a�+1 mod p]p) ← mult∗([a]p, . . . , [a]p).
3. [f(a) mod p]p ←

∑�
i=0 αi[ai mod p]p.

In Step 2 we have that a ∈ F∗
p, so we can apply the protocol mult∗ securely.

The protocol is clearly private and correct. The complexity is 5 rounds and 6�
invocations of mult.

5.2 Prefix-Or

Assume that we have inputs [a1]p, . . . , [a�]p, where a1, . . . , a� ∈ {0, 1} ⊆ Fp, and
want to compute the prefix-or [b1]p, . . . , [b�]p, where bi = ∨i

j=1aj.

296 I. Damgård et al.

To obtain complexity linear in �, we use the method by Chandra, Fortune
and Lipton [CFL83a]. For notational convenience, assume that � = λ2 for an
integer λ. We will split a into λ blocks of λ bits each. For this purpose we
rename each bit ak as ai,j where k = λ(i − 1) + j, and i, j = 1, . . . , λ. Thus,
a = (a1,1, a1,2, . . . , a1,λ, a2,1, . . . , a2,λ, . . . , aλ,λ), and for i = 1, . . . , λ, we call
ai,1, . . . , ai,λ a block of a. The desired output will be split in blocks using the
same notation. Note that we can compute an Or with unbounded fan-in, [x]p ←
∨λ

j=1[xj]p, using Section 5.1, as this is a symmetric function.

Protocol ([b1]p, . . . , [b�]p) ← pre∨([a1]p, . . . , [a�]p)

1. For i = 1, . . . , λ, in parallel: [xi]p = ∨λ
j=1[ai,j]p.

2. For i = 1, . . . , λ, in parallel: [yi]p = ∨i
k=1[xk]p.

3. [f1]p = [x1]p.
4. For i = 2, . . . , λ, let [fi]p = [yi]p − [yi−1]p.
5. For i = 1, . . . , λ, j = 1, . . . , λ, in parallel: [gi,j]p = mult([fi]p, [ai,j]p).
6. For j = 1, . . . , λ: [cj]p =

∑λ
i=1[gi,j]p.

7. For j = 1, . . . , λ, in parallel: [b·,j]p = ∨j
k=1[ck]p.

8. For i = 1, . . . , λ, j = 1, . . . , λ, in parallel: [si,j]p = mult([fi]p, [b·,j]p).
9. For i = 1, . . . , λ, j = 1, . . . , λ: [bi,j]p ← [si,j]p + [yi]p − [fi]p.

The privacy follows from the fact that we only call private sub-protocols. As
for the correctness, the variables have the following interpretation. We have that
xi = 1 iff the the i’th block contains a 1. Therefore yi = 1 iff there is a 1 in one of
the i first blocks, and fi = 1 iff the i’th block is the first block to contain a 1. Hence
the sequence of fi values has form f = (0, . . . , 0, 1, 0, . . . , 0), and we let i0 be the
position of the single 1-bit. Now, for i < i0, the i’th block of the output should
be all 0’s. For i > i0, the i’th block of the output should be all 1’s. Finally, the
i0’th block of the output should the prefix-or of the i0’th input block. The block
c = (c1, . . . , cλ) is formed by taking the “inner product” of f and a and therefore,
by the special form of f , equals the i0’th block of a. The values (b·,1, . . . , b·,λ) are
the prefix-or bits of c. This means that the bits si,j form an all-0 vector, except
that the i0’th block equals c. It now follows directly from the form of the si,j ’s,
fi’s and yi’ s that the output bits bi,j get the correct value in the final step.

The protocol uses 3λ invocations of the protocol for symmetric functions, in
three rounds and on problems of size λ. This gives a complexity of 15 rounds
and 18� invocations. Besides this there are two rounds of � multiplications each,
giving a total complexity of 17 rounds and 20� invocations.

5.3 Bitwise Less-Than

We now describe the protocol bit-lt. Note that given sharings of two bits [a]p
and [b]p we can compute their Xor in one round by first computing [d]p ←
[ai]p − [bi]p and then computing [e]p ← mult([d]p, [d]p). Below we write this as
[e]p ← xor([a]p, [b]p).

Unconditionally Secure Constant-Rounds Multi-party Computation 297

Protocol [c]p ← bit-lt([a]B, [b]B)

1. For i = 0, . . . , �− 1: [ei]p ← xor([ai]p, [bi]p).
2. ([f�−1]p, . . . , [f0]p) = pre∨([e�−1]p, . . . , [e0]p).
3. [g�−1]p = [f�−1]p.
4. For i = 0, . . . , �− 2: [gi]p ← [fi]p − [fi+1]p.
5. For i = 0, . . . , �− 1: [hi]p ← mult([gi]p, [bi]p).
6. [h]p ←

∑�−1
i=0 [hi]p.

7. Output [h]p.

Privacy follows from the fact that we only call private sub-protocols. As for
the correctness, assume that a �= b, and let i0 denote the largest index i, where
ai �= bi. Then a < b iff bi0 = 1. Note that i0 is the largest i for which fi = 1, and
thus gi = 1 iff i = i0. Therefore h = bi0 . In the special case a = b, clearly h = 0,
as it should be.

The protocol uses one invocation of pre∨ on an instance of size �, costing 17
rounds and 20� invocations of mult. Then there are two rounds more, each of �
invocations of mult, giving a total of 19 rounds and 22� invocations of mult.

6 Bitwise Sum

We show how to add two bitwise-shared numbers in constant rounds. We first
present a sub-protocol.

6.1 Generic Prefix Computations

Assume that we have some alphabet Σ ⊆ {0, 1}n and bitwise-shared inputs
[a1]B, . . . , [a�]B, where ai ∈ Σ. That is, [ai]B = [ai,1]p, . . . , [ai,n]p consists of n
sharings of bits, and (ai,1, . . . , ai,n) ∈ Σ. Assume furthermore that an associative
binary operator ◦ : Σ ×Σ → Σ is given and that we want to compute sharings

([b1]B, . . . , [b�]B) = pre◦([a1]B, . . . , [a�]B) ,

where bi = ◦i
j=1aj . Assume that it is possible to securely compute a sharing [b�] =

◦�
j=1[aj] with complexity R rounds and C(�) invocations of mult. For short,

we will refer to ◦�
j=1[aj] as the “sum” of a1, . . . , a�. We assume for notational

convenience that � = 2k for some k.
We use the method by Chandra, Fortune and Lipton [CFL83b]. For each

i = 1, . . . , k we will split the sequence a1, . . . , a� into consecutive blocks of
size 2i items each. We let bi,j be the “sum” of the j’th such block, i.e., bi,j =
◦j·2i+2i

m=j·2i+1am. There are � − 1 of the “sums” bi,j, namely one of length � = 2k,
two of length 2k−1, up to �/2 of length two. The complexity for computing all
of them in parallel is thus R rounds and

∑k
i=1 2iC(� · 2−i) invocations of mult.

298 I. Damgård et al.

It is easy to see that each of the � values bi can be computed as a “sum” of
at most k of the bi,j ’s. Doing this in parallel for all bi’s costs another R rounds
and at most �C(k) invocations. Therefore the total complexity is upper bounded
by 2R rounds and

∑log2 �
i=1 2iC(� · 2−i) + �C(log2 �) ≤ log2 � · C(�) + �C(log2 �)

invocations of mult.

6.2 Bitwise Sum

We now describe the protocol [d]B ← bit-add([a]B, [b]B).
For i = 1, . . . , �, define the carry ci ∈ {0, 1} by ci = 1 iff

∑i−1
j=0 2j(aj +bj) > 2i.

It is straightforward to verify that given a bitwise sharing of the carries we can
compute a bitwise sharing of the sum as follows.

Protocol [d]B ← bit-add([a]B, [b]B)

1. ([c1]p, . . . , [c�]p) ← carries([a]B, [b]B).
2. [d0]p = [a0]p + [b0]p − 2[c1]p.
3. [d�]p = [c�]p.
4. For i = 1, . . . , �− 1: [di]p = [ai]p + [bi]p + [ci]p − 2[ci+1]p.
5. Output [d]B = ([d0]p, . . . , [d�]p).

Evidently, the complexities of this protocol are the same as those of sub-
protocol carries as presented below. We therefore get 37 rounds and 55� log2 �
invocations of mult.

6.3 Computing the Carry Bits

In order to compute the carries, we use the well-known carry set/propagate/kill
algorithm. Let Σ = {S, P,K}. The algorithm uses an operator ◦ : Σ ×Σ → Σ,
defined by x ◦ S = S for all x ∈ Σ, x ◦K = K for all x ∈ Σ, and x ◦ P = x for
all x ∈ Σ. This is the carry-propagation operator, and it can be verified to be
associative3.

For two bitwise-represented numbers a = (a0, . . . , a�−1) and b = (b0, . . . , b�−1),
for i = 0, . . . , � − 1, let ei = S iff a carry is set at position i (i.e., ai + bi = 2);
ei = P iff a carry would be propagated at position i (i.e. ai +bi = 1); and ei = K
iff a carry would be killed at position i, (i.e. ai + bi = 0). It is straightforward
to verify that ci = 1 (the i’th carry bit is set) if and only if e0 ◦ · · · ◦ ei−1 = S.

We represent S, P , and K with bit vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) ∈
{0, 1}3. The values of the ei’s in this representation can be easily computed
from the ai’s and bi’s as shown below. Hence, given a protocol for unbounded
fan-in computation of the carry-propagation operator ◦ on this representation,
we compute carries as follows.

3 Note that this definition is changed from the standard one to be consistent with the
fact that we write numbers with the least significant bit first.

Unconditionally Secure Constant-Rounds Multi-party Computation 299

Protocol [c]B ← carries([a]B, [b]B)

1. For i = 0, . . . , �− 1, in parallel: [si]p = mult([ai]p, [bi]p).
2. For i = 0, . . . , � − 1: [pi]p = [ai]p + [bi]p − 2[si]p, [ki]p = 1 − [si]p −

[pi]p and set [ei]B = ([si]p, [pi]p, [ki]p), i.e., interpret the sharings
[si]p, [pi]p, [ki]p as a bit-wise sharing of a 3-bit string ei ∈ Σ.

3. ([f0]B, . . . , [f�−1]B) ← pre◦([e0]B, . . . , [e�−1]B).
4. For i = 0, . . . , � − 1, set ([si]p, [pi]p, [ki]p) = [fi]B, i.e., each [fi]B

consists of shares of 3 bits which we now name si, pi and ki .
5. Output [c]B = ([s0]p, [s1]p, . . . , [s�−1]p).

The privacy follows from only using private sub-protocols, and correctness
follows readily from the above arguments.

Section 6.1 describes how to compute pre◦([e0]B, . . . , [e�−1]B) assuming a
protocol for computing the ◦-operator with unbounded fan-in. The next section
shows how to do this unbounded fan-in with complexity 18 rounds and 27�
invocations of mult. This and the analysis of the protocol from Section 6.1 shows
that we can compute all f0, . . . , f�−1 with complexity 36 rounds and 54� log2 �
invocations. Besides this, the carries protocol has only one round containing
a total of � invocations of mult, giving a total complexity of 37 rounds and
55� log2 � invocations of mult.

6.4 Unbounded Fan-In Carry Propagation

We describe a protocol for computing ◦�
i=1ei, where we again represent ei as

(si, pi, ki). The protocol uses an unbounded fan-in And in Step 1 and a prefix-
And in Step 2. These protocols are defined equivalently to a unbounded fan-in
Or and prefix-Or, and implemented in the same complexity using DeMorgan’s
Rule.

Protocol ([a]p, [b]p, [c]p) ← ◦�
i=1([si]p, [pi]p, [ki]p)

1. [b]p ← ∧�
i=1[pi]p.

2. ([q�]p, . . . , [q1]p) ← pre∧([p�]p, . . . , [p1]p).
3. [c�] = [k�].
4. For i = 1, . . . , �− 1, in parallel: [ci]p ← [ki] ∧ [qi+1]p.
5. [c]p =

∑�
i=1[ci]p.

6. [a]p ← 1 − [b]p − [c]p.

As for correctness, it should be clear that b = 1 (a propagate) iff pi = 1 for
i = 1, . . . , �, making b correct. Furthermore, we have that c = 1 (a kill) iff there
exists some i such that ki = 1 and pi+1 = 1, . . . , p� = 1. I.e. c = ∨�

i=1(ki ∧ qi+1).
Since ki and pi are never 1 simultaneously it can be seen that at most one of
the expressions ki ∧ qi+1 equals one. This implies that c =

∑�
i=1(ki ∧ qi+1). By

our representation it follows that a = 1 − b− c.

300 I. Damgård et al.

Since we can compute [b]p and [c]p in parallel, the overall complexity for an
unbounded fan-in carry propagation can be verified to be 18 rounds and 27�
invocations of mult.

7 Applications

In this section we mention some secure multi-party protocols for specific tasks
that use our new constant-rounds protocol for computing shares of the bit decom-
position as an atomic sub-protocol. All application protocols are unconditionally
secure constant-rounds protocols. We want to stress that even though the num-
ber of invocations of the underlying multiplication protocol is always polynomial
in � = $log2 p� and the number of rounds is constant we did not put much effort
in optimizing the running time and round complexity.

For the remaining part of this section let p be a prime, p ∈ [2�−1, 2�].

7.1 Comparison and Equality

In this subsection we look at the equality function ?= : Fp → Fp, where (x ?=y) ∈
{0, 1} and (x ?=y) = 1 iff x = y, and the comparison function

?
< : Fp × Fp → Fp,

where (x
?
<y) ∈ {0, 1} and (x

?
<y) = 1 iff x < y.

For equality, assume the shares [x]p, [y]p are given and we want to compute
shares [x ?=y]p. Setting z = x − y ∈ Fp the problem clearly reduces to comput-
ing [z ?=0]p. The latter one can be done by first computing shares of the bits
[z]B = [z0]p, . . . , [z�−1]p and then [z ?=0]p = ∧�−1

i=0 [zi]p, which can be computed in
constant round using Section 5.1, as it is a symmetric function.

For the comparison function we are given shares [x]p, [y]p and want to com-

putes shares [x
?
<y]p. This can be done by first computing shares of the bits

[x]B = [x0]p, . . . , [x�−1]p and [y]B = [y0]p, . . . , [y�−1]p. Now shares of the com-
parison function can be computed using bit-lt from Section 5.

7.2 Private Exponentiation

The exponentiation function exp : Fp×Zp → Fp is given by exp(x, a) = (xa mod
p) ∈ Fp.

Public exponent a. We first deal with the case where the exponent a is pub-
licly known and the value x is shared, i.e., given [x]p and a we want to compute
[xa]p. Assume there exists a protocol that outputs random shares [r]p of a ran-
dom non-zero value r ∈ F∗

p together with shares of its ath power [ra]p. We will
show later how to implement such a protocol in constant rounds.

Assuming such a protocol exists, a protocol to securely compute the expo-
nentiation function is straightforward (using the Bar-Ilan and Beaver [BB89]
inversion trick): First the parties run the protocol to get shares of [r]p and [ra]p
for a random r ∈ F∗

p. Then they compute [xr]p = mult([x]p, [r]p), open [xr]p to

Unconditionally Secure Constant-Rounds Multi-party Computation 301

get xr ∈ Fp, and every player individually computes y = (xr)a = xara ∈ Fp.
Now [xa]p is obtained by computing [xa]p = y[r−a]p where [r−a]p = [(ra)−1]p is
obtained from [ra]p using the Bar-Ilan and Beaver inversion protocol.

It is easy to see that this protocol is private as long as x �= 0. We handle
the case x = 0 as an “exception” using our protocol for evaluating the equality
function from Section 7.1. The idea is to substitute x by x̃ = x + (x ?=0). Note
that this always assures x̃ �= 0. Then shares [xa]p can be computed as

[xa]p = [x̃a]p − [(x ?=0)]p .

We note that this “exception trick” may also be used in some other places (like
in the inversion protocol) to handle special shared inputs that may lead to in-
formation leakage. Any protocol that initially leaks information for m different
shared input values can now be updated to a protocol providing perfect pri-
vacy by (roughly) the cost of additional m (parallel) executions of the equality
protocol.

It remains to provide the protocol that, given a public a, outputs shares [r]p
together with shares of its ath power [ra]p for a random non-zero value r ∈ F∗

p. In
the honest-but-curious model this is simply done by letting each player j locally
select a random non-zero value rj ∈ F∗

p together with its ath power ra
j ∈ F∗

p. Each
value rj is shared among the players. Now define r as the product of all rj such
that ra also equals to the product of all ra

j . Shares of both products r =
∏n

j=1 rj

and ra =
∏n

j=1 r
a
j can be computed using the unbounded fan-in multiplication

protocol, mult∗. We now show how to make this protocol robust against active
adversaries using a “cut-and-choose” technique: In addition to [ri]p, [ra

i]p, user
i generates random sharings [si]p, [sa

i]p . The players jointly form a random bit
b. Then they compute and open (si, s

a
i) or (siri, s

a
i r

a
i), according to the value

of b and verify that the first number is non-zero and that the second number is
the first raised to the public a. This can be repeated in parallel an appropriate
number of times.

Shared exponent a. Now we consider the case where the exponent a is also
given as a share, i.e., the users are given [x]p and [a]p and want to compute [xa]p.
We show how this case can be reduced to the previous one.

First run the bit decomposition protocol to obtain shares of the bits [a]B =
[a0]p, . . . [a�−1]p of the exponent a such that a =

∑�−1
i=0 2iai with ai ∈ {0, 1}.

Then, using unbounded fan-in multiplication, shares [xa]p may now be obtained
via the equation

xa = x
�−1
i=0 2iai =

�−1∏
i=0

x2iai =
�−1∏
i=0

(aix
2i

+ 1 − ai) ∈ Fp (1)

where the shares [x(2i)]p can be computed (in parallel for 1 ≤ i ≤ l−1) with the
exponentiation protocol above. If x is non-zero the protocol mult∗ can be used
for the unbounded fan-in multiplication, and the “exception trick” can be used
use to deal with the case were x can be zero.

302 I. Damgård et al.

7.3 Modulo Reduction

Let m ∈ [2, p− 1] be a public integer. In this subsection we look at the “modulo
m” function, modm : Fp → Fp, x �→ x mod m ∈ {0, . . . ,m − 1}, where x ∈ Fp

is considered a residue x ∈ {0, 1, . . . , p− 1}. We show how to privately compute
the modulo m function in constant rounds, i.e., the players are given [x]p and
want to compute [modm(x)]p for a public integer m.

The players first compute shares [x]B = [x0]p, . . . , [x�−1]p of the bits of x, i.e.
x =

∑�−1
i=0 xi2i. Note that if m is a power of 2, i.e., m = 2a, then [x mod m]p can

be computed using the equation x mod 2a =
∑a−1

i=0 2ixi. Otherwise define y =∑�−1
i=0 xi(2i mod m) ∈ Z. Then clearly x mod m = (

∑�−1
i=0 xi(2i mod m)) mod

m = y−tm for some integer t in the range t ∈ [0, �−1]. Define y(i) = y−im ∈ Z.
The shares [y(i)]B can be computed in parallel for all i ∈ [0, �−1] using the bitwise
sum protocol from Section 6. The value x mod m is now the unique y(t) such
that 0 ≤ y(t) < m. Shares of such an [x mod m]B = [y(t)]B can be found using (�
parallel applications of) the comparison function and one conversion to shares
of [x mod m]p.

7.4 Private Modulo Reduction

The players are given shares [x]p and shares [m]p of an integer m of known bit-
size �0 + �. The problem is to compute shares [x mod m]p. There already exists
an efficient protocol to approximate [x mod m]p due to [ACS02] but it does not
run in a constant number of rounds. In this section we note that combining
the techniques of this paper with the results from [ACS02] and [KLM05] (the
latter one approximates the fractional part of 1/m by a Taylor polynomial),
we get an efficient constant-rounds protocol to compute an approximation of
[x mod m]p = [x − � x

m� ·m]p. Shares of the exact value of x mod m may then
be obtained by running an appropriate number of comparison protocols to make
sure that result lies in the interval [0,m−1]. With the results from Section 7.2 this
enables us to build a constant-rounds protocol that privately computes shares
[xa mod m]p, where all three inputs, x, a, and m are given as shares (together
with the bit-size �0 of m). Here we only consider the case of prime m. First
compute shares [x mod m]p and [a mod m − 1]p. The prime p has to be large
enough (of bit-size � > �20) such that in Eqn. (1) no wrap-around modulo p
appears: after computing [xa]p, the modulo reduction protocol is used again to
compute shares [xa mod m]p.

7.5 Unrestricted Conversion to Additive Shares over the Integers

Informally, additive shares over the integers are (n − 1)-out-of-n shares where
each party Pj holds a random share xj ∈ [−2ρA, 2ρA] (where ρ is some security
parameter). The secret x is then defined as x =

∑n
j=1 xj ∈ [−A,A] over the

integers. We use [x]Z to denote additive shares over the integers. See [ACS02]
for a formal definition of additive shares and for applications.

Let p be a prime. We want to note that we now can give a constant-rounds
protocol that converts shares [x]p to shares [x]Z. Prior to our work, by a result

Unconditionally Secure Constant-Rounds Multi-party Computation 303

from [ACS02], this could only be done in constant rounds when x is guaranteed
to be considerably smaller than the modulus p. As the protocol in [ACS02] our
protocol is only passively secure.

First compute shares [x]B = [x1]p, . . . , [x�−1]p of the bits of x. Then (in paral-
lel) convert the shares [xj]p to shares [xj]Z over the integers using the technique
from [ACS02] (note that this can be carried out since the shares of the bits are
now “small enough” compared to the modulus p). Finally, the integer shares of
x can be computed without interaction via [x]Z =

∑�−1
i=0 2i[xi]Z.

Acknowledgments

The authors would like to thank the anonymous referees for many useful sug-
gestions, which helped improve the presentation considerably.

References

[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computa-
tion modulo a shared secret with application to the generation of shared
safe-prime products. In Moti Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages
417–432, Santa Barbara, CA, USA, August 18–22, 2002. Springer-Verlag,
Berlin, Germany.

[BB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant com-
puting in constant number of rounds of interaction. In Proc. ACM
PODC’89, pages 201–209, 1989.

[Bea00] Donald Beaver. Minimal latency secure function evaluation. In Bart Pre-
neel, editor, Advances in Cryptology – EUROCRYPT 2000, volume 1807
of Lecture Notes in Computer Science, pages 335–350, Bruges, Belgium,
May 14–18, 2000. Springer-Verlag, Berlin, Germany.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd Annual Symposium on Foundations of Computer
Science, pages 136–145, Las Vegas, Nevada, 14–17 October 2001. IEEE.

[CD01] Ronald Cramer and Ivan Damgård. Secure distributed linear algebra in a
constant number of rounds. In J. Kilian, editor, Advances in Cryptology -
Crypto 2001, pages 119–136, Berlin, 2001. Springer-Verlag. Lecture Notes
in Computer Science Volume 2139.

[CDM00] Ronald Cramer, Ivan Damgård, and Ueli Maurer. General secure multi-
party computation from any linear secret-sharing scheme. In Bart Preneel,
editor, Advances in Cryptology - EuroCrypt 2000, pages 316–334, Berlin,
2000. Springer-Verlag. Lecture Notes in Computer Science Volume 1807.

[CFL83a] Ashok K. Chandra, Steven Fortune, and Richard J. Lipton. Lower bounds
for constant depth circuits for prefix problems. In Proceedings of ICALP
1983, pages 109–117. Springer-Verlag, 1983. Lecture Notes in Computer
Science Volume 154.

[CFL83b] Ashok K. Chandra, Steven Fortune, and Richard J. Lipton. Unbounded fan-
in circuits and associative functions. In 15th Annual ACM Symposium on
Theory of Computing, pages 52–60, Boston, Massachusetts, USA, April 25–
27, 1983. ACM Press.

304 I. Damgård et al.

[DN03] Ivan Damgård and Jesper B. Nielsen. Universally composable efficient mul-
tiparty computation from threshold homomorphic encryption. In D. Boneh,
editor, Advances in Cryptology - Crypto 2003, Berlin, 2003. Springer-Verlag.
Lecture Notes in Computer Science.

[FKN94] Uri Feige, Joe Kilian, and Moni Naor. A minimal model for secure compu-
tation. In Proc. ACM STOC, pages 554–563, 1994.

[IK97] Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols
with applications. In Proc. 5th Israel Symposium on Theoretical Comp. Sc.
ISTCS, pages 174–183, 1997.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new repre-
sentation with applications to round-efficient secure computation. In 41st
Annual Symposium on Foundations of Computer Science, pages 294–304,
Las Vegas, Nevada, USA, November 12–14, 2000. IEEE Computer Society
Press.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computa-
tion via perfect randomizing polynomials. In Proceedings of ICALP 2002,
pages 244–256, Berlin, 2002. Springer-Verlag. Lecture Notes in Computer
Science Volume 2380.

[KLM05] Eike Kiltz, Gregor Leander, and John Malone-Lee. Secure computation of
the mean and related statistics. In TCC 2005: 2nd Theory of Cryptography
Conference, volume 3378 of Lecture Notes in Computer Science, pages 283–
302, Cambridge, MA, USA, February 10–12, 2005. Springer-Verlag, Berlin,
Germany.

[NWKo] Martin Nowak, Georg Woltman, Scott Kurowski, and others. Mersenne.org
project discovers new largest known prime number 225,964,951 − 1. Press
release.

Efficient Multi-party Computation
with Dispute Control�

Zuzana Beerliová-Trub́ıniová and Martin Hirt

ETH Zurich, Department of Computer Science, CH-8092 Zurich
{bzuzana, hirt}@inf.ethz.ch

Abstract. Secure multi-party computation (MPC) allows a set of n
players to securely compute an agreed function of their inputs, even when
up to t players are under the control of an (active or passive) adversary.
In the information-theoretic model MPC is possible if and only if t < n/2
(where active security with t ≥ n/3 requires a trusted key setup).

Known passive MPC protocols require a communication of O(n2) field
elements per multiplication. Recently, the same communication complex-
ity was achieved for active security with t < n/3. It remained an open
question whether O(n2) complexity is achievable for n/3 ≤ t < n/2.

We answer this question in the affirmative by presenting an active MPC
protocol that provides optimal (t < n/2) security and communicates only
O(n2) field elements per multiplication. Additionally the protocol broad-
casts O(n3) field elements overall, for the whole computation.

The communication complexity of the new protocol is to be com-
pared with the most efficient previously known protocol for the same
model, which requires broadcasting Ω(n5) field elements per multiplica-
tion. This substantial reduction in communication is mainly achieved by
applying a new technique called dispute control : During the course of
the protocol, the players keep track of disputes that arise among them,
and the ongoing computation is adjusted such that known disputes can-
not arise again. Dispute control is inspired by the player-elimination
framework. However, player elimination is not suited for models with
t ≥ n/3.

1 Introduction

1.1 Background

Secure multi-party computation (MPC) enables a set of n players to securely
evaluate an agreed function of their inputs even when t of the players are cor-
rupted by a central adversary. A passive adversary can read the internal state
of the corrupted players, trying to obtain information about the honest play-
ers’ inputs. An active adversary can additionally make the corrupted players
deviate from the protocol, trying to falsify the outcome of the computation.

� This work was partially supported by the Zurich Information Security Center. It
represents the views of the authors.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 305–328, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

306 Z. Beerliová-Trub́ıniová and M. Hirt

The MPC problem dates back to Yao [Yao82]. The first generic solutions pre-
sented in [GMW87,CDG87, GHY87] were based on cryptographic intractability
assumptions. Later, MPC protocols with information-theoretic security were de-
veloped [BGW88,CCD88,RB89,Bea91b], which is the focus of this work.

Information-theoretic security against a passive or active adversary is possible
if and only if t < n/2. The protocols with active security require broadcast chan-
nels, which can be simulated from scratch for t < n/3 [PSL80,BGP92,CW92], and
can be simulated when a trusted key setup is available for t < n [DS82, PW92].1

The communication complexity of MPC is measured in bits sent by honest
parties. The function to be computed is represented as an arithmetic circuit over
a finite field (with additions and multiplications). The classical MPC protocol
with passive security (for t < n/2) requires a communication of O(n2) field
elements per multiplication [BGW88]. Recently, the same communication com-
plexity was achieved for active security, including the costs for simulating the
broadcast channels [HM01]; however, this protocol is only suitable for t < n/3.
The most efficient actively secure MPC protocol for t < n/2 requires broadcasting
Ω(n5) field elements per multiplication [CDD+99], and each of these broadcasts
must be simulated with an expensive broadcast protocol [PW92].

1.2 Contributions

In this work, we show that information-theoretic MPC with adaptive active
security for t < n/2 is achievable with sending O(n2) field elements per multi-
plication, and broadcasting O(n3) field elements overall, for the whole compu-
tation. This improves on previous protocols which require broadcasting Ω(n5)
field elements per multiplication [CDD+99].

This result is of particular theoretical interest, as it shows that for all t for
which information-theoretic MPC is possible, i.e., t < n/2, (adaptive) active se-
curity is achievable at essentially the same costs as passive security. This extends
the result of [HM01], where only the range t < n/3 could be solved. The achieved
communication complexity might well be optimal, as even in the passive model
it seems unavoidable that for each multiplication gate, every player sends a value
to every other player.

The following table summarizes the communication complexities of known
and new MPC protocols, where κ denotes the security parameter (i.e., the bit-
length of a field element), BC(·) the number of broadcasted bits, and cM the
number of multiplication gates in the circuit. For simplicity, we assume that the
function takes n inputs and gives n outputs.

Thresh. Adv. Communication References
t < n/2 passive O cMn2 + n2 κ [BGW88]
t < n/3 active O cMn2 + n4 κ + O n3 BC(κ) [HM01]
t < n/2 active O cMn5 + n4 κ + O cMn5 + n4 BC(κ) [CDD+99]
t < n/2 active O cMn2 + n5κ κ + O n3 BC(κ) this paper

1 Even cryptographically secure broadcast and MPC require a trusted key setup for
t ≥ n/3.

Efficient Multi-party Computation with Dispute Control 307

Technically, the new protocol improves the approach of [CDD+99], which re-
quires Ω(n5) broadcasts per multiplication. We introduce a new concept, so-
called dispute control, that allows to substantially reduce the communication
complexity. The goal of dispute control is to reduce the frequency of faults that
the adversary can provoke by identifying a pair of disputing players (at least
one of them corrupted) whenever a fault is observed and preventing this pair
from getting into dispute ever again. Hence, the number of faults that can occur
during the whole protocol is limited to t(t + 1). This technique is inspired by
the player-elimination framework [HMP00], and shares many advantages with it.
However, player elimination is not to be suited for models with t ≥ n/3. Fur-
thermore, player elimination is not applicable in the input stage, which results in
our protocol being more efficient than the protocol in [HM01] when the number
of inputs is large (n2κ bits per input in our protocol versus n4κ bits in [HM01]).

2 Protocol Overview

2.1 Model

We consider a set P of n players, P = {P1, . . . , Pn}, which are connected with a
complete network of secure synchronous channels. Furthermore, we assume the
availability of broadcast channels. These can be simulated when a trusted setup
is available [PW92]. The adversary corrupts up to t players for any fixed t with
t < n/2, and makes them deviate from the protocol in any desired manner. The
adversary is computationally unbounded, active, adaptive and rushing. The se-
curity of our protocols is information-theoretic with a negligible error probability
of 2−O(κ) for some security parameter κ.

For the ease of presentation, we always assume that the messages sent through
the channels are from the right domain — if a player receives a message which is
not in the right domain (e.g., no message at all), he replaces it with an arbitrary
message from the specified domain.

The function to be computed is specified as an arithmetic circuit over a finite
field F = GF (2κ), with input, addition, multiplication, random, and output
gates. We denote the number of gates of each type by cI , cA, cM , cR, and cO.

2.2 Dispute Control

In the active model, the adversary can provoke inconsistencies among the honest
players, who therefore regularly have to check their views and, in case of incon-
sistencies, invoke some fault-recovery procedure. These checks tend to be very
expensive (they require invocations to a Byzantine agreement primitive), and
must be performed even when no player deviates from the protocol.

The goal of dispute control is to reduce the frequency of faults by publicly
identifying (localizing) a pair of disputing players (at least one of them cor-
rupted) whenever a fault is observed and preventing this pair from getting into
dispute ever again. Hence, the number of faults that can occur during the whole
protocol is limited to t(t+ 1).

308 Z. Beerliová-Trub́ıniová and M. Hirt

The localized disputes are filed in a publicly known dispute set Δ ⊆ P × P ,
a set of unordered pairs of players that are in dispute with each other. A pair
{Pi, Pj} ∈ Δ means that there is a dispute between Pi and Pj , hence either Pi

or Pj (or both) are corrupted. Note that from the point of view of Pi, the players
{Pj | {Pi, Pj} ∈ Δ} are corrupted, and Pi doesn’t care for them; in particular, he
won’t send or receive any private messages from them. As no honest player can be
in dispute with more than t players, we automatically include the pairs {Pi, Pj}
for every Pj ∈ P once Pi is involved in more than t disputes. Furthermore, we
define the set X to be the set of players who are undoubtedly detected to be
corrupted, i.e., those players who are in dispute with more than t other players.

Once dispute control is in place, we can take advantage of the fact that the
number of faults during the protocol is limited and reduce the number of ex-
pensive consistency checks: We divide the protocol into n2 segments, run each
segment without any consistency checks and only at the end of the segment check
all operations of the segment in a single verification step. If the verification fails,
a new dispute is localized, and the segment is repeated. At most t(t+1) segments
can fail, and the total number of segment evaluations (including repetitions) is
at most n2 + t(t+ 1), hence the overhead for repeating failed segments is only a
factor of 2. Formally the evaluation of each segment proceeds as follows:

1. Private (dispute-aware) computation. The effective protocol is com-
puted very efficiently but non-robustly. This computation is adjusted to pre-
vent faults due to disputes that are already registered in the dispute set Δ. In
particular, players in dispute do not communicate with each other privately.

2. Fault detection. The players jointly find out whether or not a fault has oc-
curred. This step typically requires each player to broadcast one bit indicat-
ing whether or not he observed an inconsistency within the current segment.
If no fault is reported, then the computation of the segment is completed,
and the next segment is evaluated. If at least one fault is reported, we say
that the segment has failed, and the following step is performed.

3. Fault localization and dispute control. The players publicly identify a
pair {Pi, Pj} of players, where at least one of them is corrupted and has
deviated from the protocol, and who are not yet registered in Δ. Then we
set Δ← Δ ∪ {Pi, Pj} and restart the current segment.

2.3 Three-Level Secret-Sharing

We use three different levels of secret-shadings, all based on Shamir’s shar-
ing [Sha79], ameliorated with dispute control. The weakest level, called 1D-
sharing, is a polynomial sharing scheme, where the shares of players who are in
dispute with the dealer (implicitly) receive a fixed-0 share, called Kudzu-share. In
order to 1D-share a value s, the dealer PD selects a random degree-t polynomial
f(x) with f(0) = s and f(i) = 0 for every {PD, Pi} ∈ Δ, and sends the shares
si = f(i) to every Pi ∈ P (the Kudzu-shares are not really sent; instead, the
receiver sets his share to 0). A protocol VSS1D for verifiably 1D-share a bunch of
values will be given in Section 3.2. Note that 1D-sharings are not robust; recon-
struction requires that all players (except those with Kudzu-shares) cooperate.

Efficient Multi-party Computation with Dispute Control 309

However, they are detectable in the sense that it can be decided whether or not
the reconstruction was successful.

The middle level of secret sharing, called 2D-sharing, is a two-level polynomial
sharings scheme: The share si of each player Pi ∈ P is 1D-shared among the
players (for dealer Pi). More precisely, a value s is 2D-shared when there exists
degree-t polynomials f, f1, . . . , fn with f(0) = s and, for i = 1, . . . , n, fi(0) =
f(i) and ∀Pj ∈ P : {Pi, Pj} ∈ Δ→ fi(j) = 0. Every player Pi ∈ P holds a share
si = f(i) of s, the polynomial fi(x) for sharing si, and a share-share sji = fj(i)
of the share sj of every player Pj ∈ P . We say that Pi owns the 1D-sharing
of si, which means in particular that players who are in dispute with Pi hold 0
as share-share of si. We will never have a dealer 2D-share a value; instead, we
will upgrade 1D-sharings (or rather sums of 1D-sharings) to 2D-sharings, using
protocol Upgrade1Dto2D. Note that also 2D-sharings are not robust.

The strongest level of secret sharing, called 2D∗-sharing, is a 2D-sharing,
where in addition, the share-shares are secured with information checking (see
Section 3.5). More precisely, for each share-share sij (which is not a Kudzu-share,
i.e., {Pi, Pj} /∈ Δ), the owner Pi of the sharing has provided authentication tags
for every verifier PV ∈ P who is neither in dispute with the owner Pi nor the
recipient Pj , i.e., {PV , Pi} /∈ Δ and {PV , Pj} /∈ Δ. These authentication tags
allow PV in the reconstruction to verify the correctness of the received share-
shares; hence, 2D∗-sharings are robust. Actually, Pi does not distribute authen-
tication tags for every single share-share sij , but rather for huge collections of
many share-shares s(1)ij , . . . , s

(�)
ij , and PV can only verify the correctness of all

share-shares at once. Also 2D∗-sharings are never distributed by a dealer; in-
stead, we will upgrade collections of 2D-sharings to 2D∗-sharings, using protocol
Upgrade2Dto2D∗.

2.4 Main Protocol

The main protocol proceeds in three phases (each making use of segmentation
and dispute control):

Preparation phase: The preparation phase uses the circuit-randomization
technique of Beaver [Bea91a]: A number of so-called multiplication triples
(a, b, c) with c = ab are generated and shared among the players. These
triples will then be used in the computation phase for efficiently multiplying
shared values. Furthermore, a number of random values are generated and
shared, which will be used as outputs of random gates.

Input phase: In the input phase, every player with input shares his input
among the players.

Computation phase: In the computation phase, the circuit is evaluated gate
by gate (level by level), with help of the prepared multiplication triples
and the random values. Given the sharings of the multiplication triples, the
random values, and the inputs, the computation phase is fully deterministic.
Indeed, the computation phase can be seen as a sequence of reconstructions
of known linear combinations of shared values.

310 Z. Beerliová-Trub́ıniová and M. Hirt

Each phase uses dispute control. We initialize the dispute set Δ = {} and
enter the first segment of the preparation phase. Then we evaluate segment by
segment, and with each segment that fails and is to be repeated, the dispute set
Δ grows. Once all segments of the preparation phase have succeeded, the players
move on to the first segment of the input phase. Also in this phase, segments
can fail and have to be repeated. This allows corrupted players to change their
inputs. However, as the adversary obtains no information about whatsoever in
the input phase, this does not affect the independence of the inputs. Once all
input segments have succeeded, the players move on to the first segment of the
computation phase. In this phase, the players (and hence also the adversary) do
obtain information about their outputs; however, the computation stage is fully
deterministic. Even when a segment fails (and is repeated) after the adversary
has learned some output, he cannot influence the outputs of the honest players
anymore.

In the preparation phase and in the input phase, the private computation
is highly parallelized. All proposed sub-protocols process many inputs at once,
producing many outputs. This helps reducing the costs for the fault detection and
localization, as for all parallel instances, only one single fault-handling procedure
is executed. Often, instead of verifying single instances of some test data, we will
verify a random linear combination of many instances. Note that the protocols
themselves do not use broadcast, but fault handling does.

3 Sub-protocols

All sub-protocols have a private (dispute aware) computation, a fault detection
and a fault localization. They can succeed or fail and the players always agree
(using broadcast) on what is the case. In case of a failure the public output of
the sub-protocol is a (new) pair of players E = {Pi, Pj}/∈ Δ such as either Pi or
Pj (or both) are corrupted. If some invoked sub-protocol fails with E = {Pi, Pj}
then the invoking sub-protocol fails with E = {Pi, Pj} and is aborted (this abort
will be handled in the main protocol).

3.1 Dispute-Control Broadcast

The protocol DC-Broadcast allows every sender PS ∈ P \X to distribute a vector
of � values s(1,S), . . . , s(�,S) among the players in P\X , such that it is guaranteed
that all honest recipients receive the same vectors (or the protocol fails).

This protocol is rather simple: Every sender directly transmits his vector to
the players he is not in dispute with, and via another player to those players
he is in dispute with. Then the players pairwisely compare their vectors by
using universal hash functions [CW79]. As universal hash with key k ∈ F , we
use the function Uk : F� → F , (s(1), . . . , s(�)) �→ s(1) + s(2)k + . . . + s(�)k�−1.
The probability that two different vectors map to the same hash value for a
uniformly chosen key is at most �/|F|, which is negligible in our setting with
F = GF (2κ).

Efficient Multi-party Computation with Dispute Control 311

Protocol DC-Broadcast
1. Private Computation: The following steps are executed in parallel for

every sender PS ∈ P \ X :
1.1 PS sends s(1,S), . . . , s(�,S) to every Pi with {PS, Pi} /∈ Δ.
1.2 For every Pi with {PS , Pi} ∈ Δ (but Pi /∈ X), the smallest player Pi′

with {PS , Pi′} /∈ Δ and {Pi′ , Pi} /∈ Δ forwards s(1,S), . . . , s(�,S) to Pi.2

We call Pi′ the proxy of Pi.
2. Fault Detection: The following steps are executed in parallel for every

verifier PV ∈ P \ X :
2.1 PV selects a key kV ∈R F for a universal hash function Uk and sends it

to every Pi with {PV , Pi} /∈ Δ.
2.2 Every Pi with {PV , Pi} /∈ Δ sends the values hS,i =

UkV (s(1,S), . . . , s(�,S)) for every PS to PV .
2.3 PV broadcasts a bit “accept” or “reject”, indicating whether for every

PS ∈ P \X , the hash values hS,i of each Pi with {PV , Pi} /∈ Δ are equal.
If every verifier PV ∈ P\X broadcasts “accept” in Step 2.3, then the protocol
succeeds and terminates.

3. Fault Localization: The following steps are executed for the smallest
PV ∈ P \ X reporting a fault.
3.1 PV selects S, i, j such that PS /∈ X , {PV , Pi} /∈ Δ, and {PV , Pj} /∈ Δ,

and hS,i �= hS,j, and broadcasts S, i, j, hS,i, hS,j, and k = kV .
3.2 We denote the proxies of Pi and Pj by Pi′ and Pj′ , respectively (if

no proxy exists, we set i′ = i, respectively j′ = j). The players
PS , Pi, Pj , Pi′ , Pj′ all compute and broadcast a hash value with key k of
their vector s(1,S), . . . , s(�,S), denoted as hS , hi, hj , hi′ , hj′ , respectively.
The protocol fails with E being the first pair (PV , Pi), (Pi, Pi′), (Pi′ , PS),
(PS , Pj′), (Pj′ , Pj), or (Pj , PV), where hS,i �= hi, hi �= hi′ , hi′ �= hS ,
hS �= hj′ , hj′ �= hj , or hj �= hS,j, respectively.

Lemma 1. If DC-Broadcast succeeds, then with overwhelming probability, for
each sender PS ∈ P \ X , all honest players in P hold the same vector
s(1,S), . . . , s(�,S), which is the vector of PS if honest. If the protocol fails, a new
dispute pair E is localized. The protocol communicates O(�n2 + n3) and broad-
casts O(n) field elements.

Proof. In order to prove that all honest players output the same vector
s(1,S), . . . , s(�,S) when the protocol succeeds, consider two honest players Pi and
Pj . As both Pi and Pj are honest, {Pi, Pj} /∈ Δ holds, and Pi and Pj have
mutually exchanged universal hash values in Step 2. Hence, with overwhelming
probability, a difference in the vectors would have been detected and the proto-
col would have failed. It follows immediately from the protocol that when PS is

2 The existence of such a player Pi′ for PS′ /∈ X and Pi /∈ X follows by a counting
argument.

312 Z. Beerliová-Trub́ıniová and M. Hirt

honest and the protocol succeeds, then all honest players receive the vector di-
rectly from PS . When the protocol fails with dispute pair E, then one can verify
by inspection that the two players in E disagree on a value they have privately
exchanged, hence either of the players must be faulty. And as players in dispute
do not communicate with each other, the localized dispute pair is new. ��

3.2 Verifiable Secret-Sharing

The protocol VSS1D allows every dealer PD ∈ P \ X to verifiably 1D-share �
values s(1,D), . . . , s(�,D) resulting in each player Pi ∈ P \ X holding the shares
s
(1,D)
i , . . . , s

(�,D)
i for each dealer PD. The correctness of these sharings is verified

by letting every player take on the role of a verifier PV and inspect a random
linear combination of the sharings of each dealer PD. For privacy reasons, each
such random linear combination is blinded with a random 1D-sharing, i.e., every
dealer PD 1D-shares additional n blinding values s(�+1,D), . . . , s(�+n,D).

Protocol VSS1D
1. Private Computation: Every dealer PD ∈ P\X selects n random blindings

s(�+1,D), . . . , s(�+n,D). Then, PD 1D-shares s(1,D), . . . , s(�+n,D), i.e., for every
m = 1, . . . , �+n, PD picks a random polynomial f (m,D)(x) with f (m,D)(0) =
s(m,D) and f (m,D)(i) = 0 for every i with {PD, Pi} ∈ Δ (the Kudzu-shares),
and sends the share f (m,D)(i) to every player Pi with {PD, Pi} /∈ Δ; every
player Pi with {PD, Pi} ∈ Δ sets his share s(m,D)

i = 0.
2. Fault Detection: Every verifier PV ∈ P \ X selects a random challenge

vector (r(1,V), . . . , r(�,V)). Then, DC-Broadcast is invoked to let every verifier
PV ∈ P \ X distribute his vector among the players Pi ∈ P \ X . Then the
following steps are executed for every verifier PV ∈ P \ X (we suppress the
index V and denote the challenge vector (r(1), . . . , r(�))):
2.1 For every dealer PD, the random linear combination f (∗,D)(x) of his 1D-

sharings is defined as f (∗,D)(x) =
∑�

m=1 r
(m)f (m,D)(x) + f (�+V,D)(x).

Accordingly, for every dealer PD, every player Pi with {Pi, PD} /∈ Δ and
{Pi, PV } /∈ Δ sends to PV his share s(∗,D)

i on f (∗,D)(x), i.e., s(∗,D)
i =∑�

m=1 r
(m)s

(m,D)
i + s

(�+V,D)
i .

2.2 For each dealer PD ∈ P \X , the verifier PV checks whether the received
shares s

(∗,D)
i define a correct 1D-sharing for PD, i.e., whether there

exists a degree-t polynomial f̃ (∗,D)(x) with f̃ (∗,D)(i) = s
(∗,D)
i for every

i with {PV , Pi} /∈ Δ and {PD, Pi} /∈ Δ, and f̃ (∗,D)(i) = 0 for every i
with {PD, Pi} ∈ Δ (Kudzu).3 PV broadcasts a bit “accept” or “reject”,
indicating whether or not the the above checks succeed for all dealers.

If all verifiers PV ∈ P \ X broadcast “accept” the protocol succeeded and
terminates.

3. Fault Localization: The following steps are executed for the smallest PV

reporting a fault in Step 2.2.
3 Note that any linear combination of Kudzu-shares is Kudzu.

Efficient Multi-party Computation with Dispute Control 313

3.1 PV broadcasts the index D of PD whose polynomial f̃ (∗,D)(x) does not
define a correct 1D-sharing.

3.2 Every player Pi with {Pi, PD} /∈ Δ and {Pi, PV } /∈ Δ broadcasts his
share s(∗,D)

i .
3.3 If the broadcasted shares define a 1D-sharing for dealer PD, then

PV broadcasts the index i of a player Pi with {Pi, PV } /∈ Δ and
{Pi, PD} /∈ Δ who has broadcasted a different share s(∗,D)

i in Step 3.2
than he has privately sent to PV in Step 2.1, and the protocol fails with
E = {PV , Pi}. Otherwise, when the broadcasted shares do not define a
correct 1D-sharing for dealer PD, then the dealer broadcasts the index
i of a player Pi with {Pi, PD} /∈ Δ who has broadcasted a wrong share
s
(∗,D)
i and the protocol fails with E = {PD, Pi}.

Lemma 2. If VSS1D succeeds, then with overwhelming probability, the values
s(1,D), . . . , s(�,D) of each dealer PD ∈ P\X are correctly 1D-shared. If the protocol
fails, then the localized pair E = {Pi, Pj} is new (i.e., E /∈ Δ) and either Pi or
Pj (or both) are corrupted. The privacy of the inputs of the honest players is
guaranteed through the whole protocol (even if the protocol fails). The protocol
communicates O(�n2 + n3) and broadcasts O(n) field elements.

Proof. In order to prove the correctness, first consider a dealer PD, an honest
verifier PV , the (by PD supposedly correct 1D-shared) values s(1,D), . . . , s(�,D)

and the blinding value s(�+V,D). Assume that the sharing of one of the values
is not a correct 1D-sharing, i.e., the shares of the honest players (including the
Kudzu shares) lie on a polynomial of degree higher than t. Then there are at
most 2κ(�−1) (out of 2κ�) challenge vectors (r(1), . . . , r(�)) ∈ F� such that the
sharing of s(∗,D) =

∑�
m=1 r

(m)s(m,D) + s(�+V,D) is a correct 1D-sharing, i.e.
the polynomial defined by the shares of the honest players is of degree t. As
the verifier PV chooses his challenge vector uniformly at random and gets the
correctly linearly combined shares from all honest players (an honest verifier is
in dispute with no honest player), the probability of him not detecting the fault
is at most 2κ(�−1)/2κ� = 1/2κ. Thus the probability that the protocol succeeds
in case of at least one faulty sharing (from any dealer) is negligible.

The privacy of the inputs of the honest players follows from the fact that
up to t shares give no information about the secret and from the fact that the
reconstructed linear combinations are blinded with a random value chosen by
the dealer himself (for every verifier a different one) and are so (for every honest
dealer) statistically independent from the dealers secret.

If the protocol fails, then the localized dispute pair consists of two players
who have publicly disagreed on a value they have privately exchanged in some
previous step (or a value computed from such values), therefore it is obvious,
that at least one of them is corrupted. As only players who are not in dispute
with each other communicate privately, the localized dispute is a new one. ��

We present a protocol for reconstructing sums of correct 1D-sharings. Consider
a set PD ⊆ P \ X of dealers and a set PR ⊆ P \ X of recipients and the actual

314 Z. Beerliová-Trub́ıniová and M. Hirt

dispute set Δ. Every dealer PD ∈ PD has verifiably 1D-shared (with the actual
Δ) � summands s(1,D), . . . , s(�,D) with the polynomials f (1,D)(x), . . . , f (�,D)(x).
We denote the share of f (m,D)(x) for player Pi ∈ P by s(m,D)

i . Note that s(m,D)
i =

0 when {PD, Pi} ∈ Δ (Kudzu). The values s(1), . . . , s(�) to be reconstructed are
defined as the sums of the above summands, i.e., s(m) =

∑
PD∈PD

s(m,D). Each
of these values is implicitly shared (as Shamir-sharing, not as 1D-sharing) with
the polynomial f (m)(x) =

∑
PD∈PD

f (m,D)(x); we denote the (implicitly defined)

share of each player Pi ∈ P by s
(m)
i = f (m)(i).

Protocol Reconstruct1D
1. Private Computation: For every m = 1, . . . , �, every player Pi ∈ P com-

putes his sum share s(m)
i =

∑
PD∈PD

s
(m,D)
i , and sends it to every PR ∈ PR

with {Pi, PR} /∈ Δ. Every PR ∈ PR checks for each m = 1, . . . , � whether the
received shares lie on a polynomial f̃ (m)(x) of degree t. If so, it follows that
f̃ (m)(x) = f (m)(x), and PR reconstructs s(m) = f̃ (m)(0).

2. Fault Detection: Every PR ∈ PR broadcasts “accept” or “reject”, indicat-
ing whether he could reconstruct all values s(m) for m = 1, . . . , � in Step 1. If
all recipients broadcast “accept”, then the protocol succeeds and terminates.

3. Fault Localization: The following steps are executed for the smallest
complaining recipient PR ∈ PR.
3.1 PR broadcasts the index m of the polynomial f̃ (m)(x) he could not

reconstruct.
3.2 Every player Pi with {Pi, PR} /∈ Δ sends to PR his summand shares

s
(m,D)
i for every dealer PD ∈ PD with {Pi, PD} /∈ Δ.

3.3 PR verifies for every Pi with {Pi, PR} /∈ Δ that the provided sum-
mand shares add up to the previously provided sum share, i.e.,∑

PD :{Pi,PD}/∈Δ s
(m,D)
i = s

(m)
i .4 In case of a fault, PR broadcasts the

index i of the bad player Pi, and the protocol fails with E = {Pi, PR}.
3.4 PR broadcasts the index D of a dealer PD ∈ PD such that the received

shares s
(m,D)
i do not define a correct 1D-sharing for dealer PD, i.e.,

there is no degree-t polynomial f(x) with f(i) = s
(m,D)
i for every i with

{Pi, PR} /∈ Δ and {Pi, PD} /∈ Δ, and f(i) = 0 (Kudzu) for every i with
{Pi, PR} /∈ Δ and {Pi, PD} ∈ Δ.

3.5 Every player Pi with {Pi, PR} /∈ Δ and {Pi, PD} /∈ Δ broadcasts his
summand share s(m,D)

i .
3.6 If the broadcasted summand shares define a correct 1D-sharing for

dealer PD, then PR broadcasts the index i of a player Pi who has
broadcasted a different value s(m,D)

i in Step 3.5 than he has privately
sent to PR in Step 3.2, and the protocol fails with E = {Pi, PR}.
Otherwise, when the broadcasted summand shares do not define a

4 Note that the Kudzu-shares s
(∗,D)
i with {Pi, PD} ∈ Δ are 0 and do not contribute

to the sum.

Efficient Multi-party Computation with Dispute Control 315

correct 1D-sharing for PD, then PD broadcasts the index i of a player Pi

who has broadcasted a wrong share s(m,D)
i , and the protocol fails with

E = {Pi, PD}.

Lemma 3. If the values s(1,D), . . . , s(�,D) of each PD ∈ PD are correctly 1D-
shared (for the actual Δ), then the following holds: If Reconstruct1D succeeds,
then the privacy is guaranteed and every value reconstructed towards an honest
recipient lies on the degree t polynomial defined by the (at least t + 1) shares
of the honest players. If the protocol fails then the localized pair E = {Pi, Pj}
is new and contains at least one corrupted player. The protocol communicates
O(�n2) and broadcasts O(n) field elements.

Proof. As an honest verifier is not in dispute with any other honest player, he
will receive at least t + 1 shares of the honest players, which uniquely define
a degree t polynomial. If the shares received from the corrupted players lie on
this polynomial, he will reconstruct the right secret, otherwise the interpolated
polynomial will be of degree higher then t and the protocol will fail. The rest
follows (along the lines of proof of Lemma 2) from inspection of the protocol. ��

3.3 Generating Random Challenges

The following protocol allows the players to generate a publicly known (i.e., to
the players in P \ X) challenge vector s(1), . . . , s(�), or the protocol fails, if one
of the sub-protocols fails, and outputs a new dispute pair E = {Pi, Pj}:

Protocol GenerateChallenges
1. Every player Pk ∈ P \ X selects a random summand vector s(1,k), . . . , s(�,k).
2. Invoke VSS1D to let every Pk verifiably 1D-share his summand vector.
3. Invoke the protocol Reconstruct1D (with PD = PR = P \ X) to reconstruct

the sum sharings
∑

Pk∈PD
s(1,k), . . . ,

∑
Pk∈PD

s(�,k) towards every Pj ∈ PR.

Lemma 4. If GenerateChallenges succeeds, then with overwhelming probability,
the generated values are uniformly distributed. If the protocol fails, then the local-
ized dispute pair E = {Pi, Pj} is new and contains at least one corrupted player.
The protocol communicates O(�n2 + n3) and broadcasts O(n) field elements.

3.4 Upgrading 1D-Sharings to 2D-Sharings

We present a protocol for upgrading sums of 1D-sharings to 2D-sharings. The
given 1D-sharings must be for the actual Δ; the correctness of these sharings is
implicitly verified in the upgrade protocol and must not be a priori guaranteed.
The protocol outputs correct 2D-sharings or it fails with a new dispute pair E.

Formally, we consider a set PD ⊆ P\X of dealers, where each dealer PD ∈ PD

has (for the actual Δ) 1D-shared � summands s(1,D), . . . , s(�,D) with the poly-
nomials f (1,D)(x), . . . , f (�,D)(x). We denote the share of f (m,D)(x) for player

316 Z. Beerliová-Trub́ıniová and M. Hirt

Pi ∈ P by s(m,D)
i . Note that s(m,D)

i = 0 when {PD, Pi} ∈ Δ (Kudzu). The values
s(1), . . . , s(�) to be 2D-shared are defined as the sums of the above summands,
i.e., s(m) =

∑
PD∈PD

s(m,D). Each of these values is implicitly shared (as Shamir-
sharing, not as 1D-sharing) with the polynomial f (m)(x) =

∑
PD∈PD

f (m,D)(x);

we denote the (implicitly defined) share of each player Pi ∈ P by s(m)
i = f (m)(i).

Protocol Upgrade1Dto2D
1. Private Computation: The players first jointly generate a sharing of an

additional randomly chosen value s(�+1). Then, all �+1 sharings are upgraded
to 2D-sharings, and the correctness is verified with destroying the privacy of
this blinding value.
1.1 Every dealer PD ∈ PD picks a random summand s(�+1,D) and 1D-

shares it among the players with polynomial f (�+1,D)(x), resulting in
every player Pi holding a share s(�+1,D)

i .
1.2 For every m = 1, . . . , �+ 1, every player Pi ∈ P \ X computes his sum

share s
(m)
i =

∑
PD∈PD

s
(m,D)
i , and 1D-shares it with the polynomial

f
(m)
i (x), such that f (m)

i (j) = 0 for {Pi, Pj} ∈ Δ (Kudzu). We denote
the share-shares as s(m)

ij . The 1D-sharing of detected players Pi ∈ X is
the constant-0 sharing (all share-shares are Kudzu).

2. Fault Detection: In order to verify the correctness of the resulting shar-
ings, the players jointly generate a random challenge vector (r(1), . . . , r(�)) ∈
F� using the protocol GenerateChallenges. Then, the correctness of the 2D-
sharing of the random linear combination

∑�
m=1 r

(m)s(m) + s(�+1) will be
verified (in parallel) by every player PV ∈ P \ X . We denote the linearly
combined polynomials by f(x) =

∑�
m=1 r

(m)f (m)(x) + f (�+1)(x), respec-
tively fi(x) =

∑�
m=1 r

(m)f
(m)
i (x) + f

(�+1)
i (x).

The following steps are performed in parallel for every verifier PV ∈ P \ X :
2.1 Every Pj with {PV , Pj} /∈ Δ computes and sends to PV the follow-

ing linear combinations of his share-shares for every i = 1, . . . , n with
{Pi, Pj} /∈ Δ: sij =

∑�
m=1 r

(m)s
(m)
ij + s

(�+1)
ij .

2.2 PV checks for each i = 1, . . . , n, whether the received share-shares sij

define a valid 1D-sharing for dealer Pi, i.e., there exists a polynomial
f̃i(x) with f̃i(j) = sij for every j with {PV , Pj} /∈ Δ and {Pi, Pj} /∈
Δ, and f̃i(j) = 0 (i.e., Kudzu) for every j with {Pi, Pj} ∈ Δ,5 and
broadcasts a bit “accept” or “reject”.

2.3. PV checks that the first-level sharing f̃1(0), . . . , f̃n(0) is a valid Shamir-
sharing of degree t and broadcasts “accept” or “reject”.

If all verifiers PV broadcast “accept” in Steps 2.2 and 2.3, the protocol suc-
ceeded and terminates.

3. Fault Localization: The following steps are executed for the smallest
complaining verifier PV .

5 Observe that in this case fi(x) = fi(x).

Efficient Multi-party Computation with Dispute Control 317

3.1 If the reported fault was in Step 2.2, i.e., PV observed that one of the
second-level sharings is not a correct 1D-sharing, the following steps are
executed:
3.1.1 PV broadcasts the index i of the invalid second-level sharing.
3.1.2 Every Pj with {Pj , PV } /∈ Δ and {Pj , Pi} /∈ Δ broadcasts sij .
3.1.3 If the broadcasted shares define a correct 1D-sharing, then there

exists a player Pj with {Pj , PV } /∈ Δ who has broadcasted a
different value than he has privately sent to PV in Step 2.1. PV

broadcasts his index j, and the protocol fails with E = {PV , Pj}.
If the broadcasted shares do not define a correct 1D-sharing, the
owner Pi of this second-level sharing broadcasts the index j of
a player Pj (with {Pi, Pj} /∈ Δ) who has broadcasted a wrong
share sij �= fi(j), and the protocol fails with E = {Pi, Pj}.

3.2 If the observed fault was in Step 2.3, i.e., PV could correctly interpolate
each second-level sharing f̃1(x), . . . , f̃n(x), but the interpolated values
f̃1(0), . . . , f̃n(0) do not define a valid (first-level) Shamir-sharing of de-
gree t,6 then the following steps are executed.
3.2.1 For every dealer PD, the random linear combination f (∗,D)(x) of

his 1D-sharings is defined as f (∗,D)(x) =
∑�

m=1 r
(m)f (m,D)(x) +

f (�+1,D)(x). Accordingly, for every dealer PD, every player Pi

with {Pi, PD} /∈ Δ and {Pi, PV } /∈ Δ sends to PV his share
s
(∗,D)
i on f (∗,D)(x), i.e., s(∗,D)

i =
∑�

m=1 r
(m)s

(m,D)
i + s

(�+1,D)
i .

3.2.2 PV checks for every player Pi with {PV , Pi} /∈ Δ that∑
PD :{Pi,PD}/∈Δ s

(∗,D)
i = f̃i(0).7 If the check fails for some Pi,

then PV broadcasts i, and the protocol fails with E = {PV , Pi}.
3.2.3 PV broadcasts the index D of PD such that the received shares

s
(∗,D)
i (for every i with {Pi, PD} /∈ Δ and {Pi, PV } /∈ Δ) do not

define a correct 1D-sharing.
3.2.4 Every Pi ∈ P with {Pi, PV } /∈ Δ and {Pi, PD} /∈ Δ broadcasts

his share s(∗,D)
i .

3.2.5 If the broadcasted shares define a correct 1D-sharing for dealer
PD, then PV broadcasts the index i of the player Pi with
{PV , Pi} /∈ Δ who has broadcast a different share s

(∗,D)
i than

he has privately sent to PV in Step 3.2.1, and the protocol fails
with E = {PV , Pi}. If the broadcasted shares do not define a cor-
rect 1D-sharing for dealer PD, then PD broadcasts the index i of
a player Pi with {PD, Pi} /∈ Δ who broadcasted a wrong share
s
(∗,D)
i , and the protocol fails with E = {PD, Pi}.

6 Note that fi(0) = fi(0) for every i, i.e., fi(0) is the linear combination of the values
that Pi did indeed 1D-share as his shares s

(m)
i in Step 1.

7 Note that the Kudzu-shares s
(∗,D)
i with {Pi, PD} ∈ Δ are 0 and do not contribute

to the sum.

318 Z. Beerliová-Trub́ıniová and M. Hirt

Lemma 5. If Upgrade1Dto2D succeeds, then with overwhelming probability, the
upgraded sharings are correct 2D-sharings. If the protocol fails, then the localized
pair E = {Pi, Pj} is new and contains at least one corrupted player. The privacy
of the shared values is guaranteed through the whole protocol (even if it fails).
The protocol communicates O(�n2 + n3) and broadcasts O(n) field elements.

Proof. Along the lines of the proof of Lemma 2. ��

3.5 Information Checking with Dispute Control

An information-checking (IC) scheme allows a sender to deliver a message to
a recipient in such a way that the recipient can later forward the message and
prove its authenticity to a designated verifier. More precisely, an IC-scheme for
a sender PS , recipient PR, and verifier PV , consists of two protocols:8

IC-Distr: The sender PS delivers the message m and some authentication tag y
to PR and some checking tag z to PV .

IC-Reveal: The recipient PR forwards m and y to PV , who uses z to verify the
authenticity of m, and either accepts or rejects m.

Our information-checking protocol is a variant of the information-checking pro-
tocol of [CDD+99] with two modifications. First, our IC-Distr protocol may fail in
case of a fault; then, a dispute among two of the three players is identified.9 Sec-
ond, our protocol supports authenticating long messagesm = (m1, . . . ,m�) ∈ F�

without additional costs.10

For authenticating m = (m1, . . . ,m�), a random degree-� polynomial f(x)
with f(i) = mi for i = 1, . . . , � is chosen, then the authentication tag is y =
f(0) and the verification tag is a random point z = (u, v) with f(u) = v and
u ≥ �. One can easily verify that this approach satisfies completeness, secrecy,
and correctness (with error probability �/(|F| − � − 1)) as long as the tags are
computed as indicated. In order to ensure that the sender computes the tags
correctly, we use a cut-and-choose proof: The sender generates and distributes
κ independent tags, and the verifier hands half of them to the recipient, who
checks them. The concrete protocols are given in the sequel:

Protocol IC-Distr
1. Private Computation: The sender PS , holding message m =

(m1, . . . ,m�), selects uniformly at random κ authentication tags
y1, . . . , yκ ∈R Fκ, κ elements u1, . . . , uκ ∈R (F \ {0, . . . , �})κ, and com-
putes v1, . . . , vκ such that for each i ∈ {1, . . . , κ}, the � + 2 points
(0, yi), (1,m1), . . . , (�,m�), (ui, vi) lie on a polynomial of degree �. PS sends
the message m and the authentication tags y1, . . . , yκ to PR and the verifi-
cation tags z1 = (u1, v1), . . . , zκ = (uκ, vκ) to PV .

8 In [RB89,CDD+99], a different notation is used. They denote the sender as “dealer”,
the recipient as “intermediary”, and the verifier as “receiver”.

9 In our context, the IC-scheme will be used only by triples of players with no a priori
dispute among them, so the identified dispute will be a new one.

10 The costs in the scheme of [CDD+99] grow linearly with the size of the message.

Efficient Multi-party Computation with Dispute Control 319

2. Fault Detection:
2.1 PV partitions the index set {1, . . . , κ} into two partitions I and I of

(almost) equal size, and sends I, I, and zi for every i ∈ I to PR.
2.2 PR checks whether for every i ∈ I, the points

(0, yi), (1,m1), . . . , (�,m�), zi lie on a polynomial of degree �, and
broadcasts either “accept” (and the protocol succeeded) or “reject”.

3. Fault Localization: If PR broadcasted “reject”, the protocol fails and:
3.1 PR selects i ∈ I such that the verification tag zi received from PV does

not match with the message m and the authentication tag yi received
from PS , and broadcasts i and zi.

3.2 PS and PV broadcast zi.
3.3 If the zi-s broadcasted by PS and PV differ, then E = {PS , PV }. Other-

wise, if the zi-s broadcasted by PR and PV differ, then E = {PR, PV }.
Otherwise, E = {PS , PR}.

Protocol IC-Reveal
1. The recipient PR sends the message m and the authentication tags yi for

i ∈ I to the verifier PV .
2. The verifier with verification tags z1, . . . , z� accepts m = (m1, . . . ,m�) if

for any i ∈ I, the points (0, yi), (1,m1), . . . , (�,m�), zi form a polynomial of
degree �; otherwise, he rejects m.

Lemma 6. If IC-Distr succeeds and PV , PR are honest, then with overwhelming
probability PV accepts the message m in IC-Reveal (completeness). If IC-Distr
fails, then the localized pair E contains at least one corrupted player. If PS and
PV are honest, then with overwhelming probability, PV rejects any fake message
m′ �= m in IC-Reveal (correctness). If PS and PR are honest, then PV obtains
no information about m in IC-Distr (even if it fails) (privacy).

Proof. Completeness: If the cut-and-choose proof is successful, then the proba-
bility that at least one of the remaining authentication tags is valid is at least
1 − κ/2κ. Correctness: The probability that an corrupted receiver can produce
at least one correct tag for a message m′ �= m is equal to the probability, that
he can guess at least one verification point zi, which is less than κ/(2κ − �− 1).
Privacy follows from the fact that the verification tag is statistically independent
from the message. ��

3.6 Upgrading 2D-Sharings to 2D∗-Sharings

The following protocol upgrades � 2D-sharings to 2D∗-sharings. We denote the
2D-shared values by s(m) (for m = 1, . . . , �), the shares of each player Pi ∈ P by
s
(m)
i , and P ′

js share-share of s(m)
i by s

(m)
ij .

320 Z. Beerliová-Trub́ıniová and M. Hirt

Protocol Upgrade2Dto2D∗

1. For every triple of players Pi, Pj , Pk ∈ P with no dispute among them (i.e.,
{Pi, Pj} /∈ Δ, {Pi, Pk} /∈ Δ, {Pj , Pk} /∈ Δ), the protocol IC-Distr is invoked
for the message m = (s(1)ij , . . . , s

(�)
ij) with sender Pi, receiver Pj and verifier

Pk. The message is not really sent, as Pj already holds it. Furthermore, these
up to n3 parallel invocations are merged when it comes to fault-detection
and fault-localization: Every player Pj broadcasts one single bit in the fault-
detection, indicating whether he observed a fault in one of the instances
he acted as recipient. Then, the smallest player Pj that reported a fault,
broadcasts i and k, indicating the instance i, j, k in which he observed the
fault, and fault-localization is invoked only for this instance.

Lemma 7. If the 2D-sharings to be upgraded are correct (for the actual Δ) and
the protocol Upgrade2Dto2D∗ succeeds, then the upgraded 2D∗-sharings are with
overwhelming probability correct. If the protocol fails, then the output pair E
is new and contains at least one corrupted player. The privacy of the shared
values is guaranteed through the whole protocol (even if it fails). The protocol
communicates O(n3κ) and broadcasts O(n) field elements.

3.7 ABC-Protocol

The following protocol allows every player Pk ∈ P \ X to prove that for every
m = 1, . . . , �, the (for the actual Δ correctly) 1D-shared value c(m,k) is the
product of the (for the actual Δ correctly) 1D-shared values a(m)

k and b(m)
k . This

ABC-protocol is inspired by the corresponding protocol of [CDD+99].
The intuition of the ABC protocol is the following (where we denote the

factors as a and b and the product as c): The prover shares a random a and
c = ab, i.e., (a, b, c) is a multiplication triple, and proves for a random challenge
r, that the shared triple (ra+a, b, rc+c) is a correct multiplication triple. This is
achieved by first reconstructing ã = ra+a, and then verifying that z = ãb−rc−c
is a sharing of 0. For the sake of efficiency, we parallelize this ABC-proof for
many triples and amortize the verification. Instead of reconstructing the sharing
of each ã, we ask the prover to send the (alleged) values ã to every player; who
then verify that a random linear combination of these sharings reconstructs to
the linear combination of the alleged values. Analogously, instead of verifying
each z to be zero, the players reconstruct a random linear combination of these
values, which must be zero.

Protocol ABC
1. Every player Pk ∈ P \ X selects for each m = 1, . . . , � a random a

(m)
k and

computes c(m,k) = a
(m)
k b

(m)
k .

2. Invoke VSS1D to let every Pk ∈ P \ X verifiably 1D-share a(m)
k and c(m,k)

for m = 1, . . . , �.
3. Invoke GenerateChallenges to generate one random challenge r.

Efficient Multi-party Computation with Dispute Control 321

4. Every Pk ∈ P \X sends ã(m)
k = ra

(m)
k +a

(m)
k for m = 1, . . . , � to every Pi ∈ P

with {Pk, Pi} /∈ Δ.
5. Invoke GenerateChallenges to generate � challenges r(1), . . . , r(�).
6. Invoke Reconstruct1D with PR = P \ X to publicly reconstruct âk =∑�

m=1 r
(m)

(
ra

(m)
k + a

(m)
k

)
for k = 1, . . . , n.11

7. Every Pi ∈ P \ X checks for every Pk with {Pi, Pk} /∈ Δ whether âk =∑�
m=1 r

(m)ã
(m)
k , and broadcasts the index k of a player Pk for whom the

check failed, respectively ⊥ if all checks succeed. If at least one player Pi

broadcasts k with {Pi, Pk} /∈ Δ, then the protocol fails with E = {Pi, Pk}
for the smallest such Pi (and the accused Pk).

8. Invoke Reconstruct1D with PR = P \ X to reconstruct z(k) =∑�
m=1 r

(m)
(
ã
(m)
k b

(m)
k − rc(m,k) − c(m,k)

)
for k = 1, . . . , n. Note that ã

(m)
k

is a constant known to all players Pi with {Pi, Pk} /∈ Δ,12 hence z(k) is a
linear combination of 1D-shared values, as required by Reconstruct1D. Note
that when this reconstruction succeeds, then every player PV ∈ P \X recon-
structs the same vector (z(1), . . . , z(n)).

9. Every player PV ∈ P\X checks whether the reconstructed values z(k) = 0 for
every Pk ∈ P \ X . If this check fails, then Pk is corrupted, and the protocol
fails with E = {Pi, Pk} for all Pi ∈ P (i.e., Pk is in dispute with every player).

Lemma 8. If all triples (a(m)
k , b

(m)
k , c(m,k)) are correctly 1D-shared for the ac-

tual Δ, then the following holds with overwhelming probability: If ABC succeeds,
then the checked triples (a(m)

k , b
(m)
k , c(m,k)) are correct multiplication triples, i.e.

c(m,k) = a
(m)
k b

(m)
k for every m = 1, . . . �, and their privacy is preserved. If the

protocol fails, then it localizes a new dispute pair E containing at least one cor-
rupted player (respectively localizes single player who is corrupted). The protocol
communicates O(�n2 + n3) and broadcasts O(n) field elements.

Proof. In order to prove correctness, assume that there is at least one (incor-
rect) triple (a(m)

k , b
(m)
k , c(m,k)) (of player Pk) such that c(m,k) �= a

(m)
k b

(m)
k . Then

there is at most one (out of 2κ) challenge r ∈ F such that (ra(m)
k + a

(m)
k)b(m)

k −
rc(m,k) − c(m,k) = 0. If (ra(m)

k + a
(m)
k)b(m)

k − rc(m,k) − c(m,k) �= 0 then there are
at most 2κ(�−1) (out of 2κ�) challenge vectors (r(1), . . . , r(�)) ∈ F� such that the
sum z(k) =

∑�
m=1 r

(m)
((
ra

(m)
k + a

(m)
k

)
b
(m)
k − rc(m,k) − c(m,k)

)
= 0. So pro-

vided that the values a(m)
k , b

(m)
k , c(m,k), a

(m)
k , c(m,k) for m = 1, . . . , � are correctly

1D-shared, the challenges are random, and in Step 4., player Pk sent the correct
11 Note that the 1D-sharing ak belongs to dealer Pk. Formally, Reconstruct1D requires

every value to be reconstructed to be the sum of one 1D-sharing of each dealer in
PD; hence, we implicitly assume constant-0 1D-sharings for the other dealers, and
set PD = P \ X .

12 Note that Pk is the owner of the 1D-sharing of z(k); hence, the share of every player
Pi with {Pi, Pk} ∈ Δ is Kudzu, and he does not need to know the constant a

(m)
k .

322 Z. Beerliová-Trub́ıniová and M. Hirt

ã
(m)
k = ra

(m)
k + a

(m)
k for m = 1, . . . , � to every Pi ∈ P with {Pk, Pi} /∈ Δ, the

probability of the false triple not being detected is at most 2/2κ, which is negli-
gible. As with overwhelming probability the values a(m)

k , b
(m)
k , c(m,k), a

(m)
k , c(m,k)

for m = 1, . . . , � are correctly 1D-shared and the challenges are random, it is
now sufficient to show that the probability of Pk sending at least one false
ã
(m)
k �= ra

(m)
k + a

(m)
k to at least one honest verifier Pi in Step 4 and not be-

ing detected (by Pi) in Step 7 is negligible. This holds because for a false ã(m)
k

there are at most 2κ(�−1) (out of 2κ�) challenge vectors for which the check in
Step 7 does not fail. ��

4 Preparation Phase

The goal of this phase is to generate cM random 2D∗-shared multiplication triples
(a, b, c) (one for each multiplication gate) and cR random 2D∗-shared values (one
for each random gate). We wastefully generate cM + cR random multiplication
triples and use only the first factor for the random gates.

The generation of the cM + cR multiplication triples is divided into n2 seg-
ments, each of length L = $(cM + cR)/n2�. The computation is non-robust, and
its correctness is verified at the end of the segment. In fact, the segment will
consist of several stages, each with a private computation and fault-detection.
As soon as a fault is reported in a fault-detection procedure, the corresponding
fault-localization is used to localize a new dispute to be registered in Δ, and the
whole segment has failed and is repeated.

Protocol PreparationPhase
Set Δ := {} and X = {}, and for each segment (of length L) do the following
steps. If any of the invoked sub-protocols fails, then include the localized pair
E = {Pi, Pj} in Δ, i.e., Δ← Δ ∪ {Pi, Pj}, and repeat the failed segment.
1. Generate 2L correct random 2D-sharings

(
a(1), b(1)

)
, . . . ,

(
a(L), b(L)

)
:

1.1. Every player Pk ∈ P \ X 1D-shares L randomly selected pairs(
a(1,k), b(1,k)

)
, . . . ,

(
a(L,k), b(L,k)

)
∈ F2 among the players. We denote

the distributed shares of a(m,k) by a
(m,k)
1 , . . . , a

(m,k)
n .

1.2. Invoke Upgrade1Dto2D with PD = P \ X and � = L to upgrade the im-
plicitly defined sum sharings of

∑
Pk∈PD

a(1,k), . . . ,
∑

Pk∈PD
a(L,k) to 2D-

sharings, resulting in L correctly 2D-shared random values a(1), . . . , a(�).
The same for b.

2. Multiply the L pairs
(
a(1), b(1)

)
, . . . ,

(
a(L), b(L)

)
, resulting in L correctly 2D-

shared products c(1), . . . , c(L):
2.1. Every player Pk ∈ P \ X computes for every m = 1, . . . , L the product

c(m,k) of his shares a(m)
k and b(m)

k . Note that the product c(m) = a(m)b(m)

can be computed as a weighted sum of these values c(m,k) (namely La-
grange interpolation); accordingly, we will compute a sharing of c(m) as
weighted sum of sharings of c(m,1), . . . , c(m,n).

Efficient Multi-party Computation with Dispute Control 323

2.2. Invoke VSS1D to let every player Pk ∈ P \ X verifiably 1D-share his
values c(1,k), . . . , c(L,k).

2.3. Invoke the protocol ABC to have every player Pk ∈ P \ X prove that for
every m = 1, . . . , L, the value c(m,k) he shared in Step 2 is indeed the
product of his shares a(m)

k and b
(m)
k , which are implicitly 1D-shared as

part of the 2D-sharings of a(m) and b(m), respectively.
2.4. Invoke the protocol Upgrade1Dto2D with PD = P \ X to upgrade the

sharings of the weighted sums
∑

Pk∈PD
λkc

(1,k), . . . ,
∑n

k=1 λkc
(L,k) to 2D-

sharings, where λk denotes the Lagrange coefficients.13

3. Invoke Upgrade2Dto2D∗ to upgrade all 3L 2D-sharings to 2D∗-sharings.

Lemma 9. With overwhelming probability, the protocol PreparationPhase gen-
erates cM + cR correctly 2D∗-shared random multiplication triples (a, b, c) with
c = ab; the secrecy of the triples is preserved. The protocol communicates
O((cM + cR)n2 + n5κ) and broadcasts O(n3) field elements.

Proof. In order to show the correctness first consider one execution of the Steps
1.–3. for one segment of length L. (Note that the dispute set Δ remains un-
changed through Steps 1.–3.) If the execution succeeds, then with overwhelming
probability, the triples

(
a(1), b(1), c(1)

)
, . . . ,

(
a(L), b(L), c(L)

)
are correctly 2D∗-

shared (because of Lemma 2, 5, and 7), and c = ab holds because of Lemma 8
for each triple (a, b, c). As there are n2 segments and the adversary can provoke
less than n2 executions to fail (in total), he has less then 2n2 attempts to intro-
duce a segment with a false triple. Because n is at most polynomial in κ, the
probability that a false triple is not detected is negligible.

Privacy follows from the privacy of the invoked sub-protocols. Some of them
do not guarantee privacy in case of a failure, but in such case all generated values
are discarded and completely new shared values will be generated. ��

5 Input Phase

The goal of the input phase is to provide 2D∗-sharings of cI inputs.
We set the upper bound on the number of input gates of a segment to L = $ cI

n2 �
and limit each segment to contain only input gates of the same player.

Protocol InputPhase
For each segment, the following steps are executed to let the dealer PD ∈ P \
X verifiably 2D∗-share his L inputs s(1), . . . , s(L).14 If any of the invoked sub-
protocols fails, include the localized pair E = {Pi, Pj} in Δ, i.e., Δ ← Δ ∪
{Pi, Pj}, and repeat the segment.
13 Note that the sharings of detected players PD ∈ X are not considered in the Lagrange

interpolation; however, as their shares are 0 (Kudzu), this omission does not falsify
the outcome.

14 If the dealer PD is detected, i.e., PD ∈ X , then the players take the all-zero shar-
ing of 0, i.e., every share is 0 and every share-share is 0 (Kudzu). Note that no
authentication tags are needed because all share-shares are Kudzu.

324 Z. Beerliová-Trub́ıniová and M. Hirt

1. PD (unverifiably) 1D-shares the input values s(1), . . . , s(L).
2. Invoke Upgrade1Dto2D with P = {PD} to upgrade the 1D-sharings of

s(1), . . . , s(L) to 2D-sharings.
3. Invoke Upgrade2Dto2D∗ to upgrade the 2D-sharings of s(1), . . . , s(L) to 2D∗-

sharings.

Lemma 10. With overwhelming probability, the protocol InputPhase computes
correct 2D∗-sharings of cI inputs, where the privacy of the inputs of the honest
players is preserved. The protocol communicates O(cIn2 + n5κ) and broadcasts
O(n3) field elements.

Proof. In one execution of Steps 1.–3., the probability of success in spite of a false
sharing is negligible. As there are at most n2 + n segments and less than n2 rep-
etitions, the adversary has at most 2n2 + n independent attempts to introduce a
segment with a false sharing, hence his success probability is negligible. The pri-
vacy is guaranteed even in case of failure (and repetition) of some segment. ��

6 Computation Phase

The computation of the circuit proceeds gate-by-gate. First, to every random
and every multiplication gate, a prepared 2D∗-shared random triple is assigned.

Given the 2D∗-sharings of the multiplication triples and of the inputs, all val-
ues to be computed (and to be opened) in the computation stage are completely
determined. We therefore call the values shared in the preparation phase and in
the input phase the base values of the computation. All base values are robustly
shared with 2D∗-sharings.

It turns out that the value of each gate can be computed as linear combination
of such base values. This is trivial as long as the circuit only consists of addition
and random gates. For a multiplication gate, the players publicly reconstruct two
sharings (both linear combinations of base values), such that the value of the
multiplication gate is a linear combination of base values, where the coefficients of
the linear combination depend on the two reconstructed values [Bea91a]. Hence,
the whole computation phase consists only of a sequence of reconstructions of
publicly known linear combinations of base sharings. More precisely, the gates
are evaluated as follows:

Input Gate: Assign the corresponding 2D∗-sharing of the input to the gate.
Random Gate: Assign the 2D∗-sharing of a of the assigned multiplication

triple (a, b, c) to the gate.
Addition Gate: To both summands, a linear combination of base sharings was

assigned. Assign to the gate the sum of these two linear combinations (which
is again a linear combination of base sharings).

Multiplication Gate: To both factors, a linear combination of base sharings
was assigned. We denote the corresponding values by x and y, and denote the
assigned multiplication triple by (a, b, c). The players reconstruct dx = x− a

Efficient Multi-party Computation with Dispute Control 325

and dy = y − b towards every player in P (both dx and dy are represented
as known linear combination of base sharings), and assign to the gate the
linear combination dxdy + dxb + dya + c (i.e., a linear combination of the
2D∗-sharings of a, b, and c, all three of them base sharings).

Output Gate: The players reconstruct the assigned linear combination of base
sharings towards the designated output player.

Now, we are left with the problem of opening known linear combinations of
base values towards designated players. For every multiplication gate, we need
2n reconstructions (one towards every player), and for every output gate, we
need 1 reconstruction. Hence, in total we need to reconstruct 2ncM + cO linear
combinations of 2D∗-sharings. This job is, as usual, divided into n2 segments,
each with at most L = $(2ncM +cO)/n2� reconstructions. Each reconstruction is
processed non-robustly, and at the end of the segment, the players verify that no
fault has occurred. In the non-robust reconstruction the receiver either obtains
the right value, or he observes a fault, stops the further processing of this segment
and only joins again in the fault handling procedure.

Protocol ComputationPhase
For each segment with L reconstructions, the following steps are executed. If in
a segment a fault is detected in Step 2., then Step 3 is executed to localize a
new dispute pair E, which is included in Δ, i.e., Δ ← Δ ∪ {E}, and the failed
segment is repeated.
1. Private Computation: Execute the following for each output operation.15

Denote the designated output player with Pk, the publicly known linear
combination for the output operation with L, and the 2D∗-shared base values
used in the linear combination with s(1), s(2), Furthermore, we denote the
share and shares-shares of Pi by s

(m)
i , s

(m)
1i , . . . , s

(m)
ni , respectively, and the

polynomial used for the second-level sharing of s(m)
i by f

(m)
i (x).

1.1 Every Pi with {Pi, Pk} /∈ Δ sends his linearly combined share si =
L(s(1)i , s

(2)
i , . . .) to Pk, who receives a message in F ∪ {ε}.16

1.2 If Pk received all shares si he was supposed to get (i.e., there was no
empty message ε), and the received shares lie on a polynomial f(x)
of degree t, he computes the output value as s = f(0); otherwise Pk

observes a fault and aborts the segment, i.e., for the rest of the segment,
Pk only sends empty messages.

2. Fault Detection: Every player Pi ∈ P \ X broadcasts the index qi of
the first failed reconstruction operation, respectively ⊥ if he successfully
completed the segment. If all players broadcast ⊥, then the evaluation of
the current segment succeeded

15 All output operations at the same level in the circuit can be executed in parallel.
16 It is legal for an honest player Pi to send the empty message ε to Pk, namely when

Pi has observed a fault in an earlier gate. Hence, Pk must accept the empty message
as valid.

326 Z. Beerliová-Trub́ıniová and M. Hirt

3. Fault Localization: Execute the following steps for the player Pk with
the smallest qk, for the failed reconstruction operation with index qk:
3.1 Every player Pi with {Pk, Pi} /∈ Δ sends the polynomial fi(x) =

L(f (1)
i , f

(2)
i , . . .) and all share-shares sji(x) = L(s(1)ji , s

(2)
ji , . . .) to Pk.

3.2 If for some Pi with {Pk, Pi} /∈ Δ, Pk did not receive si in Step 1.1, or the
provided polynomial fi(x) is inconsistent with si (i.e., fi(0) �= si), then
Pk broadcasts i, and the fault localization terminates with E = {Pk, Pi}.

3.3 Pk identifies two players Pi, Pj with {Pk, Pi} /∈ Δ and {Pk, Pj} /∈ Δ,
such that fi(j) �= sij ,17 and broadcasts (i, j, sij , fi(j)).

3.4 Both Pi and Pj broadcast a bit indicating whether or not they agree with
the values broadcasted by Pk. If Pi (respectively Pj) disagrees, the fault
localization terminates with E = {Pk, Pi} (respectively E = {Pk, Pj}).

3.5 As both Pi and Pj agree with sij respectively fi(j) as broadcasted by
Pk, and as fi(j) �= sij , either Pi or Pj delivered a wrong value to Pk. Pj

can use the information checking scheme to prove to Pk the correctness
of sij . However, there are no authentication tags for sij itself, but sij

is computed as a publicly known linear combination L of base sharings,
for which authentication tags exist (one authentication tag for all share-
shares xij of each segment), respectively which are Kudzu and hence
publicly known. Hence, Pj executes the protocol IC-Reveal for revealing
the provably correct share-shares xij of every base sharing x, and if
Pk accepts all invocations and the linear combination on the share-
shares yields sij , then Pk broadcasts i and E = {Pk, Pi}, otherwise, Pk

broadcasts j and E = {Pk, Pj}.

Lemma 11. If all base values are correctly 2D∗-shared and all multiplication
triples are correct and random, then with overwhelming probability, the circuit eval-
uation as described above is correct, robust and private. The protocol communicates
O((cIn2 + cMn2 + cRn

2 + cOn+ n4)κ) and broadcasts O(n3) field elements.

Proof. Once the base values are correctly 2D∗-shared, the computation phase
is purely deterministic. An honest player will never reconstruct a wrong secret:
He receives shares from all players he is not in dispute with (otherwise he does
not reconstruct at all), hence there are at least t + 1 correct shares from the
honest players which prevent him from reconstructing a wrong value. Hence, the
adversary cannot falsify the outputs of honest players, he can only prevent them
from reconstructing. In this case, a fault is detected, a new dispute is localized
and included in Δ, and the segment is repeat till eventually all honest players
reconstruct all their outputs.

In order to argue about the privacy of the protocol, we observe that share-
shares xij are revealed only when Pi and Pj disagree on some value sij , hence
either Pi or Pj is corrupted. By revealing these values, the adversary obtains no
additional information. ��
17 The existence of such a pair (Pi, Pj) is guaranteed due to the correctness of the base

2D∗-sharings.

Efficient Multi-party Computation with Dispute Control 327

7 The New MPC Protocol and Conclusions

The new MPC protocol consists of the three described phases:

Protocol MPC
1. Invoke PreparationPhase to prepare cM + cR random 2D∗-shared multiplica-

tion triples.
2. Invoke InputPhase to provide 2D∗-sharings of the cI inputs.
3. Invoke ComputationPhase to compute and reconstruct the outputs towards

the specified players.

Theorem 1. A set of n players communicating over a secure synchronous net-
work, can evaluate an agreed function of their inputs securely against an un-
bounded active adaptive adversary corrupting up to t < n/2 of the players with
communicating O(cIn2+cMn2+cRn

2+cOn+n5κ) field elements and broadcast-
ing O(n3) field elements, where cI , cM , cR, cO denote the number of input gates,
multiplication gates, random gates, and output gates, respectively.

Note that for large enough circuits, the costs for simulating the O(n3) broadcast
invocations are dominated by the normal communication costs, such that the
overall communication complexity is (up to a constant factor) the same as the
one of passively secure MPC protocols [BGW88].

However, for very small circuits, the O(n3) broadcasts are dominating
the overall costs. Note that even in this case, our protocol is substantially
more efficient than the most efficient previously known protocol for the same
model [CDD+99], which broadcasts Ω(n5) field elements per multiplication.

Acknowledgments

We would like to thank Micha Riser for the fruitful discussions, and the anony-
mous referees for their helpful comments.

References

[Bea91a] D. Beaver. Efficient multiparty protocols using circuit randomization. In
CRYPTO ’91, LNCS 576, pp. 420–432, 1991.

[Bea91b] D. Beaver. Secure multiparty protocols and zero-knowledge proof systems
tolerating a faulty minority. Journal of Cryptology, pp. 75–122, 1991.

[BGP92] P. Berman, J. A. Garay, and K. J. Perry. Bit optimal distributed consen-
sus. Computer Science Research, pp. 313–322, 1992. Preliminary version
in Proc. 21st STOC, 1989.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proc. 20th
STOC, pp. 1–10, 1988.

328 Z. Beerliová-Trub́ıniová and M. Hirt

[CCD88] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally
secure protocols (extended abstract). In Proc. 20th STOC, pp. 11–19,
1988.

[CDD+99] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Effi-
cient multiparty computations secure against an adaptive adversary. In
EUROCRYPT ’99, LNCS 1592, pp. 311–326, 1999.

[CDG87] D. Chaum, I. Damg̊ard, and J. van de Graaf. Multiparty computations
ensuring privacy of each party’s input and correctness of the result. In
CRYPTO ’87, LNCS 293, pp. 87–119, 1987.

[CW79] L. Carter and M. N. Wegman. Universal classes of hash functions. Jour-
nal of Computer and System Sciences, 18(4):143–154, 1979. Preliminary
version in Proc. 9st STOC, 1977.

[CW92] B. A. Coan and J. L. Welch. Modular construction of a Byzantine agree-
ment protocol with optimal message bit complexity. Information and
Computation, 97(1):61–85, 1992. Preliminary version in Proc. 8th PODC,
1989.

[DS82] D. Dolev and H. R. Strong. Polynomial algorithms for multiple processor
agreement. In Proc. 14th STOC, pp. 401–407, 1982.

[GHY87] Z. Galil, S. Haber, and M. Yung. Cryptographic computation: Secure
fault-tolerant protocols and the public-key model. In CRYPTO ’87, LNCS
293, pp. 135–155, 1987.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game — a completeness theorem for protocols with honest majority. In
Proc. 19th STOC, pp. 218–229, 1987.

[HM01] M. Hirt and U. Maurer. Robustness for free in unconditional multi-party
computation. In CRYPTO ’01, LNCS 2139, pp. 101–118, 2001.

[HMP00] M. Hirt, U. Maurer, and B. Przydatek. Efficient secure multi-party com-
putation. In ASIACRYPT ’00, LNCS 1976, pp. 143–161, 2000.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the pres-
ence of faults. Journal of the ACM, 27(2):228–234, Apr. 1980.

[PW92] B. Pfitzmann and M. Waidner. Unconditional Byzantine agreement for
any number of faulty processors. In Proc. 9th STACS, LNCS 577, 1992.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty pro-
tocols with honest majority. In Proc. 21st STOC, pp. 73–85, 1989.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22:612–
613, 1979.

[Yao82] A. C. Yao. Protocols for secure computations. In Proc. 23rd FOCS, pp.
160–164, 1982.

Round-Optimal and Efficient
Verifiable Secret Sharing

Matthias Fitzi1,�, Juan Garay2,��, Shyamnath Gollakota3,� � �,
C. Pandu Rangan3,†, and Kannan Srinathan4

1 Department of Computer Science, Aarhus University, Denmark
fitzi@daimi.au.dk

2 Bell Labs – Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974
garay@research.bell-labs.com

3 Department of Computer Science and Engineering, IIT Madras, India
shyam@cse.iitm.ernet.in, rangan@iitm.ernet.in

4 International Institute of Information Technology, Hyderabad, India
srinathan@iiit.ac.in

Abstract. We consider perfect verifiable secret sharing (VSS) in a syn-
chronous network of n processors (players) where a designated player
called the dealer wishes to distribute a secret s among the players in a
way that no t of them obtain any information, but any t + 1 players
obtain full information about the secret. The round complexity of a VSS
protocol is defined as the number of rounds performed in the sharing
phase. Gennaro, Ishai, Kushilevitz and Rabin showed that three rounds
are necessary and sufficient when n > 3t. Sufficiency, however, was only
demonstrated by means of an inefficient (i.e., exponential-time) protocol,
and the construction of an efficient three-round protocol was left as an
open problem.

In this paper, we present an efficient three-round protocol for VSS.
The solution is based on a three-round solution of so-called weak verifiable
secret sharing (WSS), for which we also prove that three rounds is a lower
bound. Furthermore, we also demonstrate that one round is sufficient for
WSS when n > 4t, and that VSS can be achieved in 1 + ε amortized
rounds (for any ε > 0) when n > 3t.

1 Introduction

Secret sharing [2, 9] is one of the most important primitives used for the con-
struction of secure multi-party protocols. In secret sharing, a “dealer” wants to
share a secret s among a set of n players such that no set of t players will be

� Supported by SECOQC, Secure Communication based on Quantum Cryptogra-
phy, under the Information Societies Technology Programme of the European
Commission, IST-2003-506813.

�� Work partly done while visiting the Centre de Recerca Matemàtica, Barcelona.
� � � Work partly done at Bell Labs India, Bangalore

† Work partly done while visiting Bell Labs, Murray Hill, supported by DIMACS.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 329–342, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

330 M. Fitzi et al.

able to reconstruct the secret while any set of t+ 1 or more players will be able
to reconstruct the secret by combining their shares.

Verifiable secret sharing [4] (VSS) extends ordinary secret sharing for the use
in presence of active corruption where an adversary may corrupt up to t players
in an arbitrary way. In VSS, it is required that no t players get any information
about the secret whereas the n players together can reliably reconstruct the se-
cret even if t of them deliver wrong information.

Prior Work. Secret sharing was introduced in [2, 9] together with a perfectly
secure solution for any number n > t of players in the presence of passive cor-
ruption, i.e., where no t players get any Shannon information about secret s and
any t+ 1 players get full information about s.

On the other hand, perfectly secure VSS is (efficiently) achievable if and only
if n > 3t [1]. When additionally given a broadcast channel among the players,
unconditionally secure VSS (with negligible error) can be achieved if n > 2t [8].
As a building block for the VSS protocol in [8], a “degraded” variant of VSS is
introduced called weak verifiable secret sharing (WSS), where the reconstructed
value may also be some default value, in case the dealer is corrupted.

VSS has been extensively studied. Of relevance to our work is the study of
the problem’s round complexity by Gennaro, Ishai, Kushilevitz and Rabin [5],
who give tight bounds for perfectly secure VSS. Specifically, it is shown that
for n > 4t one round is sufficient when t = 1 and that two rounds is a tight
bound for general t. For the optimal n > 3t, it is shown that three rounds is
sufficient as well as necessary; the protocol achieving it, however, requires expo-
nential time. The existence of efficient three-round protocols was left as an open
problem.

Our Contributions. In this paper, we solve this open problem by presenting
an efficient three-round protocol for VSS perfectly secure for n > 3t. The solu-
tion is based on a three-round protocol for WSS which we demonstrate to be
round optimal itself, by first showing three-round optimality of a problem that
we call weak secure multicast (WSM), and then showing a reduction to WSS.
Furthermore, we show that perfectly secure WSS is efficiently achievable in one
round when n > 4t (and t > 1). Finally, we present a simple protocol for per-
fectly secure VSS with amortized 1 + ε rounds for any ε > 0 when n > 3t —
which is of special interest for secure multi-party computation [1, 3], where a
large number of VSS protocols are run sequentially.

Organization of the Paper. We start in Section 2 by presenting the model
and definitions of the secret sharing problems we are considering. Section 3 is
dedicated to WSS, where we present round-optimal protocols for the cases n > 3t
and n > 4t. We derive the efficient round-optimal and player-optimal protocol for
VSS in Section 4. The amortized (1+ε)-round protocol is described in Section 5.
We conclude with some final remarks in Section 6. For ease of readability, the
round optimality proof for player-optimal WSS based on WSM is presented in
the appendix.

Round-Optimal and Efficient Verifiable Secret Sharing 331

2 Model and Definitions

We assume a set P = {P1, P2, · · · , Pn} of n players including dealer D, say,
D = P1, and assume the standard model of a fully connected network of pairwise
secure channels, plus a common broadcast channel, which can be used to force a
player to send the same message to all the other players. Furthermore, we assume
the presence of an active adversary who may corrupt up to t of the players in an
arbitrarily malicious way. Such a corrupted player is called dishonest whereas an
uncorrupted player is called honest. The adversary is modeled to be rushing (i.e.,
it can base the dishonest players’ messages for round r on the honest players’
messages of the same round), adaptive (the adversary can adaptively corrupt
players as the protocol proceeds), but non-mobile (over the whole period, the
adversary corrupts at most t different players). We call such an adversary a “t-
adversary.” We demand perfect security, i.e., that the resulting protocol has zero
error and that no Shannon information is leaked to the adversary.

We consider several forms of secret sharings with different security properties.
As in [5], the protocols for all of them have the same following two-phase struc-
ture: In a primary phase, the dealer D distributes a secret s, while in a second,
later phase, the players cooperate in order to retrieve it. More specifically, the
structure is as follows:

Sharing phase: The dealer initially holds secret s ∈ K where K is a finite field
of sufficient size; and each player Pi finally holds some private information
vi (possibly consisting of several field elements).

Reconstruction phase: In this phase, each player Pi reveals (some of) his
private information vi. Then, on the revealed information v′i (a dishonest
player may reveal v′i �= vi), a reconstruction function is applied in order to
compute the secret, s = Rec(v′1, · · · , v′n).

The sharing phase as well as the reconstruction phase may consist of several
communication rounds. We model communication along the lines of [5] where, in
each round, a player can privately send messages to other players and/or broad-
cast a message to all players. With respect to this model, the round complexity
of a secret-sharing protocol is defined as the number of such communication
rounds that the protocol requires in the sharing phase.

Common Requirements. The following requirements have to be satisfied by
all secret-sharing protocols we discuss in this paper.

Privacy: If D is honest, then the adversary’s view during the sharing phase
reveals no information about s. More formally, the adversary’s view is iden-
tically distributed under all different values of s.

Correctness: If D is honest, then the reconstructed value is equal to the
secret s.

Depending on the particular “strength” of the secret-sharing protocol, differ-
ent commitment properties are required.

332 M. Fitzi et al.

Verifiable Secret Sharing (VSS). An n-player protocol is called a (perfect)
(n, t)-VSS protocol if, for any t-adversary, the following condition holds in addi-
tion to the privacy and correctness conditions:

Commitment: After the sharing phase, a unique value s∗ is determined which
will be reconstructed in the reconstruction phase; i.e., s∗ = Rec(v′1, · · · , v′n)
regardless of the views provided by the dishonest players.

Weak Verifiable Secret Sharing (WSS). An n-player protocol is called a
(perfect) (n, t)-WSS protocol if, for any t-adversary, the following condition holds
in addition to the privacy and correctness conditions:

Weak commitment: After the sharing phase there is a unique value s∗ ∈ K
such that either s∗ or default value ⊥ /∈ K will be reconstructed in the
reconstruction phase; i.e., Rec(v′1, · · · , v′n) ∈ {⊥, s∗} regardless of the views
provided by the dishonest players.

Round Complexity and Efficiency. As in [5], we define the round complexity
of a secret-sharing protocol as the number of communication rounds in its sharing
phase — reconstruction can always be done in a single round by having each
player reveal all the information he has. A VSS protocol is efficient if the total
computation and communication performed by all honest players is polynomial
in n and the size of the secret.

3 Round-Optimal WSS

We begin by giving a three-round (n, t)-WSS protocol for n > 3t, which is
optimal, followed by a one-round (n, t)-WSS protocol for n > 4t.

3.1 Round-Optimal WSS for n > 3t

The protocol is based on the four-round (n, t)-VSS protocol for n > 3t given in
[5]; essentially, it consists of that protocol’s first three rounds, with a modified
reconstruction phase. Unlike the protocol in [5], where inconsistencies between
the shares of honest players are eliminated by using error correcting codes, we use
a different technique to detect the dishonest players who deliver false information
in the reconstruction phase.

We now present the protocol. The secret s is assumed to be taken from a finite
field K, |K| > n; additionally, 1, 2, ..., n are interpreted as (arbitrary) distinct
non-zero field elements. We call this protocol (n

3)-WSS.1

Sharing Phase. The sharing phase consists of the following three rounds:

1. D chooses a random bivariate polynomial F ∈ K[x, y] of degree at most
t in each variable, satisfying F (0, 0) = s. D sends to each player Pi the
(univariate) polynomials fi(x) = F (x, i) and gi(y) = F (i, y).

1 For simplicity; strictly speaking, it should be “n−1
3 �-WSS.”

Round-Optimal and Efficient Verifiable Secret Sharing 333

Player Pi sends to each player Pj an independent random “pad” rij

picked uniformly from K.
2. Player Pi broadcasts:

aij = fi(j) + rij (rij is the pad Pi sent to Pj)
bij = gi(j) + rji (rji is the pad Pi received from Pj)

3. For each pair aij �= bji, the following happens:
Pi broadcasts αij = fi(j)
Pj broadcasts βji = gj(i)
D broadcasts γij = F (j, i)

A player is said to be unhappy if the value which he broadcast does not
match the dealer’s value. If there are more than t unhappy players, dis-
qualify the dealer and stop.2 0

Reconstruction Phase. Every happy player Pi broadcasts his polynomials
fi(x) = F (x, i) and gi(y) = F (i, y).

Each player Pi now constructs a consistency graph G over the set of happy
players such that there exists an edge between Pj and Pk in G if and only if
fj(k) = gk(j) and gj(k) = fk(j). Since these polynomials are broadcast, every
player Pi constructs the same graph G.

Now each player Pi constructs a set CORE of players as follows. Initially, all
the players in G whose node degree is at least n − t are inserted into the set.
Next, players in CORE consistent with less than n − t other players in CORE
are removed. This process continues until no more players can be removed from
the set. If the resulting CORE set contains less than n − t elements then Pi

outputs ⊥ — otherwise, Pi reconstructs the polynomial F ∗(x, y) defined by any
t+ 1 players in CORE , and the secret s∗ = F ∗(0, 0) is reconstructed. 0
That finishes the description of protocol (n

3)-WSS. We now show that it is a
(n, t)-WSS protocol for n > 3t.

As suggested by the construction of graph G above, we say that (the polyno-
mials of) two players Pi and Pj are consistent if the corresponding values of their
polynomials (as opened in the reconstruction phase) match, i.e., if fi(j) = gj(i)
and gi(j) = fj(i). Similarly, we say a player Pi is consistent with bivariate
polynomial F (x, y) if fi(x) and gi(y) lie on F (x, y), i.e., fi(x) = F (x, i) and
gi(y) = F (i, y). We first prove the following about players in CORE .

Lemma 1. If |CORE | ≥ n − t, then all the players in CORE are consistent
with a polynomial fixed at the end of the sharing phase.

Proof. At the end of the sharing phase, all the honest happy players are con-
sistent with each other and their shares define a unique bivariate polynomial
FH(x, y) with degree at most t in both variables. To be in CORE , every player
Pi must be consistent with (at least) n − t players in CORE . Moreover, every
player in CORE is happy. So there are at least n− 2t ≥ t+ 1 honest players in
2 If necessary, the secret can be assigned a public default value when the dealer gets

disqualified.

334 M. Fitzi et al.

CORE with whom Pi is consistent. These t+ 1 players define a unique polyno-
mial fi(x) of degree at most t for Pi, which is in turn consistent with FH(x, y).
Thus, the polynomial provided by Pi must be fi(x). Therefore, every player in
CORE is consistent with FH(x, y). ��

Theorem 1. Protocol (n
3)-WSS is an efficient, three-round (n, t)-WSS protocol

for n > 3t.

Proof. Number of rounds and efficiency are evident. We prove the WSS proper-
ties in turn.

Privacy: We only need to consider the case when D is honest. Since D dis-
tributes consistent information, any pair Pi and Pj of honest players pub-
lishes the same mutual padded values. Thus, due to the randomness of the
pads, the adversary’s view is indistinguishable under different secrets.

Correctness: If D is honest then all (at least n − t) honest players will be
happy, and D will not be disqualified in the sharing phase. Since all honest
players are mutually consistent, they all end up in set CORE whereas a
dishonest player can only be in CORE by revealing his correct polynomials.
Thus the information revealed by the players in CORE is consistent with
polynomial F and s∗ = F ∗(0, 0) = F (0, 0) = s is reconstructed.

Weak commitment: We need only consider the case when D is dishonest. If
|CORE | < n− t then all the players compute s∗ = ⊥ and weak commitment
is satisfied. On the other hand, consider |CORE | ≥ n − t. In this case, it
directly follows from Lemma 1 that the secret constructed is the free term
of FH(x, y). ��

We now state a property of the above protocol which will be used in the cor-
rectness proof for our VSS protocol in the next section.

Lemma 2. If the dealer is not disqualified in the reconstruction phase of (n
3)-WSS,

then the polynomial F ∗(x, y) reconstructed in that phase is consistent with all the
honest happy players.

Proof. As proved in Lemma 1, the polynomial reconstructed at the end of the
reconstruction phase is FH(x, y). This FH(x, y) is defined as the polynomial
constructed by any t+1 honest happy players. Thus the polynomial constructed
is consistent with all the honest happy players. ��

Round Optimality. The proof of the following theorem is given in Appendix A.

Theorem 2. For n ≤ 4t (t > 1), there is no perfect (n, t)-WSS protocol requir-
ing less than three rounds.

3.2 Round-Optimal WSS for n > 4t

When n > 4t, perfectly secure WSS can be efficiently achieved in one round as
follows.

Round-Optimal and Efficient Verifiable Secret Sharing 335

Sharing Phase. D chooses a random bivariate polynomial F ∈ K[x, y] of degree
at most t in each variable satisfying F (0, 0) = s and sends to each player Pi the
polynomials fi(x) = F (x, i) and gi(y) = F (i, y). ��

Reconstruction Phase. Player Pi broadcasts the polynomials F (x, i) and
F (i, y) he received in the sharing phase. Player Pi constructs a consistency graph
G and a set CORE as in protocol (n

3)-WSS. Finally, if |CORE | < n − t, Pi

computes ⊥; otherwise, s∗ = F ∗(0, 0), where F ∗(0, 0) is the unique bivariate
polynomial of degree at most t in both variables defined by any t+ 1 players in
CORE . ��

Theorem 3. Perfectly secure WSS is efficiently achievable in one round when
n > 4t.

Proof. We prove that the above protocol achieves the three conditions of WSS.

Privacy: Privacy is obvious since the adversary only gets information about
at most t players’ shares.

Correctness: If the dealer D is honest then he sends correct shares to all the
players. Thus, at the end of the reconstruction phase, set CORE contains
(at least) n − t honest players, D is not disqualified, and the secret s is
reconstructed since any other secret s∗ can be consistent with at most 2t <
n− t players.

Weak commitment: We need only consider the case when D is dishonest. If
|CORE | < n − t, then all the players compute ⊥ and weak commitment is
satisfied. On the other hand, assume that |CORE | ≥ n− t. This implies that
there is a set C of at least n− 2t consistent honest players defining a unique
secret s∗. Out of set C at most t players can be consistent with a polynomial
defining a different secret s′ �= s∗. Thus at most |P \C|+t ≤ n−(n−2t)+t =
3t < n− t players overall can be consistent with secret s′ — implying weak
commitment on s∗. ��

4 Round-Optimal VSS for n > 3t

We now present an efficient three-round (n, t)-VSS protocol for n > 3t. Its round
optimality follows from the lower bound in [5].

We first give some of the intuition behind our protocol. Overall, we follow the
approach in [5] (and in the previous section), where the dealer first hides the
secret in a bivariate polynomial F (x, y), and each player Pi gets the respective
univariate polynomials F (x, i) and F (i, y) as his secret information. Then, every
pair of players compare their common shares by “blinding” them with a ran-
dom pad and then broadcasting them. In the reconstruction phase the random
pads are revealed, allowing the players to compute the shares and finally recon-
struct the secret. However, our twist is as follows. In order to guarantee that
each player Pi’s random pads get revealed consistently, Pi shares a random field
element using a round-optimal, player-optimal (n, t)-WSS protocol — namely,

336 M. Fitzi et al.

protocol (n
3)-WSS from the previous section, and chooses his pads as points on

the respective polynomial, as opposed to independently at random as in [5] and in
the previous section for WSS. Players whose (n

3)-WSS protocol instance fails, also
get disqualified from the main protocol; on the other hand, players whose proto-
col instance succeeds enable the reconstruction of all the pads, and in turn the
computation of the main shares. Using these multiple instances of an (n, t)-WSS
protocol also replaces the need for explicit error correcting codes, as required by
some of the VSS protocols (the efficient ones) in [5].

We now present our VSS protocol in detail. We will use superscript “W” to
denote the quantities corresponding to the (n

3)-WSS protocols that are run in
order to WSS the players’ random pads. We call the resulting VSS protocol
(n

3)-VSS.

Sharing Phase. The sharing phase consists of the following three rounds:

1. Dealer D chooses a random bivariate polynomial F ∈ K [x, y] of degree
at most t in each variable satisfying F (0, 0) = s. D sends to Pi the
polynomials fi(x) = F (x, i) and gi(y) = F (i, y).
Player Pi, i = 1, . . . , n, selects a random value ri and starts an instance
of (n

3)-WSS acting as a dealer in order to share ri by means of bivariate
polynomial FW

i (x, y) (FW
i (0, 0) = ri). We call this instance (n

3)-WSSi.
Round 1 of (n

3)-WSSi is run.
2. Player Pi broadcasts the following:

aij = fi(j) + FW
i (0, j)

bij = gi(j) + FW
j (0, i)

Concurrently, round 2 of (n
3)-WSSi, i = 1, . . . , n, also takes place.

3. For each pair aij �= bji the following happens:
Pi broadcasts αij = fi(j)
Pj broadcasts βji = gj(i)
D broadcasts γij = F (j, i)

Concurrently, round 3 of (n
3)-WSSi, i = 1, . . . , n, also takes place.

A player is said to be unhappy if the value that he broadcast does not match
the dealer’s value. If there are more than t unhappy players, disqualify D
and stop.

Local computation:

Let H denote the set of happy players. Remove from H each player Pi

who gets disqualified as the dealer in protocol instance (n
3)-WSSi. Now, if

|H| < n− t then disqualify D and stop.
For the remaining players, let HW

i denote the set of happy players in instance
(n

3)-WSSi. For each player Pi ∈ H, check that there exist at least n−t players
in H who are also in HW

i ; if not, remove Pi from H. Let us call this final set
CORESh := H. If |CORESh | < n− t then disqualify D and stop. 0

Round-Optimal and Efficient Verifiable Secret Sharing 337

Reconstruction Phase. For each Pi ∈ CORESh , run the reconstruction phase
of (n

3)-WSSi, concurrently.

Local computation: Now each player Pi constructs a set CORERec as follows.
Initially, CORERec := CORESh .

Remove from CORERec every player Pi such that the outcome of (n
3)-WSSi

equals ⊥.
For every Pi ∈ CORERec, use the values aij he broadcast in round two of
the sharing phase to compute

fi(j) = aij − FW
i (0, j), 1 ≤ j ≤ n. (1)

Interpolate these points. Check that the resulting polynomial fi(x) is a poly-
nomial of degree at most t. If not, remove Pi from CORERec.
Reconstruct the secret by taking any t+1 polynomials fi(x), Pi ∈ CORERec,
to obtain F ∗(x, y), and compute s∗ = F ∗(0, 0). 0

Lemma 3. If D is honest, then CORESh contains all the honest players.

Proof. First, since D is honest, all honest players are happy with respect to
F (x, y). Thus, initially, H contains all the honest players. Similarly, the set of
happy players corresponding to (n

3)-WSSi started by a honest player Pi will
contain all the honest players. Thus |HW

i | ≥ n− t and all the honest players will
be in H. Also, since all honest players are mutually consistent, an honest player
Pi is consistent with n− t players in H and thus Pi ∈ CORESh . ��

Lemma 4. If D does not get disqualified in the sharing phase then all the honest
players in CORESh are consistent with each other and, when |CORESh | ≥ n−t,
consistently define a unique polynomial FH(x, y) of degree at most t in each
variable. Furthermore, when D is honest, FH(x, y) = F (x, y).

Proof. Since the honest players use their pads faithfully there are no inconsisten-
cies between honest players in CORESh . Furthermore, if |CORESh | ≥ n−t, then
there are at least t+ 1 honest players in CORESh defining a unique polynomial
FH(x, y). Finally, in case the dealer is honest, it holds that FH(x, y) = F (x, y).

��

Lemma 5. If D does not get disqualified in the sharing phase then, at the end
of the reconstruction phase, there are at least t+ 1 honest players in CORERec.

Proof. In the reconstruction phase a player Pi gets removed from CORERec in
only two cases: 1) the reconstruction phase of (n

3)-WSSi results in ⊥, or 2) the
reconstruction phase of (n

3)-WSSi succeeds but the resulting polynomial fi(x)
is of degree larger than t. By the properties of WSS, both cannot happen with
respect to a honest player, and thus at least n−2t > t honest players in CORESh

remain in CORERec. ��

Lemma 6. If D does not get disqualified in the sharing phase, then any t + 1
players in CORERec define the same bivariate polynomial.

338 M. Fitzi et al.

Proof. If a dishonest player Pi remains in CORERec, then the reconstruction
phase of (n

3)-WSSi has succeeded. By Lemma 2 this implies that the reconstructed
polynomial FW

i (x, y) is consistent with all the happy honest players with respect
to (n

3)-WSSi. By Lemma 5 there are at least t + 1 honest players in CORERec

who, by Lemma 4, define a unique polynomial FH(x, y) of degree at most t
in both variables. Thus, every player remaining in CORERec is consistent with
FH(x, y), and the lemma follows. ��

Theorem 4. Protocol (n
3)-VSS is an efficient, perfectly secure three-round (n, t)-

VSS protocol for n > 3t.

Proof (sketch). We only have to consider the case when D is honest. The number
of rounds and polynomial-time computation are immediate. We prove the three
VSS properties in turn.

Privacy: Assume that, at the end of the reconstruction phase, the players in
A ⊂ P , |A| ≤ t, are corrupted. Let Viewk

A, 1 ≤ k ≤ 3, denote the adver-
sary’s view after step k of the sharing phase. Note that, for all Pa ∈ A, the
polynomials FW

a (x, y) are exclusively used in order to blind values already
known to the adversary, and therefore we can ignore these polynomials.
After step 2 of the sharing phase, the adversary holds (at most) the following
polynomials: F (x, a), F (a, y), FW

i (x, a), and FW
i (a, y), and it holds that,

for all Pi, Pj /∈ A, H
(
F (x, i)|View2

A
)

= log |K|, H
(
FW

i (j, x)|View2
A
)

=
H

(
FW

i (0, x)|View2
A
)

= log |K|. Furthermore, for Pi, Pj /∈ A, i �= j, the
polynomials FW

i (x, y) and FW
j (x, y) are independent.

In step 3, in addition, the polynomialsSi(x) = F (x, i)+FW
i (0, x) get revealed.

That is, each F (x, i) is blinded with an independent polynomial FW
i (0, x)

where H
(
FW

i (0, x)|View2
A
)

= log |K|. Thus, it is still the case that for any
Pi /∈ A, H

(
F (x, i)|View3

A
)

= log |K|, and therefore, H
(
F (0, 0)|View3

A
)

= log |K|; hence, privacy follows.
Correctness: We only consider the case when D is honest. By Lemma 3,

all the honest players will be in CORESh , thus |CORESh | ≥ n − t, and
the dealer is not disqualified in the sharing phase. By Lemma 4, the shares
of the honest players in CORESh define the dealer’s original polynomial
FH(x, y) = F (x, y). Obviously, all honest players remain in CORERec, and
by Lemma 6, s = F (0, 0) gets reconstructed from the shares of any t + 1
players in CORERec.

Commitment: If D is dishonest and does not get disqualified in the sharing
phase, then |CORESh | ≥ n−t and, by Lemma 5, at least t+1 honest players
from CORESh remain in CORERec. By Lemma 4, all honest players in
CORESh consistently define the same polynomial FH(x, y) after the sharing
phase. Thus, the t+ 1 honest players in CORESh ∩CORERec still uniquely
define FH(x, y) and, by Lemma 6, s∗ = FH(0, 0) gets reconstructed from
the shares of any t+ 1 players in CORERec. ��

Round-Optimal and Efficient Verifiable Secret Sharing 339

5 VSS in (1 + ε) Rounds

Depending on the particular application, minimizing the round complexity of a
stand-alone protocol might not always be the best way to optimize. In multi-
party computation, for example, where a large number of VSS protocols are
executed sequentially, it is useful to minimize the overall amortized round com-
plexity of the VSS instances.

A number m of sequential (n, t)-VSS executions can be easily achieved in
1 +O(1

m) amortized rounds by “deferring” the commitment as follows. Suppose
we have a k−round (n, t)-VSS protocol, and we need to execute m instances of it.
In an initial phase, dealerD (or all future dealers in the application, respectively)
shares (in parallel) a set of random elements r1, . . . , rm using the given (n, t)-
VSS protocol. The sharing phase of the j-th execution of the (n, t)-VSS protocol,
j = 1, . . . ,m then simply consists of the dealer broadcasting a correction term
cj = sj − rj , where sj is the secret to be shared in this instance. The correction
term cj can be handled in two different ways:

1. cj is incorporated in the reconstruction phase. That is, after the recon-
struction of random element rj , each player locally computes sj = rj + cj ;
or

2. the sharing is immediately “corrected” at the end of the sharing phase,
by having every player Pi compute F ′

k(x, i) = Fk(x, i) + ck and F ′
k(i, y) =

Fk(i, y) + ck.

Theorem 5. Any number m of sequential VSS protocols for n > 3t is efficiently
achievable in m + 2 rounds, thus implying 1 + ε amortized rounds per instance
for any ε > 0 when m is sufficiently large.

Proof. Using any k-round (n, t)-VSS protocol the above approach results in
m + k − 1 rounds overall, or 1 + k−1

m rounds per VSS. In particular, using
the round-optimal protocol from Section 4 results in 1 + 2

m rounds per VSS
instance. Thus, in order to achieve 1 + ε amortized rounds, it is sufficient to
choose m ≥ 2

ε . ��

6 Summary

In this paper we gave efficient three-round protocols for perfectly secure WSS
and VSS when n > 3t, and showed that there is no (n, t)-WSS protocol involving
less than three rounds when n ≤ 4t. Furthermore, we gave an efficient one-round
protocol for perfectly secure WSS when n > 4t, and demonstrated that perfectly
secure VSS can be achieved in (1 + ε) rounds when n > 3t.

The following table summarizes the tight bounds on the round complexity of
perfectly secure WSS and VSS as given in [5] and in this paper — where round
optimality is always achieved efficiently. (“—” stands for impossibility.)

340 M. Fitzi et al.

Protocol Threshold Number of rounds
n ≤ 3t —

WSS 3t < n ≤ 4t 3
4t < n 1
n ≤ 3t —

VSS 3t < n ≤ 4t 3
4t < n (t > 1) 2
4t < n (t = 1) 1

Note that, same as some (but not all) of the protocols in [5], although our
solution for VSS fulfills the standard VSS definition, it is not powerful enough
to allow for general multi-party computation. In particular, multiplication of
shared secrets is not directly possible since the sharing phase of two different
VSS invocations may end up in different CORESh sets.

Furthermore, note that, also as the protocols in [5], our VSS protocol satisfies
the stronger VSS definition in [7] (Definition 3.3.13) requiring that any set of
t + 1 honest players be able to reconstruct the shared secret. This condition is
satisfied because any set of t+1 honest players can reconstruct the WSS-shared
secrets of all players in CORESh .

Finally, it can be easily seen that our protocols also work with respect to
a (possibly corrupted) external dealer while still tolerating t corrupted players
among the “share holders.”

Acknowledgements

We thank the anonymous reviewers for TCC ’06 for their many helpful comments.

References

1. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing (STOC ’88), pages 1–10, 1988.

2. G. R. Blakley. Safeguarding cryptographic keys. In 1979 National Computer Con-
ference, volume 48 of AFIPS Conference proceedings, pages 313–317. AFIPS Press,
1979.

3. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure proto-
cols (extended abstract). In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing (STOC ’88), pages 11–19. ACM Press, 1988.

4. B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and
achieving simultaneity in thepresenceof faults. InProceedingsof the26thAnnual IEEE
Symposium on Foundations of Computer Science (FOCS ’85), pages 383–395, 1985.

5. R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The round complexity of
verifiable secret sharing and secure multicast. In Proceedings of the 33rd Annual
ACM Symposium on Theory of Computing (STOC ’01), pages 580–589, 2001.

Round-Optimal and Efficient Verifiable Secret Sharing 341

6. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In Proceedings of the
17th ACM Symposium on Principles of Distributed Computing (PODC ’98), pages
101–111, 1998.

7. O. Goldreich. Secure multi-party computation, final (incomplete) draft, version 1.4,
Oct. 2002.

8. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In Proceedings of the 21st Annual ACM Symposium on Theory of
Computing (STOC ’89), pages 73–85, 1989.

9. A. Shamir. How to share a secret. Commun. ACM, 22:612–613, 1979.

A Proof of Theorem 2

We show that for n ≤ 4t, perfect WSS is not possible in less than three rounds.
We do this along the lines of the impossibility proof for two-round VSS in [5].
We first introduce the problem of weak secure multicast (WSM) and show that
perfectly secure WSM is impossible in less than three rounds when n ≤ 4t.
Finally, we show that r-round WSS implies r-round WSM, thus proving the
theorem.

Weak Secure Multicast (WSM). Consider an n-player protocol among
player set P = {P1, . . . , Pn} wherein sender D ∈ P holds an input m and
each player in multicast set M ⊆ P (D ∈M) finally computes an output. Such a
protocol is called a (perfect) WSM protocol if, for any t-adversary, the following
conditions hold:

Privacy: If all players in M are honest then the adversary learns no informa-
tion about D’s input m.

Correctness: If D is honest then all honest players in M output m.
Weak Agreement: Even if D is dishonest, all dishonest players in M output

a value in {m∗,⊥}, where m∗ is an unique element in K and a distinguished
value ⊥ /∈ K.

Similarly to VSS, WSM is the “weak” variant of the secure multicast (SM)
problem formalized in [5], where the Agreement condition, demanding that all
the honest players output the same value even if the sender is dishonest, is
replaced by Weak Agreement above.

The proof of Theorem 2 follows by proving the impossibility of the following
problem and subsequently reducing it to related problems, the last one being
the existence of a two-round WSS protocol.

Lemma 7. There is no deterministic 3-player protocol satisfying the following
requirements:

1. The protocol is a (3, 1)-WSM protocol with M being the set of all players.
2. The protocol has three communication rounds, where only D speaks in the

first round.

342 M. Fitzi et al.

3. If all players are honest then the broadcast messages are independent of D’s
message m.

The proof of this lemma is identical to the proof of Lemma 7 in [5] for the
non-existence of a (3, 1)-SM protocol satisfying similar requirements.

Lemma 8. There is no two-round perfect (4, 1)-WSM protocol with M={P1, P2,
P3} (and D = P1).

Proof (sketch). The existence of such a protocol would imply the existence of
the protocol specified in Lemma 7. The proof is almost identical to that of
Lemma 6 for the impossibility of a two-round (4, 1)-SM protocol in [5]. The
minor modification is that it is based on our Lemma 7 (instead of their Lemma 7),
which accounts for the alternative output ⊥ of WSM; even though this outcome
avoids violation of weak agreement, it still violates correctness. ��

Lemma 9. There is no two-round perfect (4, 1)-WSS protocol.

Proof (sketch). Again, the proof of similar Lemma 3 (and thus of Lemma 5) of
[5], which reduces the impossibility of a two-round (n, t)-VSS protocol to the
impossibility of a two-round (n, t)-SM protocol, can be based on our Lemma 8,
directly implying this stronger lemma. ��

Finally, the proof of Theorem 2 follows from Lemma 9 by a standard player
partitioning and simulation argument.

Generalized Environmental Security
from Number Theoretic Assumptions

Tal Malkin1,�, Ryan Moriarty2,��, and Nikolai Yakovenko3,� � �

1 Department of Computer Science, Columbia University
tal@cs.columbia.edu

2 Department of Computer Science, UCLA
ryan@cs.ucla.edu

3 Google, Inc
yakovenko@google.com

Abstract. We address the problem of realizing concurrently compos-
able secure computation without setup assumptions. While provably im-
possible in the UC framework of [Can01], Prabhakaran and Sahai had
recently suggested a relaxed framework called generalized Environmental
Security (gES) [PS04], as well as a restriction of it to a “client-server”
setting based on monitored functionalities [PS05]. In these settings, the
impossibility results do not apply, and they provide secure protocols re-
lying on new non-standard assumptions regarding the existence of hash
functions with certain properties.

In this paper, we first provide gES protocols for general secure com-
putation, based on a new, concrete number theoretic assumption called
the relativized discrete log assumption (rDLA). Second, we provide se-
cure protocols for functionalities in the (limited) client-server framework
of [PS05], replacing their hash function assumption with the standard
discrete log assumption. Both our results (like previous work) also use
(standard) super-polynomially strong trapdoor permutations.

We believe this is an important step towards obtaining positive re-
sults for efficient secure computation in a concurrent environment based
on well studied assumptions. Furthermore, the new assumption we put
forward is of independent interest, and may prove useful for other cryp-
tographic applications.

1 Introduction

1.1 Background and Motivation

Since its beginnings a few decades ago, theoretical cryptography has developed
by formalizing the intuitive notions of security, and basing the strength of pro-
tocols realizing these definitions on widely accepted complexity assumptions.

� Supported by NSF Early Career Development (CAREER) Grant CCF-0347839.
�� This work was done while the author was at the department of Computer Science,

Columbia University.
� � � This work was done while the author was at the department of Computer Science,

Columbia University.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 343–359, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

344 T. Malkin, R. Moriarty, and N. Yakovenko

Much success was achieved in defining and realizing secure multi-party compu-
tation, arguably the most general and important task in cryptography, in vari-
ous ‘stand-alone’ settings. As our understanding develops side by side with new
emerging needs and applications for cryptography in uncontrolled, distributed
environments such as the Internet, new goals and challenges arise. An impor-
tant current direction in cryptography is to model and realize secure protocols
operating in such open settings, requiring concurrent composition. Intuitively,
one would like to have protocols that will remain secure even if they are com-
posed arbitrarily with other protocols. Such general composability is often what
is required in practical settings. It is important to continue to base this new
developing theory on well studied and scrutinized complexity assumptions.

The UC/ES Framework. Perhaps the most well known definition of security
in a composable setting is the Universally Composable (UC) Security paradigm
of Canetti [Can01] (an alternative paradigm was proposed by Pfitzmann et. al.
[PW00, BPW04]).

The UC security notion is based on the (by now standard) ideal world /
real world simulation paradigm. Very roughly, an ideal world is defined where
functions are computed by a trusted party. For a protocol to be secure, we
require that for every adversary A operating in the real world under a certain
environment, there exists an ideal world adversary S (a simulator), working
in time polynomial in that of A, that can simulate everything that happened
in the real world under A. This should hold under any environment (which
models anything else going on in the world, provides inputs to all parties, watches
their interactions, etc). Hence, the UC security notion is also referred to as the
Environmental Security (ES) notion.

A major advantage of this framework is that, according to the UC Theo-
rem [Can01], protocols that are secure in this model remain secure even when
composed concurrently and arbitrarily (hence the name universally composable
security). In particular, consider an arbitrary protocol π which uses some ideal
calls (using a trusted party) to compute certain functions. Replacing the ideal
calls by UC-secure protocols computing the functions is safe in the sense that
whatever an adversaryA can achieve, can be simulated in polynomial time within
the ideal calls model.

Unfortunately, while this UC/ES framework is very appealing and strong
in terms of the provided security guarantees, it turned out to be too strong.
Indeed, many of the most basic cryptographic tasks (such as commitment or
secure computation) were proven impossible to realize in this framework, unless
additional “trust” assumptions are being made [Can01, CF01, DG03, CKL03,
Lin03, Lin04] (e.g., an honest majority, or a common random string available to
all parties and selected by a trusted party).

The gES Framework. Recently, Prabhakaran and Sahai [PS04] introduced a
new model of security, generalized Environmental Security (gES). Roughly, this
model relaxes the security requirements of the UC/ES setting so as to avoid the
impossibility results, while still rendering the model meaningful enough that a

Generalized Environmental Security from Number Theoretic Assumptions 345

protocol secure in this model intuitively implies meaningful guarantees on its
actual security if employed “in real life”. We discuss the meaningfulness of these
guarantees below. This framework is exciting and promising, as it allowed, for the
first time, to realize multi-party computation of general functionalities without
any setup assumptions, while maintaining security under a pretty general form
of composability (see discussion below).

Their idea, roughly, was to perform a thought experiment where the adver-
sary in the ideal world (the simulator) is given super-polynomial computational
power (following the approach suggested by Pass [Pas03]). To allow for secure
composability, the super-polynomial power in the ideal world is given through a
super polynomial angel (oracle), which can answer queries based on its knowl-
edge of who the corrupted parties are. This is the gES notion of security. We
refer the reader to [PS04] for more details, but remind that the angel is only
required as a tool for the security proof, and is not needed for protocol exe-
cution. For a particular angel Γ , the resulting security model is called Γ -ES.
Using this model, [PS04] showed how to achieve secure multi-party computation
of any functionality, against a static adversary (one who cannot corrupt parties
adaptively), and without any setup assumptions. More specifically, it is shown
in [PS04] that

1. For every Imaginary Angel Γ , Γ -ES protocols are universally composable.
2. There exists an Imaginary Angel Ψ (under new complexity assumptions)

such that there are Ψ -ES protocols for commitment, ZK proofs and any
PPT functionality.

This result is very important towards the ultimate goal of reasonable, con-
currently secure protocols, without setup assumptions. However, the result of
[PS04] is based on a new, non-standard assumption, requiring the existence of
a hash function with certain properties regarding distributions of collisions on
inputs with the same prefixes (see further discussion in Section 4.1).

Perhaps the most important open problem left in [PS04] is to realize such se-
cure computation without setup assumptions relying on simpler, more standard,
easier to analyze, complexity assumptions. Our work provides a big step in this
direction.

Very recently (and independently of our work), Barak and Sahai [BS05] have
also addressed this problem, and showed how to realize such secure computation
(again under a relaxed model where the simulator is super polynomial in the real-
world adversary), using reasonably standard assumptions. Namely, assuming the
existence of a hash function collection that is collision resistant with respect to
super polynomial adversaries, and trapdoor permutations secure against super
polynomial adversaries. The main advantage of our solutions, as we shall see,
is their simplicity, which will hopefully be useful towards practical implemen-
tations, and more importantly, towards distilling a better understanding of this
security model, it’s meaning, advantages, and limitations.

Finally, we touch upon one more recent framework. Recently, Prabhakaran
and Sahai [PS05] suggested a relaxation of gES, introducing Monitored function-
alities and Client-Server Computation. This relaxation aims at achieving secure

346 T. Malkin, R. Moriarty, and N. Yakovenko

computation (alas, of a limited class of functionalities) with weaker assumptions,
simpler, and more efficient protocols. We do not describe or motivate this frame-
work here, except to note that the assumptions used are still non-standard and
hard to work with. On the other hand, the functionalities that can be realized,
while limited, avoid the impossibility results in the standard UC model, and thus
provide an interesting advance.

Why is Security in the gES Framework Meaningful? Before presenting
our results, we discuss the meaning of security and composability in the gES
framework which we use (the same discussion applies to the framework of [BS05]
which also uses super polynomial simulation).

In terms of secure computation of a given function, it can be argued (see
[PS04, BS05]) that for most applications of secure computation, the ideal model
is still “ideal enough” (or “secure enough”) even when the adversary is allowed to
run in time that is bounded by a specific super polynomial function (depending
on the hardness assumption used).1 Thus, proving that any adversary in the real
world can be simulated by such a (strong) ideal model adversary, still provides
a meaningful notion of security.

However, it is important to understand the implications of what exactly is
guaranteed (and not guaranteed) by the theorem proving universal composability
in this framework (be it Γ -security for some angel Γ as used in [PS04] and in
this paper, or the security notion suggested by [BS05]). What is guaranteed is
that, given any protocol secure according to the notion at hand, the protocol
remains secure even when composed in an arbitrary manner with any other
arbitrary protocols. But, no guarantees are made for protocols that are not
secure according to the notion at hand.

In particular, consider a protocol π which is not secure according to this no-
tion, but enjoys some other weaker security features (e.g., the protocol has some
security guarantee in the ideal calls model when the adversary is polynomial
time bounded). Now, composing this protocol with other protocols within the
new framework (e.g., replacing ideal calls to a function f with a Γ -ES secure
protocol for f), may break the original (weaker) security guarantee that π had.
Indeed, all we know is that anything that happens with adversary A can be
simulated in the ideal calls model with an adversary S that has access to the
(super-polynomial) Γ . While the protocol for f was Γ -ES secure, Γ (which is
used only as a tool in the analysis) may help “break” some other sub-protocol
in π.2 In this sense, the notion of composability guaranteed by the general the-
orems, is not completely “general composition” as defined by [Lin03].

An argument can be made that one cannot maintain “all possible weak secu-
rity properties” of insecure protocols under composition (it’s not even clear how
1 In fact, in many applications, the ideal model is such that even a computationally

unbounded adversary cannot cause damage.
2 In fact, π may have been designed specifically with this goal in mind, following a

“chosen protocol attack” [KSW97]. For example, if Γ is the one used in this paper,
namely providing discrete logs (breaking DLA) relative to some primes, π could
contain a part that relies on the DLA for an appropriate prime.

Generalized Environmental Security from Number Theoretic Assumptions 347

to define this), and that the (or a) right notion of security is one that guarantees
security to those who use it, while insecure protocols naturally will remain inse-
cure under composition. Moreover, one can argue that this is also the case for the
standard UC-security framework: security under composition is only guaranteed
when composing protocols that were UC-secure to begin with.3 On the other
hand, it seems clear (historically, intuitively, and practically), that security in
an ideal calls model against a polynomial time bounded adversary (the notion
of security used for UC) is an extremely natural and important security notion.
It may be reasonable to assume that anything that is less secure than that is
completely insecure (and thus nothing needs to be preserved under composition
for protocols that are not secure according to this notion). For sure, it would be
desirable to maintain this security property for protocols even when composed
with other protocols in a stronger model such as Γ -ES security. It is important
to note that this is, unfortunately, not the case.

At this point we leave the philosophical discussion about the general direction
that [PS04] initiated, and [BS05] and the current work follow, and continue to
describe our results.

1.2 Our Results

We provide an important step towards realizing gES with standard number
theoretic assumptions that are concrete, natural, easier to study and analyze, or
indeed refute.

First, we provide an instantiation of the assumptions used by [PS04], based on
a new assumption, which we call the relativized discrete log assumption (rDLA),
as well as a standard (strong) assumption of trapdoor permutations (TDP) se-
cure against super polynomial adversaries. The details of these assumptions are
discussed later in the paper. In particular, we obtain Ω-ES protocols for arbi-
trary functionalities against static adversaries, with no setup assumptions (here
Ω is our imaginary angel, and the security is based on the rDLA). While non-
standard, the rDLA is simple to state (intuitively, it says that the DLA over
a certain group holds even in the presence of oracles breaking the DLA for
other groups), and strictly algebraic/number-theoretic in nature (we work over
subgroups of prime order of safe primes, although our assumption and protocols
could be considered over other groups). We believe the assumption is easy to un-
derstand and think about, and it seems quite reasonable.4 Since this assumption
can be framed as an instantiation of the original [PS04] assumption (through a
realization of their hash function), our work simplifies and ’cleans’ the previous
3 For example, if a protocol π in the ideal calls model maintained some (weak) notion

of security against adversaries bounded by quadratic running time, replacing an
ideal call to some f by a UC-secure protocol for f may break that property, as the
ideal model adversary in the UC framework is allowed polynomial running time.

4 We do not claim to be experts in number theory, although several other people
that we asked also found the assumption reasonable. Further, the same somewhat
philosophical arguments on the plausibility of the assumptions made in [PS04] apply
here as well, except that our assumptions are easier to try to attack.

348 T. Malkin, R. Moriarty, and N. Yakovenko

construction, and helps bring the gES model and the [PS04] protocols under
more scrutiny, hopefully towards helping to strengthen our belief in its secu-
rity. We also note that while the [BS05] construction relies on more standard
assumptions, and in this sense subsumes our results, our resulting protocols are
cleaner, simpler, and hopefully a step towards practically efficient concurrently
composable protocols.

Second, we provide an instantiations of the assumptions used by [PS05], based
on the standard discrete log assumption (DLA), as well as a standard (strong)
assumption of TDP secure against super polynomial adversaries. This allows us
to obtain, like [PS05], simpler protocols for a limited class of “server-client” func-
tionalities. Perhaps more importantly, this yields the first results for concurrently
secure computation without setup assumptions, under standard computational
assumptions.

In sum, our work addresses the arguably most important problem left open
by the recent [PS04] pioneering work, and we hope that it provides a useful
step towards achieving, or at least understanding, the “holy grail” in this field.
Moreover, it provides a significant improvement of the [PS05] results, replacing
a new and unstudied assumption by the completely standard DLA. Finally,
we believe rDLA, our new assumption, is worth studying independently of the
current context, and is likely to find other cryptographic applications.

2 Preliminaries

We do not provide here formal definitions of the gES and related models, and
refer the reader to the original papers [PS04, PS05] for definitions (as well as
further justifications regarding the meaningfulness of the security model).

In all our protocols we use k as the security parameter, and consider func-
tionalities of up to a polynomial n number of parties.

We assume all the parties have unique IDs, which may be adversarially chosen
as long as they adhere to the legal format. In this paper, the IDs are of the form
q where q is a safe prime, namely q = 2p+ 1 for a prime p (p is called a Sophie
Germain prime).

All adversaries considered in this work are PPT, non-uniform, and static
(namely choose the set of parties to corrupt at the onset of computation).

For two distributions X and Y we write X ≈ Y to denote that they are
indistinguishable by PPT circuits (with respect to the security parameter k).

3 Our Assumptions

In this section we summarize the assumptions that we will use for our results.
Section 3.2 describes the rDLA assumption that is new to our work. Section 3.1
describes other assumptions that we will use, which are standard assumptions.
The assumptions previously used by [PS04] and [PS05] appear in Section 4.1
and Section 5.1.

Generalized Environmental Security from Number Theoretic Assumptions 349

The assumptions we use are related to the discrete log assumption (DLA),
which is commonly assumed for different groups. We state our assumptions for
subgroups of prime order of Z∗

q , specifically for the subgroup G of the quadratic
residues, when q = 2p+ 1 is a safe prime (this can be somewhat extended).

3.1 Standard Assumptions

We sketch these assumptions without full formal details.

The Discrete Log Assumption (DLA). For any PPT adversary A, consider the
following probabilistic experiment: choose a random safe prime q = 2p + 1 of
length k, let G be the subgroup of order p (all quadratic residues) of Z∗

q , let g
be a generator of G, and choose a random y ∈ G. Then, the probability that
A(q, g, y) = x ∈ Z∗

p such that y = gx is negligible.

The Discrete-Log-Safe Trapdoor Permutation Assumption (DLS-TDP). For n
polynomial in the security parameter k, there exists a family of trapdoor per-
mutations over {0, 1}n, that remain secure against adversaries with access to an
oracles solving discrete logarithms in the subgroups of Z∗

q , for safe primes q of
size k.

Note that the above assumption is implied by the (more standard assumption
of) existence of trapdoor permutations secure against adversaries with super
polynomial power 2nε

. Indeed, if such strong TDP exist, we can choose n = k1/ε.
Then in time 2k the discrete log problem can be solved, but the TDP remains
secure, implying the DLS-TDP assumption.

3.2 The Relativizing Discrete Log Assumption (rDLA)

Let q = 2p+1 be a safe prime of size k, and let G be the subgroup of size p. Then
the discrete log problem over G is hard (i.e., no PPT adversary can compute
discrete logs with non-negligible probability), even when the adversary has access
to oracles that solve the discrete log problem for any input in any other group
defined by a safe prime q′ �= q of size k.

Intuitively, the rDLA assumes some sort of “non-malleability” among different
groups, asserting that being able to take discrete logs in all other groups of the
same size, will not help an adversary take discrete logs in the given group.

4 Achieving gES

In this section we will show how to use rDLA and DLS-TDP to realize secure
multi-party computation (for static adversaries) in the gES framework, without
any setup assumptions. We do that by showing an instantiation of the assumed
hash function in [PS04], proving it satisfies the required properties, and present-
ing the resulting Angel and protocols for general secure multi-party computation.

350 T. Malkin, R. Moriarty, and N. Yakovenko

4.1 The Assumptions and Angel of [PS04]

The constructions of [PS04] rely on the following assumptions5:
Assume there exists a hash function H : {0, 1}k → {0, 1}l. The input to H is

of the form (μ, r, x, b) ∈ J × {0, 1}k1 × {0, 1}k2 × {0, 1}, where J is the set of
IDs of the parties (each party is assumed to have a unique ID, possibly chosen
adversarially), and k1, k2, and l are all polynomial in k. It is assumed that H
satisfies the following.

A1 (Collisions and Indistinguishably): For every μ ∈ J and r ∈ {0, 1}k1, there
is a distribution Dμ

r over {(x, y, z)|H(μ, r, x, 0) = H(μ, r, y, 1) = z} �= φ, such
that

{(x, z)|(x, y, z) ← Dμ
r } ≈ {(x, z)|x← {0, 1}k2, z = H(μ, r, x, 0)}

{(y, z)|(x, y, z) ← Dμ
r } ≈ {(y, z)|y ← {0, 1}k2, z = H(μ, r, y, 1)}

Further, even if the distinguisher is given sampling access to the set of dis-
tributions {Dμ′

r′ |μ′ ∈ J , r′ ∈ {0, 1}k1}, these distributions still remain indis-
tinguishable. (Intuitively, this assumption states that there are collisions in
the hash function, which are indistinguishable from a random hash of a 0 or
a 1).

A2 (Difficult to find collisions with same prefix): For all PPT circuits M and
every id μ ∈ J , for a random r ← {0, 1}k1, probability that M(r) outputs
(x, y) such that H(μ, r, x, 0) = H(μ, r, y, 1) is negligible. This remains true
even when M is given sampling access to the set of distributions {Dμ′

r′ |μ′ �=
μ, r′ ∈ {0, 1}k1}. (Note that without this last requirement, insisting that find-
ing collisions remains difficult even when given sampling access to collisions
for other μ′, a hash function satisfying these properties could be constructed
under standard assumptions).

Additionally, [PS04] also rely on the following assumption:

A3 There exists a family of trapdoor permutations T over {0, 1}n, which remains
secure even if the adversary has sampling access to Dμ

r for all μ and r.

As discussed above (and in [PS04]), A3 can be replaced by the (stronger, but
more standard and natural looking) assumption of TDP secure against super-
polynomial adversaries.

The Angel Ψ . [PS04] use the following imaginary angel Ψ . On query (μ, r), Ψ
checks whether μ is one of the corrupted parties. If so, Ψ outputs a sample from
Dr

μ. If not, Ψ returns ⊥.

4.2 Our Hash Function

We propose the following hash function H0, point its correspondence to the
[PS04] hash function, and prove that (under our assumptions) it realizes their
required assumptions A1,A2,A3.
5 This text is extracted almost verbatim from [PS04].

Generalized Environmental Security from Number Theoretic Assumptions 351

Defining H0. H0 : {0, 1}k → {0, 1}l is defined as follows. The input to H0 is
of the form (q, g0, g1, x, b), where:

– q = 2p+ 1 is a safe prime (namely, p is a prime as well) of length k1, where
k1 is polynomially related to k. (This corresponds to the party ID μ).6

– g0, g1 are generators of G = QR(Z∗
q). Equivalently, each of g0, g1 is a

quadratic residue not equal to 1 in Z∗
q . (This corresponds to r).

– x ∈ Z∗
p

– b ∈ {0, 1}.

The output of H0 is then defined as:

H0(q, g0, g1, x, b) = gx
b mod q.

We note that it is easy to efficiently check whether the input is of the correct
form, by using primarily testing, and testing whether gi is a quadratic residue
by computing its Legendre symbol. It is also easy to generate inputs to H0;
Choosing random generators g0, g1 of the QR subgroup can be done by simply
choosing a random element of Z∗

q and squaring it. Choosing a safe prime q is
easy assuming that safe primes (or Sophie Germain primes) are dense.

Satisfying A1, A2 and A3. We next show that, instantiating H with H0, A1
is satisfied unconditionally, A2 is satisfied if rDLA holds, and A3 is satisfied if
the DLS-TDP assumption holds.

Lemma 1. H0 satisfies A1.

Proof. We need to show that for all safe primes q of size k1 and all g0, g1 �= 1
quadratic residues in Z∗

q , there exists a distribution Dq
g0,g1

over {(x, y, z)|gx
0 =

gy
1 = z mod q}, such that

{(x, z)|(x, y, z) ← Dq
g0,g1

} ≈ {(x, z)|x← Z∗
p , z = gx

0 mod q}
{(y, z)|(x, y, z) ← Dq

g0,g1
} ≈ {(y, z)|y ← Z∗

p , z = gy
1 mod q}

We take Dq
g0,g1

to be a distribution that outputs (x, y, z) where x ∈ Z∗
p is chosen

at random, z = gx
0 mod q, and y ∈ Z∗

p is the unique element satisfying z =
gy
1 mod q. Then, it is clear that the above distributions are identical (and in

particular indistinguishable for any distinguisher, even if given sampling access
to other Dq′

g′
0,g′

1
). ��

Lemma 2. If rDLA holds, then H0 satisfies A2.

Proof. We need to prove that, informally, for every safe prime q of size k1, and
for randomly generated g0, g1, it is hard to output a collision (x, y) such that
gx
0 = gy

1 . This should hold even for an adversary with access to such collision

6 As usual, we consider the party IDs to be unique, and possibly adversarially chosen,
subject to the required format.

352 T. Malkin, R. Moriarty, and N. Yakovenko

distributions for other safe primes q′ of length k1. Indeed, any PPT circuit M
that outputs collisions for q (given random g0, g1) with non-negligible probability,
can be converted to a PPT M ′ which finds the discrete log in the subgroup G of
quadratic residues with non-negligible probability. Specifically, given a generator
g and a random element z ∈ G, M ′ can proceed by choosing g′ = gr for a random
r, and running M(g′, z). If M outputs a collision (x, y) such that g′x = zy, M ′

can output rxy−1 mod p. If such an M exists, this contradicts the DLA for
the corresponding subgroup of Z∗

q . If there is such an M that uses access to

distributions Dq′

g′
0,g′

1
for q′ �= q, since these distributions can easily be simulated

using an oracle that provides discrete logarithms in the QR subgroup of Z∗
q′ , this

contradicts the rDLA. ��

Lemma 3. If the DLS-TDP assumption holds, then A3 holds.

Proof. This follows immediately from the fact that for all safe primes q and
subgroup generators g0, g1, providing collisions (x, y, z) such that gx

0 = gy
1 = z is

equivalent to providing the discrete logarithm of g0 with respect to g1. ��

4.3 Our Angel Ω

Following the Γ −ES Angel model, we use a super-polynomial imaginary angel
we call Ω, that breaks the security of already corrupted parties. Specifically, Ω
is the following. On a query (q, g0, g1) (of the usual format), Ω checks whether
q is the ID of one of the corrupted parties. If so, Ω returns a such that g0 = ga

1
mod q (that is, return the discrete log of g0 with respect to g1). If q is the ID of
a party that is not corrupted, Ω returns ⊥.

We remark that we could have used the imaginary angel Ψ from [PS04], in-
stantiated with our hash function H0. Then, the resulting imaginary angel would
have outputted a distribution of collisions for the given q, g0 and g1, instead of
the discrete logarithm a. These outputs are clearly equivalent, and we chose to
present our angel Ω as above since it is a somewhat simpler, cleaner choice.

4.4 Putting the Pieces Together: Secure Multi-party Computation
in the Ω-ES Model

We have shown how to realize the hash function, angel, and assumptions required
for the constructions of [PS04] using the number theoretic assumption rDLA, and
the DLS-TDP (or TDP secure against super polynomial adversaries). This allows
the main result from [PS04], namely general secure multi-party computation
secure against static adversaries without any setup assumptions, to go through
in our setting.

Theorem 1. If rDLA and the DLS-TDP assumption hold, there is a protocol
that Ω-ES realizes any multi-party functionality against static adversaries.

Generalized Environmental Security from Number Theoretic Assumptions 353

Functionality FC̃OM

The parties are sender C and receiver R, with adversary SΩ.
The security parameter is k, and qC , qR are safe primes of size
k1 polynomial in k.
COMMIT PHASE:

1. FC̃OM picks random quadratic residues g0, g1 ← QR(qR)
and sends them to C.

2. FC̃OM receives c from C.
3. FC̃OM sends the message COMMIT to R.

REVEAL PHASE:

1. FC̃OM receives (b, x) from C.
2. FC̃OM checks if c = gx

b . If so, then send message
(REVEAL,b) to R and adversary SΩ .

Fig. 1. The basic commitment functionality FC̃OM

Proof. This follows immediately from the previous sections, together with The-
orem 3 in [PS04]. All of the protocols necessary for the proof are instantiated
directly and the proofs follow from the realization of the assumptions. ��

For illustration, and some self-containment, we sketch the general outline of the
secure multi-party computation protocol, and present the resulting construc-
tion of the basic building blocks, the functionality FC̃OM (in Figure 1) and the
protocol BCOM (in Figure ??) that realizes it, within our framework.

Basic Commitment Semi-Functionality FC̃OM. Following the construction from
[PS04], we first implement the basic IDEAL commitment semi-functionality
FC̃OM

7. We instantiate the REAL protocol BCOM from [PS04] with our hash
function and then prove that BCOM Ω-ES realizes the semi-functionality FC̃OM.
Since FC̃OM is not fully ideal, we need to prove that the commitment is binding
separately.

With the help of the Ω angel, for every PPT adversary AΩ , we can demon-
strate a PPT simulator SΩ such that no PPT environment can distinguish be-
tween the REAL interaction with AΩ, and the IDEAL interaction with SΩ. This
proves that BCOM is an Ω-ES realization of FC̃OM.

To show that the semi-functionality FC̃OM is binding for a corrupt sender C
for any environment, we rely upon the rDLA. We show a polynomial reduction
from the problem in which a machine M breaks the binding of the commitment
scheme FC̃OM, to a problem where an adversary uses M to break the security
of the rDLA. By assumption, the later is impossible with better than negligible
probability, so the commitment is binding.
7 A semi-functionality is one that is not fully ideal, therefore its ideal properties must

be proved separately. See [PS04]

354 T. Malkin, R. Moriarty, and N. Yakovenko

Protocol BCOM

The parties are sender (committer) C and receiver R. The se-
curity parameter is k, and qC = 2pC + 1, qR = 2pR + 1 are safe
primes of size k1 polynomial in k.
COMMIT PHASE:

1. R picks random quadratic residues g0, g1 ← QR(qR) and
sends them to C.

2. C chooses x ← Z∗
pR

and computes c = gx
b . C requests FENC

to send c to R.
3. R receives c from FENC and accepts the commitment.

REVEAL PHASE:

1. C requests FENC to send (b,x) to R, and R receives.
2. R checks if c = gx

b . If so, he accepts b as the reveal.

Fig. 2. The basic commitment protocol BCOM that Ω-ES realizes FC̃OM

Building the Rest Of the Tools. We follow [PS04] directly to build the rest of
the tools need for secure multi-party computation. In the FC̃OM-hybrid model
we build a multi-bit commitment semi-functionality F∗

C̃OM
8 and a zero knowl-

edge semi-functionality F
Z̃K

, with corresponding realizations BCOM∗ and BZK.
Proving that that these protocols realize their functionalities does not require
the use of angels. The angel Ω is only only to prove the realization of the basic
commitment semi-functionality.

The protocols BCOM∗ and BZK are then used to build the protocol COM,
realizing the standard (fully ideal) commitment functionality FCOM. In order
to realize FCOM, however, we need to use the DLS-TDP assumption. In the
FCOM-hybrid model, there are known protocols for zero knowledge and for a
broadcast channel. The zero knowledge functionality FZK has a realization due
to Canetti and Fischlin [CF01]. The broadcast channel functionality FBC is due
to Goldwasser and Lindell in [GL02]. The proof for both of these realizations are
information theoretic, and so they hold in the Ω-ES model, and do not rely on
angels.

With the help of FCOM, FZK and FBC , we can now realize the protocol
OM-CP for the ideal functionality for one-to-many commit-and-prove, F1:M

CP .
Again, the proof of this construction does not rely upon the existence of
angels.

Now we have all of the tools needed to perform general multiparty computa-
tion against static adversaries.
8 In our model we could also use a Pedersen commitment for the multi-bit commit-

ment, but we felt that our single bit commitment was easier to understand and that
our proofs are much simpler if we just instantiate the hash function from [PS04],
rather than create completely new protocols. Using the Pedersen commitment could
be of independent interest.

Generalized Environmental Security from Number Theoretic Assumptions 355

Secure Multi-Party Computation. We can now build general MPC following
[CLOS02, PS04]. The proofs in [CLOS02] are information theoretic and will
therefore carry over to the Ω-ES model.

Following the result of Lemma 2 in [PS04], using the DLS-TDP assumption,
we can create a protocol for any functionality F that is secure against all semi-
honest static adversaries. A full explanation appears in [CLOS02].

Now following Lemma 3 in [PS04], we know there exists a compiler that can
turn any protocol secure against semi-honest static adversaries into a protocol
secure against all static adversaries. The proof relies on having access to a func-
tionality for one-to-make commit-and-prove. Since we have the protocol OM-CP
that Ω-ES realizes one-to-many commit-and-prove functionality F1:M

CP , we now
have a way of performing any multi-party computation.

5 Monitored Functionalities and Client-Server
Computation Based on DLA

In [PS05] Prabhakaran and Sahai were able to show how to do any multi-party
computation in a “client server model” called “client-server computation”. This
work is done in the UC/ES framework, but there are many limitations on this
model. In the model one party is dedicated as the “server” and all the other parties
are “clients”. The client receives as output a function of its input and the server’s
input, while the server receiver as output the client’s input. There is, however, the
extra security limitation that the server’s input to the function is not necessarily
independent of the client’s input, unless the client had never used that input pre-
viously (for more precise details, the reader is referred to [PS05]).

While “client-server computation” is implied by our earlier results in this
paper of any multi-party computation we are able to achieve this on much simpler
assumptions. With just the standard Discrete Log Assumption and DLS-TDP
Assumption against non-uniform adversaries we can show how to do any type
of client-server computation (as before, the DLS-TDP assumption is implied by
the more standard TDP against super-polynomial adversaries).

The significance of this work is not in the power of the model, but in the fact
that we were able to work past inherent restrictions in the UC model using such
widely accepted assumptions.

We achieve these results in a similar fashion as in Section 4. We instantiation
the hash function used in [PS05], but this time we need only rely on the DLA
to do so.

5.1 The Assumptions and Angel of [PS05]

The assumptions made by [PS05] and their imaginary angel, are similar but
weaker versions of those used by [PS04]. In particular, the ID of the party is not
necessary as an input to the hash function, nor needed by the angel. Intuitively,
the reason is that the role played by a certain party (e.g., a server vs a client)
does not change across different executions. The imaginary angel can thus decide

356 T. Malkin, R. Moriarty, and N. Yakovenko

whether to answer the query in a useful manner based on the identity of the
corrupted parties, without requiring the ID. Details follow.

The constructions of [PS05] rely on the following assumptions.
Assume there exists a hash function H : {0, 1}k → {0, 1}l. The input to H

is of the form (r, x, b) ∈ {0, 1}k1 × {0, 1}k2 × {0, 1}, where k1, k2, and l are all
polynomial in k. It is assumed that H satisfies the following properties:

A′1 (Collisions and Indistinguishably): For every r ∈ {0, 1}k1, there is a distri-
bution Dr over {(x, y, z)|H(r, x, 0) = H(r, y, 1) = z} �= φ, such that

{(x, z)|(x, y, z) ← Dr} ≈ {(x, z)|x ← {0, 1}k2, z = H(r, x, 0)}
{(y, z)|(x, y, z) ← Dr} ≈ {(y, z)|y ← {0, 1}k2, z = H(r, y, 1)}

Further, given sampling access to Dr to a distinguisher, these distributions
still remain indistinguishable.

A′2 (Difficult to find collisions with same prefix): For all PPT circuits M , for
a random r ← {0, 1}k1, the probability that M(r) outputs (x, y) such that
H(r, x, 0) = H(r, y, 1) is negligible.9

Additionally, for most of their results, [PS05] also use the following
assumption:

A′3 There exists a family of trapdoor permutations which remains secure even
when the adversary is given sampling access to Dr for all r.

Note that each of these assumptions is weaker than (i.e., implied by) the
corresponding assumption from [PS04] described in Section 4.1.

The Angel Γ : [PS04] use the following imaginary angel Γ . On query r, Γ checks
whether the server is corrupted or not. If so, Γ returns ⊥. If not, Γ outputs a
sample from Dr.

5.2 Our Hash Function

Here, we instantiate the hash function using exactly the same hash function
H0 : {0, 1}k → {0, 1}l as we defined in Section 4.2, that is,

H0(q, g0, g1, x, b) = gx
b mod q.

However, this time (q, g0, g1) correspond to r from the [PS05] constructions
(rather than q corresponding to an ID). This means, for example, that assump-
tion A′2 (difficulty of collision finding) is required to hold when q (as well as the
generators) is chosen randomly (not necessarily for every q).
9 Notice that here, unlike the corresponding assumption A2 from Section 4.1, M

does not get access to oracles for the collision finding distributions for with other
parameters. This is what will allow us to realize this requirement relying only on
DLA, and not rDLA.

Generalized Environmental Security from Number Theoretic Assumptions 357

Satisfying A′1, A′2, A′3

We show that using our H0 to instantiate the hash function, A′1 is satisfied
unconditionally, A′2 is satisfied if (a standard) DLA holds, and A′3 is satisfied
if DLS-TDP holds. This will follow easily using the same arguments as we used
in Section 4.2.

Lemma 4. H0 satisfies A′1.

Proof. We showed in Section 4.2 that H0 satisfies A1. Since A1 implies A′1 (in
fact, they are equivalent here), it immediately follows that H0 satisfies A′1. ��

Lemma 5. If DLA holds, then H0 satisfies A′2.

Proof. Similarly to the proof of Lemma 2, if a PPT circuit M outputs collisions
for a random q, g0, g1, it can be converted to a PPT circuit M ′ that computes
discrete logs random elements of the quadratic residue subgroup of randomly
chosen primes. This contradicts DLA.10 ��

Lemma 6. If the DLS-TDP assumption holds, then A′3 holds.

Proof. This is identical to Lemma 3. ��

5.3 Our Angel Δ

Our imaginary angel Δ will first check if the server S is corrupted. If S is
corrupted Δ will return ⊥ on any query. If S is not corrupted then on input
(q, g0, g1) Δ will compute the discrete logarithm of g0 with respect to g1, namely
return a such that g0 = ga

1 mod q.

5.4 Putting the Pieces Together: Main Theorems for This Model

By proving that our hash function realizes the properties required by [PS05],
all their results automatically translate to hold under our angel Δ, using our
assumptions. This allows to achieve the first protocols in a (partially) composable
model under very standard and widely acceptable assumptions such as the DLA,
without any trusted setup, and avoiding the impossibility results of the UC
model.

Below we briefly discuss the resulting theorems, and refer the reader to [PS05]
for definitions and in-depth discussion of the functionalities and semi-
functionalities achieved, as well as the security model. In the full version of
the paper we will explicitly present the resulting protocols.

10 Note that the last step in the proof of Lemma 2, dealing with the access M has to
collisions for other Z∗

q′ is not necessary here, due to the weakened assumption A′2.

358 T. Malkin, R. Moriarty, and N. Yakovenko

Monitored Commitment, Zero Knowledge Proof, and Commit and Prove under
DLA. In [PS05] Prabhakaran and Sahai achieve protocols that Γ -ES-realize
the monitored functionalities 〈FC̃OM〉, 〈F

Z̃K
〉 and 〈F

C̃AP
〉 given in [PS05] under

assumptions A′1 and A′2. Thus we can achieve the protocols for these monitored
functionalities with just the Discrete Log Assumption. While these are a means
to achieve “client-server computation” they are also of independent interest. The
protocols will remain the same as in [PS05] except with H instantiated with our
DL-based H0.

Theorem 2. Under the Discrete Log Assumption, protocols COM, ZK and CAP
Δ-ES-realize monitored functionalities 〈FC̃OM〉, 〈F

Z̃K
〉 and 〈F

C̃AP
〉.

Client-Server Computation Under DLA and DLS-TDP Assumption. In [PS05]
Prabhakaran and Sahai achieve “client-server computation” under A′1, A′2 and
A′3 and angel Γ . Thus we can achieve “client-server computation” with the Dis-
crete Log Assumption and the DLS-TDP Assumption (or the stronger assump-
tion of TDP secure against super polynomial adversaries). The Client-Server
Computation Protocol (CSC) is the same as [PS05].

Theorem 3. There is a protocol which Δ-ES-realizes monitored functionality
〈F

C̃SC
〉 against static adversaries, under the Discrete Log Assumption and the

DLS-TDP Assumption.

Acknowledgments

We are grateful to Boaz Barak, Ran Canetti, Yehuda Lindell, Manoj Prab-
hakaran, and Amit Sahai for useful discussions. In particular, it was during a con-
versation with Boaz, Amit, and Manoj that Manoj suggested we try to present
our results through an instantiation of the [PS04] hash function, rather than
reproving our protocols from our assumptions. We also thank Zeph Grunschlag,
Stephen Miller, Rafi Ostrovsky, and Carl Pomerance for helpful discussions and
pointers regarding the feasibility of rDLA. Finally, we thank the anonymous
referees for suggestions about the presentation.

References

[BPW04] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A general com-
position theorem for secure reactive systems. In Theory of Cryptography –
TCC 2004, pages 336–354, 2004.

[BS05] Boaz Barak and Amit Sahai. How to play almost any mental game over the
net – concurrent composition via super-polynomial simulation. In Proc. of
the 46th Annu. IEEE Symp. on Foundations of Computer Science, 2005.
To appear.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In Proc. of the 42nd Annu. IEEE Symp. on Foundations
of Computer Science, pages 136–145, 2001.

Generalized Environmental Security from Number Theoretic Assumptions 359

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In
Advances in Cryptology – CRYPTO 2001, pages 19–40, 2001.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations
of universally composable two-party computation without set-up assump-
tions. In Advances in Cryptology – EUROCRYPT 2003, pages 68–86, 2003.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Univer-
sally composable two-party and multi-party secure computation. In Proc.
of the 34th Annu. ACM Symp. on the Theory of Computing, pages 494–503,
2002.

[DG03] Ivan Damg̊ard and Jens Groth. Non-interactive and reusable non-malleable
commitment schemes. In Proc. of the 35th Annu. ACM Symp. on the
Theory of Computing, pages 426–437, 2003.

[GL02] Shafi Goldwasser and Yehuda Lindell. Secure computation without agree-
ment. In Proc. of the 16th International Conference on Distributed Com-
puting (DISC), pages 17–32, 2002.

[KSW97] John Kelsey, Bruce Schneier, and David Wagner. Protocol interactions and
the chosen protocol attack. In Proc. of 5th International Security Protocols
Workshop, volume 1361 of Lecture Notes in Computer Science, pages 91–
104. Springer, 1997.

[Lin03] Yehuda Lindell. General composition and universal composability in se-
cure multi-party computation. In Proc. of the 44rd Annu. IEEE Symp. on
Foundations of Computer Science, pages 394–403, 2003.

[Lin04] Yehuda Lindell. Lower bounds for concurrent self composition. In Theory
of Cryptography – TCC 2004, pages 203–222, 2004.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to
protocol composition. In Advances in Cryptology – EUROCRYPT 2003,
pages 160–176, 2003.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving
universal composability without trusted setup. In Proc. of the 36th Annu.
ACM Symp. on the Theory of Computing, pages 242–251, 2004.

[PS05] Manoj Prabhakaran and Amit Sahai. Relaxing environmental security:
Monitored functionalities and client-server computation. In Theory of
Cryptography – TCC 2005, pages 104–127, 2005.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preser-
vation of secure reactive systems. In Proc. of the 7th Annu. ACM Con-
ference on Computer and Communications Security (CCS ’03), pages 245–
254, 2000.

Games and the Impossibility of Realizable Ideal
Functionality

Anupam Datta1, Ante Derek1, John C. Mitchell1,
Ajith Ramanathan1, and Andre Scedrov2

1 Stanford University
{danupam, aderek, jcm, ajith}@cs.stanford.edu

2 University of Pennsylvania
scedrov@math.upenn.edu

Abstract. A cryptographic primitive or a security mechanism can be
specified in a variety of ways, such as a condition involving a game against
an attacker, construction of an ideal functionality, or a list of properties
that must hold in the face of attack. While game conditions are widely
used, an ideal functionality is appealing because a mechanism that is
indistinguishable from an ideal functionality is therefore guaranteed se-
cure in any larger system that uses it. We relate ideal functionalities to
games by defining the set of ideal functionalities associated with a game
condition and show that under this definition, which reflects accepted
use and known examples, bit commitment, a form of group signatures,
and some other cryptographic concepts do not have any realizable ideal
functionality.

1 Introduction

Many security conditions about cryptographic primitives are expressed using a
form of game. For example, the condition that an encryption scheme is seman-
tically secure against chosen ciphertext attack (ind-cca2) [1] may be expressed
naturally by saying that no adversary has better than negligible probability to
win a certain game against a challenger. In this definition, the game itself clearly
identifies the information and actions available to the adversary, and the condi-
tion required to win the game identifies the properties that must be preserved
in the face of attack. Another way of specifying security properties uses ideal
functionalities [2,3,4,5]. In this approach, usually referred to as Universal Com-
posability [3] (UC) or Reactive Simulatability [6] an idealized way of achieving
some goal is presented, possibly using mechanisms such as authenticated chan-
nels and trusted third parties that are not basic primitives in practice. An im-
plementation is then considered secure if no feasible attacker can distinguish the
implementation from the ideal functionality, in any environment. An advantage
of this approach is that indistinguishability from an ideal functionality leads to
composable notions of security [3, 5, 7]. In contrast, if a mechanism satisfies a
game condition, there is no guarantee regarding how the mechanism will respond
to interactions that do not arise in the specified game.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 360–379, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Games and the Impossibility of Realizable Ideal Functionality 361

In this paper, we develop a framework for comparing game specifications and
ideal functionalities, and prove some negative results about the existence of ideal
functionalities in certain settings. While most known primitives have game-based
definitions (see, e.g., [8]), it has proven difficult to develop useful ideal functional-
ities for some natural primitives. Some interesting issues are explored in [9, 10],
which describe a series of efforts to develop a suitable ideal functionality for
digital signatures. In brief, there is a widely accepted game condition for digital
signatures, existential unforgeability against chosen message attacks, formulated
in [11]. However, there are many possible ideal functionalities that are consistent
with this game condition. For example, a functionality could either explicitly dis-
close information about messages that were signed in the past, or not disclose
this information. More generally, given a game condition, it is often feasible to
formulate various functionalities that satisfy the game condition yet reveal vary-
ing kinds of “harmless” information that does not seem relevant to the goals of
the mechanism.

If we have a game or set of games that define a concept like secure encryption,
digital signature, or bit-commitment, then we would like to identify precisely the
set of possible ideal functionalities associated with each game condition. Since
an ideal functionality is intended to be evidently secure by construction, we
propose that an ideal functionality must satisfy the given game condition on
information-theoretic grounds, rather than as a result of computational com-
plexity arguments. Applied to encryption, for example, this means that an ideal
functionality for encryption must not provide any information about bits of
the plaintext to the adversary. Our definition of ideal functionality for a set of
game conditions is consistent with all examples we have found in the literature,
and reflects the useful idea that it should be easier to reason about systems
that use an ideal functionality than about systems that use a real protocol. Us-
ing our definition, we show that while bit-commitment may be specified using
games, there is no realizable ideal functionality for bit-commitment. This may
be seen as a negative result about specification using ideal functionality, since
there are constructions of bit-commitment protocols that are provably correct
under modest cryptographic assumptions (see, e.g., [12]). We also show that
there is no realizable ideal functionality for other reasonable and implementable
cryptographic primitives, including a form of group signatures and a form of
symmetric encryption with integrity guarantees, under certain conditions that
allow the encryption key to be revealed after it is used.

The intuition behind our impossibility result is relatively simple. Illustrated
using bit-commitment, a good commitment scheme must have two properties:
the commitment token must not reveal any information about the chosen bit,
while subsequent decommitment must reveal a verifiable relationship between
the chosen bit and the commitment token. These are contradictory requirements
because the first condition suggests that tokens must be chosen randomly, while
the second implies that they are not. Similar “decommitment” issues arise in
symmetric encryption or keyed hash, if the encryption key is revealed after some
messages using the key have been sent on the visible network. At a more technical

362 A. Datta et al.

level, our proof by contradiction works by showing that if there was a realization
of the ideal functionality for bit-commitment, it could be transformed into a
protocol for bit-commitment that achieves perfect hiding and binding without
using a trusted third party. However, it is well known that such a protocol does
not exist [12]. While impossibility results for group signatures and symmetric
encryption could be proved by instantiating the general proof method, we present
simpler proofs by reducing bit-commitment to these primitives.

In a previous study of ideal functionality for bit commitment, Canetti and
Fischlin show that a particular ideal functionality for bit-commitment is not
realized by any real protocol [13]. In related work, Canetti [3] shows that partic-
ular functionalities for ideal coin tossing, zero-knowledge, and oblivious transfer
are not realizable. Canetti et al [14] show that a class of specific functionali-
ties for secure multi-party computation are not realizable, while Canetti and
Krawczyk [15] compare indistinguishability-based and simulatability-based defi-
nitions of security in the context of key-exchange protocols. Our results are more
general since we prove that, given a game definition of a primitive, there is no re-
alizable ideal functionality associated with that game condition. In addition, our
proof is different in that it provides a reduction to a previous negative result in-
dependent of universal composability [12], and appears to apply immediately to
many primitives. A related issue is the choice of so-called “setup assumptions,”
such as public-key infrastructure, and common reference string. Our negative
results hold under some setup assumptions, such as the absence of shared pri-
vate information, or the presence of a trusted certificate authority (or PKI), and
fail for other setup assumptions, such as the assumption of a common reference
string. This is expected, since [13] construct a realizable ideal functionality in
the common reference string model. We have yet to characterize precisely the
set of possible setup assumptions under which our negative results hold.

While our general proof could be carried out using a number of computational
models, we adopt a setting based on a form of process calculus. One advantage of
this setting over interacting Turing machines [11,12,3] is a straightforward way of
modularizing games that use a functionality. This is useful for defining primitives
that are protocols, as opposed to local functions, by games. In principle, some
version of our proof could be carried out using some version of Turing machines,
augmented with separate function-call-and-return tapes for interacting with some
form of oracle that performs public communication visible to the adversary.

Preliminary definitions are presented in Section 2, followed by definitions of
bit-commitment functionalities and the main impossibility proof in Section 3.
Reductions from other primitives are given in Section 4, with concluding remarks
in Section 5.

2 Preliminaries

2.1 Probabilistic Process Calculus

Process calculus is a standard framework for studying concurrency [16, 17] that
has proved useful for reasoning about security protocols [2, 18]. This is more of

Games and the Impossibility of Realizable Ideal Functionality 363

a “software” model than a “machine” model, since process calculus expressions
are a form of program defining a concurrent system. Two main organizing ideas
in process calculus are actions and channels. Actions occur on channels and are
used to model communication flows. Channels provide an abstraction of the
communication medium. In practice, channels might represent an IP address
and port number in distributed computing, or a region of shared memory in a
parallel processor.

A probabilistic polynomial-time process calculus (PPC) for security protocols
is developed in [19,20,21] and updated in more recent papers [22,18]. The syntax
consists of a set of terms that represent local sequential probabilistic polynomial-
time computation and do not perform any communication with other processes,
process expressions that can communicate with other processes, and channels
that are used for communication. Terms contain variables that receive values
over channels. There is also a special variable η called the security parameter.
Each expression defines a set of processes, one for each choice of value for the
security parameter. Each channel name has a bandwidth polynomial in the se-
curity parameter associated with it. The bandwidth ensures that no message
gets too large and, thus, ensures that any expression can be evaluated in time
polynomial in the security parameter.

Syntax of PPC: Expressions of PPC are constructed from the following
grammar.

P ::= 1 | ν(c)P | in(c, x).(P) | out(c,T).(P) | [T].(P) | (P | P) | !q(η)(P)

Intuitively, 1 is the empty process taking no action. A process in(c, x).P with an
input operator waits until it receives a value for input variable x on the channel
c and then proceeds with process P . Similarly, an output out(c,T).P transmits
that value of the term T on the channel c and then proceeds with P . Channel
names that appear in an input or an output operation can be either public
or private, with a channel being private if it is bound by the private-binding
operator, ν and public otherwise. Actions on a private channel bound by a ν
are not observable outside the scope of the ν operator. Hence private channels
can be used to provide a form of secure communication. The match operator
[T], a form of “if”, executes the expression that follows it iff T evaluates to 1.
The parallel composition operator, |, applied to two expressions allows them to
evaluate concurrently, possibly communicating over any shared channels. The
bounded replication operator has bound determined by the polynomial q affixed
as a subscript. The expression !q(η)(P) is expanded to the q(η)-fold parallel
composition P | · · · | P before evaluation. There is also a syntactic notion of
context in PPC. A context C[·] is an expression with a hole [·] such that we
can substitute any expression into the hole and obtain a well-formed expression.
Contexts may be used to represent the environment or adversary that interacts
with a protocol or process.

Evaluating PPC expressions: To evaluate an expression in PPC we choose a
probabilistic scheduler that selects communication steps. We then evaluate ev-

364 A. Datta et al.

ery term and match that is not in the scope of an input expression. When we
can no longer evaluate terms and matches, we select a pair of input and output
expressions on the same channel according to the scheduler, erase the output
expression and substitute the value transmitted by the output (truncated suit-
ably by the bandwidth of the channel) for the variable bound by the input. This
procedure is repeated until no communication steps are possible. Further discus-
sion, and explanation of a number of issues related to probabilistic scheduling,
are explained in [18, 22, 23, 24].

Equivalence relations over PPC: Two equivalence relations over PPC will prove
useful for studying security issues. The first relation, computational observational
equivalence, written ∼=, relates two expressions just when, in any context, the dif-
ference between the distributions they induce on observable behavior (messages
over public channels) is negligible in the security parameter η. Formally P ∼= Q
just when ∀ contexts C[·].∀ observables o :

Prob [C[P] produces o] − Prob [C[Q] produces o] is negligible in η

Since the evaluation of all expressions and contexts in PPC are guaranteed to ter-
minate in polynomial-time, ∼= is a natural way to state that two expressions are
computationally indistinguishable to a poly-time attacker. The second relation,
information-theoretic observational equivalence, written =, relates two expres-
sions just when they induce exactly the same distribution on observable behavior
in all contexts. Formally P = Q just when ∀ contexts C[·].∀ observables o :

Prob [C[P] produces o] − Prob [C[Q] produces o] = 0

As a consequence, we can use = to state that two expressions are indistinguish-
able even to unbounded attackers.

2.2 Function Calls and Returns

Process calculus allows processes to be programmed in a modular way, with one
process relying on another for certain computations or actions. For example,
one process P might wish to send a number bit-by-bit on a channel d. This can
be done by writing another process Q that handles all the communication on
channel d for P . This process Q receives a number n on some channel c used
only for communication between P and Q, and then sends the bits of n on a
channel d as required. If P wants a return value, such as notification that Q has
finished sending the message, then P can execute an input action on channel
c immediately after sending the number n to Q. This pattern of sends and
receives essentially works like an ordinary remote procedure call and return. If
the channel c is private, we can think of this as a remote procedure call between
one process and another on the same processor, through a loopback interface,
or a remote procedure call between two processors behind a firewall that makes
LAN traffic invisible to an external attacker.

Games and the Impossibility of Realizable Ideal Functionality 365

We will refer to the pattern of sends and receive just described for processes
P and Q as a function call and return. Function calls and returns turn out
to be a very useful concept in structuring games that specify properties of
cryptographic primitives. To give a relatively concise notation, we will write
Callη(〈params〉,C) returns 〈vars〉.P for a call that sends (outputs) parameters
params on calling channels C, and then waits to receive (input) return values
〈vars〉 before executing process P . To emphasize that a function call and return
hides the structure of Q from the calling process P , we sometimes refer to this as
a black-box call. Since PPC provides private channels, a function call and return
will always be done on a private channel to avoid exposing the parameters or
return values to an adversary.

For every function call and return to proceed, there must be a process that
waiting to receive the call and then send a return value. Rather than write out all
the input and output actions associated with responding to a remote procedure
call, we will simply write Impl[C,D] for a process that responds to blackbox calls
on channels C, possibly using channels in D for some other purpose. For example,
the process Q described above has the form Impl[c, d]. since it receives function
calls on channel c and performs public communication on channel d.

2.3 Interfaces and Cryptographic Primitives

In this paper, a cryptographic primitive is defined by an interface and a set of
required security or correctness conditions that are expressible using the inter-
face. The interface is the set of actions defined and applicable to the primitive,
expressed as a set of function calls and returns. For example, the interface to
an encryption primitive consists of calls to three probabilistic functions: key-
generation, encryption, and decryption. A correctness condition for encryption
is that the decryption of an encryption under the correct key returns the mes-
sage encrypted. A semantically-secure encryption primitive must also satisfy a
security condition stating that no probabilistic polynomial-time adversary can
win a game that involves guessing which of two messages has been encrypted.

A protocol for a primitive is a process that responds to a set of function
calls and supplies the associated returns, without using any additional private
communication. For example, RSA can be formulated as an encryption protocol
that implements key-generation, encryption, and decryption. A functionality for
a primitive similarly supports the given interface, but may use additional private
communication (such as used for a trusted third party; see Section 3.3). These
restrictions on private communication are meant to prevent abusing the security
associated with private channels, which are not a realistic primitive on the open
public network. However, there are no restrictions on the way a functionality can
communicate or reveal information to the adversary. For example, a functionality
for signatures [10] could let the attacker choose the bitstrings for signatures.

An ideal functionality for an interface and a set of game conditions is a func-
tionality that satisfies the correctness conditions with high probability and sat-
isfies the security conditions in an information-theoretic way (i.e., against an
unbounded adversary).

366 A. Datta et al.

2.4 Universal Composability

Universal composability [3, 13, 25, 26, 14] involves a protocol to be evaluated, an
ideal functionality, two adversaries, and an environment. The protocol realizes
the ideal functionality if, for every attack on the protocol, there exists an attack
on the ideal functionality, such that the observable behavior of the protocol under
attack is the same as the observable behavior of the idealized functionality under
attack. Each set of observations is performed by the same environment. The
intuition here is that the ideal functionality ‘obviously’ possess a desired security
property, possibly because the ideal functionality is constructed using a central
authority, trusted third party, or private channels. Therefore, if a protocol is
indistinguishable from an ideal functionality, the protocol must have the desired
security property. In previous work, that which makes an ideal functionality
“ideal” appears not to have been characterized precisely.

Universal composability can be expressed as a relation in process calcu-
lus [23, 24]. To give a form appropriate for the present paper, let P1, . . . ,Pn

be n principals. We will assume that for some k, every principal Pi (i > k) is in
collusion with the adversary. Given an expression P , we will write P [C] to denote
an instance of P running over the channels in C. We say that an implementation
Impl securely realizes a functionality F just when for any real world adversary
A, there exists a simulator S such that for any environment E :

ν(C1, . . . , Ck)(P1[C1, D] | · · · | Pn[Cn, D] | Impl[C1, D] | · · · | Impl[Ck, D]) |
A[Ck+1, . . . , Cn, D] | E

∼= ν(C1, . . . , Ck)(P1[C1, D] | · · · | Pn[Cn, D] | F [C1, . . . , Ck, D]) |
S [Ck+1, . . . , Cn, D] | E

Here the first1 k principals are assumed to be honest, and the remainder are
assumed to be dishonest and acting in collusion with the adversary. To prevent
the adversary/simulator from unfairly interfering with communications between
the honest principals and the implementations (real or ideal), we make the links
between the honest principals and the implementations private. Specifically, par-
ticipant Pi uses private channels Ci to communicate with the implementation
(real or ideal). The set of network channels D is used for communication between
different participants. Both the adversary and the simulator have access to these
channels.

Secure realisability requires that if we replace the real implementations Impl
with an ideal implementation F (the functionality), there exists a simulator (that
can interact with F) which makes the ideal and real configurations indistinguish-
able. Another way to state this is that every real attack can be translated, using
the simulator, into an attack on the functionality. We note that the principals
that act in collusion with the attacker execute arbitrary programs and, in the
ideal world, interact directly with the simulator (which mounts the ideal at-
tack). Example configurations with two honest participants I and R are given
in Figure 1.
1 Since parallel composition is associative, the order in which we write the processes

does not matter, and we may assume without loss of generality that the k honest
principals occur first in the list.

Games and the Impossibility of Realizable Ideal Functionality 367

E

I

Impl

R

Impl

A

E

I R

F

S∼=

Fig. 1. Real and ideal configurations with two honest participants

3 Functionalities for Bipartite Bit-Commitment

A bipartite bit-commitment protocol allows a principal A to commit on a bit
b to the principal B. However, B gains no information about the bit b until A
later opens the commitment. We therefore formulate bit-commitment using four
function calls, one call for each principal in each phase of the commitment. After
defining the interface for bipartite bit-commitment, we define the game condi-
tions for bit commitment and prove that no ideal functionality for these game
conditions is realizable. We stress that the game conditions for bit-commitment
as formulated in this paper are equivalent to standard security notions [27, 12],
and that they can be realized using standard cryptographic assumptions such as
the existence of pseudorandom functions [27].

3.1 Commitment Interface

A bipartite bit-commitment scheme provides four function calls:

SendCommitη(b,C) returns 〈σ〉 GetCommitη(C) returns 〈σ〉
Openη(σ,C) returns ∅ Verifyη(σ,C) returns 〈r〉

The initiator A commits to a bit using the call SendCommitη(b,C) returns 〈σ〉,
which communicates the commitment value over the channels in C. Some state
information σ is generated that can, amongst other things, be used to differen-
tiate between different commitments and is needed to open the corresponding
commitment. A responder B may receive a commitment from A by executing a
call GetCommitη(C) returns 〈σ〉 over the channels in C, which may also returns
some state information σ.

In the decommitment phase, the initiator A may open the commitment using
the function call Openη(σ,C) returns ∅, which uses the state information from
the initial call to indicate which commitment is to be opened. The responder B
can then verify the committed value by making the call Verifyη(σ,C) returns 〈r〉.
If verification succeeds, r contains the value of the committed bit. Otherwise, r
is a symbol ⊥ indicating failure.

368 A. Datta et al.

3.2 Commitment Correctness and Security Conditions

There are three conditions on bit-commitment [27,12] — correctness, hiding, and
binding. After explaining each condition, we show that each can be stated as an
equivalence. The equivalences are written using ∼=, which give the game condition
required of any implementation. With ∼= replaced by =, the same equivalences
can be used to state the information-theoretic properties required for an ideal
functionality. More precisely, an ideal functionality for bipartite bit-commitment
is an implementation for the four function calls listed in the interface above such
that the correctness property below is satisfied with high probability, and the
hiding and binding properties of bipartite bit-commitment below are satisfied
with an information-theoretic equivalence. It is easy to verify that the concrete
functionality considered in [13] is an instance of the ideal functionality for bi-
partite bit-commitment.

Given a game condition, there is a canonical way of writing it as an indis-
tinguishability between expressions. The basic idea is that, since ∼= quantifies
over all contexts, any successful attack on the game condition can be translated
into a similarly successful context that distinguishes between the two sides of
the equivalence. Conversely, since all expressions and contexts in PPC are guar-
anteed to evaluate in polynomial time and since the class of terms is precisely
the class of probabilistic poly-time functions, every successfully distinguishing
context can be translated into a successful attack on the corresponding game
conditions.

Hiding: An implementation Impl is hiding if for an honest initiator, no adversary
can gain, with non-negligible advantage, information about the committed bit.
In other words, probability PAdv that the attacker Adv, after interacting with an
honest initiator committing to a randomly chosen bit b, successfully guesses the
bit b should be close to a half. Writing this property as an equivalence yields:

ν(C, c).(Impl[C, D] | out(c, rand) | in(c, b).
SendCommitη(b, C) returns 〈σ〉.in(d, b′).out(dec, b′ ?= b))

∼= ν(C, c).(Impl[C, D] | out(c, rand) | in(c, b).
SendCommitη(b, C) returns 〈σ〉.in(d, b′).out(dec, rand))

Both expressions select a random bit and commit to it. The adversary (expressed
as a context) interacts with the commitment protocol and tries to guess the
committed-to value. The difference between the two expressions is that the LHS
tests, over the channel dec, whether the adversary’s guess matches the chosen
bit, while the RHS assumes, again over the channel dec, that the adversary
fails with probability 1/2. Clearly, any successfully distinguishing context must
guess the bit with non-negligible advantage, thereby proving the existence of an
adversary that violates the hiding property. Hence, we can naturally express the
hiding condition that for all Adv, the probability PAdv − 1

2 is negligible in η as
a process calculus equivalence. To say that an implementation is perfectly or
information-theoretically secure we require that ∀Adv : PAdv − 1

2 = 0, which is
the same as replacing ∼= by = in the equivalence above.

Games and the Impossibility of Realizable Ideal Functionality 369

Binding: The binding property is that no adversary can open a commitment
to an arbitrary value. This condition can be restated using a game in which
the adversary commits to a challenger (an honest responder), who then picks
a random b and challenges the adversary to open the commitment to b. As an
equivalence, it is stated as:

ν(C, d)(GetCommitη(C) returns 〈σ〉.out(d, rand) | in(d, b).out(c, b).
Verifyη(σ, C) returns 〈r〉.out(dec, r ?= b) | Impl[C, D])

∼= ν(C, d)(GetCommitη(C) returns 〈σ〉.out(d, rand) | in(d, b).out(c, b).
Verifyη(σ, C) returns 〈r〉.out(dec, if r ?= ⊥ then false else rand) | Impl[C, D])

Here both expressions wait for a commitment, and then challenge the adversary
to open the commitment to a randomly chosen bit. The LHS tests whether
the adversary successfully does so, whilst the RHS assumes that if the attempt
to open does not fail (i.e., the result of Verify is not ⊥) the adversary fails
with probability 1/2. Perfect binding is expressed by replacing ∼= with = in the
equivalence above.

Correctness: An implementation Impl is correct if an honest responder is able to
verify an opened commitment by an honest initiator with overwhelming proba-
bility. This correctness property may be expressed as the process calculus equiv-
alence.

ν(C, c)(out(c, rand) | in(c, b).SendCommitη(b, C) returns 〈σI〉
.Openη(σI , C) returns ∅.in(d, b′).out(dec, b

?= b′) | Impl[C, D]) |
ν(C′)(GetCommitη(C′) returns 〈σR〉.Verifyη(σR, C′) returns 〈r〉.out(d, r) | Impl[C′, D])

∼= ν(C, c)(out(c, rand) | in(c, b).SendCommitη(b, C) returns 〈σI〉
.Openη(σI , C) returns ∅.in(d, b′).out(dec, true) | Impl[C, D]) |
ν(C′)(GetCommitη(C′) returns 〈σR〉.Verifyη(σR, C′) returns 〈r〉.out(d, r) | Impl[C′, D])

Here, both expressions pick a random bit, commit to it, and then try to open
it. The LHS checks whether the verifier obtained the correct value for the bit,
whilst the RHS assumes that the verifier gets the right value all the time.

3.3 Impossibility of Bit-Commitment

In this section, we show that no ideal functionality for bit-commitment can be
realized. This generalizes the impossibility result for one particular functionality
given in [13]. Other plausible bit-commitment functionalities can be constructed
by adjusting the level of information and possible actions provided to the attacker
by the functionality. For example, the functionality may let the attacker change
the identity of the committer, hence making the commitment unauthenticated.
Alternatively, the functionality may let the attacker change the committed bit
if the attacker manages to correctly guess an internal secret of the functionality
(since this is a low probability event, correctness still holds). Our proof shows that
all of these variants (as well as further variants discussed in [13]) and their com-
binations are not realizable. Although we have not yet obtained a general char-
acterization, our theorem applies under some setup assumptions, and fails in the
common reference string model in accordance with the construction given in [13].

370 A. Datta et al.

Our proof by contradiction roughly works as follows: given a real protocol P
that realizes an ideal functionality F for bit-commitment, we construct another
real protocol Q which provides the same correctness guarantee. However, in
protocol Q all calls to the bit-commitment interface by principals are handled
by copies of F . As a consequence, Q provides perfect hiding and binding, which
is a contradiction.

In order to state the theorem formally, we require some definitions. We say
that P is a real protocol if each instance of P only communicates with one
principal over a set of private channels. Intuitively, since it cannot communicate
with two separate parties over private channels hidden from the adversary, a real
protocol cannot act as a secure trusted third party. We say that a protocol P
for bit-commitment is terminating when the following expression will, with high
probability, produce the messages “go” and “done”.

ν(C)(SendCommitη(b, C) returns 〈σI〉.in(c, z).Openη(σI , C) returns ∅.in(d, z) | P [C, D] |
ν(C′)(GetCommitη(C′) returns 〈σR〉.out(c, “go”).
Verifyη(σR, C′) returns 〈r〉.out(d, “done”) | P [C′, D])

Intuitively, if the function calls are implemented with P , in the absence of the
attacker two honest parties should be able to first finish the commitment stage,
synchronize, and then finish the decommitment stage.

Theorem 1. If F is an ideal functionality for bilateral bit-commitment, then
there does not exist a terminating real protocol P that securely realizes F .

Before giving the proof, the following two lemmas will be useful. The first lemma
states the well known fact [12] that perfect hiding and binding protocols for bit-
commitment do not exist without a trusted third party. We omit the proof here.
The second lemma states that any realization of F will also be correct for bit-
commitment. The proof sketch is in Appendix A. Similarly, any realization of F
will enjoy complexity-theoretic hiding and binding guarantees; however, we do
not require this fact for the impossibility result.

Lemma 1. There does not exist a terminating real protocol P which is correct
with high probability, and both perfectly hiding and perfectly binding.

Lemma 2. If P is a terminating real protocol that securely realizes F , then P
is correct with high probability.

Proof (Proof of Theorem 1). We assume that P securely realizes F . It follows
that for any configuration involving principals making use of P , there exists a
simulator S such that replacing the calls to P with calls to the simulator in
conjunction with the functionality yields an indistinguishable configuration.

Consider the following real configuration when the environment plays the
role of the responder honestly. It selects a bit and sends that bit to the initiator.
The initiator then commits to that bit using a copy of the implementation PI .
The responder is corrupted by the adversary to simply forward messages to
the environment. After corrupting the responder, the adversary simply forwards
messages. The environment then honestly plays the responder’s role using a copy

Games and the Impossibility of Realizable Ideal Functionality 371

E1

I1 PI

PR

E1

I1 F

PR

S

∼=

Fig. 2. Configurations for the first step

of the real implementation PR. At the conclusion of the commitment phase, the
environment initiates decommitment by instructing the initiator to open. The
environment then verifies the initiator’s attempt to open, and then decides if the
bit the initiator opened to was the bit the environment selected at the start of the
run. The programs of the four principals are given below, where Forward(C ↔ D)
is an expression that forwards in an order-preserving way messages received on
the channels C to channels D and vice versa:

E1 ≡ ν(C, c)(out(c, rand) | in(c, b).out(IOI , b).GetCommitη(C) returns 〈σ〉.out(IOI , open).

Verifyη(r, C) returns 〈σ〉.out(dec, b
?= r))

I1 ≡ ν(C′)(in(IOI , b).SendCommitη(b, C′) returns 〈σ′〉.in(IOI , x).Openη(σ′, C′) returns ∅)
A1 ≡ Forward(NetI ↔ NetR)

R1 ≡ Forward(IOR ↔ NetR)

This real configuration and its corresponding ideal configuration are shown in
Figure 2 on the left and right, respectively (omitting the forwarders for clar-
ity). Let us consider the ideal configuration. Here, the initiator uses the ideal
functionality F , whilst the environment continues using the real protocol. A
simulator S must exist such that it can “convert” the messages of the func-
tionality into messages that PR understands and vice versa. This simulator sits
between PR and F and is connected to F via the bit-commitment interface and
the unspecified interface of F . Since P securely realizes F , it follows that the
configurations are indistinguishable. Furthermore, by Lemma 2 the environment
in the real configuration must register success with high probability, since the
adversary does nothing. Whence the expression Q consisting of F and S wired
in the way that they are must be able to commit to PR and, then, successfully
open the commitment.

Let us now consider another real configuration (Figure 3) where the initia-
tor is corrupted to be a forwarder but the responder is honest. As before, the
adversary, after corrupting the initiator, does nothing. The environment selects
a bit and then runs the initiator’s role directly. However, instead of using P to
implement the initiator’s role, the environment uses the expression Q from the
first part of the argument. To commit, the environment sends the bit to the
functionality whose messages are then translated by the simulator into messages
suitable for the copy of the implementation PR used by the honest responder.

372 A. Datta et al.

E2

R2PR

F

S

E2

F

S

R2F

S ′

∼=

Fig. 3. Configurations for the second step

After committing, the environment waits for a receipt from the responder, be-
fore decommitting. It then waits for the responder to send the bit it believes the
initiator committed to and the environment checks that the bit it received was
the same as the bit to which it committed. The responder, for its part, receives
a commitment, sends a receipt to the environment, then verifies a commitment,
and forwards the result to the environment. The programs are given below:

E2 ≡ ν(C, c)(out(c, rand) | in(c, b).SendCommitη(b, C) returns 〈σ〉.in(IOR, x).

Openη(σ, C) returns ∅.in(IOR, b′)out(dec, b
?= b′) | Q[C, IOR])

R2 ≡ ν(C′)(GetCommitη(C′) returns 〈σ′〉.out(IOR, receipt).

Verifyη(r, C′) returns 〈σ′〉.out(IOR, r))

A2 ≡ Forward(NetI ↔ NetR)

I2 ≡ Forward(IOI ↔ NetI)

In this scenario, the simulator S′ sits between the expression Q (consisting of
simulator S and functionality) and the functionality F . Again, from secure re-
alizability, Lemma 2, and the fact that Q looks like an initiator running the
implementation P , we know that in the real configuration, the environment will,
with high probability, register a success. Therefore, so must the ideal configura-
tion, whence the expression Q′ consisting of F and S′ must correctly play the
role of the responder running the implementation P .

If we look at the ideal configuration, we notice that the functionality is no
longer working as a trusted third party. Every message is run through the sim-
ulators S and S′. Thus, we have an implementation of bit-commitment that is
a real protocol. The initiator executes the code given by the expression Q while
the responder executes the code given by the expression Q′. From the above
argument it follows that the implementation Q | Q′ is a correct implementa-
tion. Furthermore, the Q | Q′ has to be information-theoretically hiding and
binding because of the way they make use of the functionality. For example, to
commit to a bit, the caller passes the bit to the functionality which, by defi-
nition, reveals no information about the bit regardless of the other parties in
the configuration until the open step. Thus, we have a correct with high prob-
ability, and information-theoretically hiding and binding implementation of the

Games and the Impossibility of Realizable Ideal Functionality 373

bit-commitment interface that does not make use of trusted third parties. This
contradicts Lemma 1.

4 Generalization of the Impossibility Result and Other
Examples

In this section state a more general impossibility result: if G is a functionality
and P is a protocol which uses G to achieve bit-commitment with perfect hid-
ing and binding, then the functionality G cannot be realized. Intuitively, the
functionality G together with protocol P constitutes an ideal functionality for
bit-commitment F , and any realization of G will lead to the realization of F .
Therefore, we would expect that all primitives that can be used to build bit-
commitment are not realizable as functionalities. We illustrate this by showing
that certain (rather strong) variants of symmetric encryption and group signa-
tures cannot have realizable ideal functionalities. Due to space constrains, the
security definitions are mostly informal and proof sketches have been moved
to Appendix A.

Hybrid Protocols: We will consider implementations of primitives which, in addi-
tion to public channels, may use a particular functionality. Let G be any function-
ality, a G-hybrid protocol P for a primitive is an implementation of the primitive’s
interface which does not make use of the trusted third party except maybe by
making calls to G’s interface. We will write P [Q] to denote an instance of P
where calls to G’s interface are handled by the implementation Q (real or ideal).

Theorem 2. If G is a functionality and P is a terminating G-hybrid protocol
for bit-commitment which is correct with high probability and provides perfect
hiding and perfect binding, then no protocol realizes functionality G.

Symmetric Encryption: Symmetric encryption primitive is defined by the stan-
dard interface for key generation, encryption and decryption.

KeyGenη(C) returns 〈K〉 Encryptη(K, p, C) returns 〈c〉 Decryptη(K, c, C) returns 〈p〉

In addition to the obvious correctness property, we assume, as in [28], that the
encryption scheme is CCA-secure and that it provides ciphertext integrity. Prov-
ably secure schemes with respect to these two properties exist under reasonable
assumptions [29]. Informally, we can describe the properties as follows:

– CCA-security means that it is hard for an adaptive attacker with access to
the decryption oracle to distinguish the plaintext from a random value of
the same length given the ciphertext. Perfect CCA-security means that the
probability of success is exactly half.

– Integrity of ciphertexts means that it is hard for an attacker to find a ci-
phertext c which will successfully decrypt unless that ciphertext has been
produced by the encryption algorithm for some key and plaintext. Perfect
integrity of ciphertexts means that the probability of an attacker finding such
a ciphertext is zero.

374 A. Datta et al.

Corollary 1. If F is a functionality for symmetric encryption providing perfect
CCA-security and perfect integrity of ciphertext then F cannot be realized.

Group Signatures: Group signature primitive is defined by the interface for key
generation, group signing, group signature verification and opening. For simplic-
ity we will assume that the group is always of size two.

GKeyGenη(C) returns 〈gpk, gmsk, gsk0, gsk1〉 GSignη(m,gsk, C) returns 〈sig〉
GVerifyη(gpk,m, sig, C) returns 〈result〉 GOpenη(gmsk,m, sig,C) returns 〈identity〉

In addition to the obvious correctness properties, we assume that the group
signature scheme provides anonymity and traceability even against dishonest
group managers. This is a stronger security requirement than the version prin-
cipally considered in [30] (though [30] does briefly discuss this variant); [30] also
shows that schemes with these properties exist if trapdoor permutations exist.
Informally, we can describe the properties as follows:

– Anonymity means that it is hard for an adaptive attacker with access to an
opening oracle to recover the identity of the signer given a signature and
a message, even if the attacker has all the signing keys. Perfect anonymity
means that the probability of success is exactly half (assuming, as we do,
only two possible signers).

– Traceability means that it is hard for an attacker that adaptively corrupts
a coalition of signers and has access to a signing oracle to produce a valid
message-signature pair that opens to a signer not in the coalition, even when
the group manager is dishonest. Perfect traceability means that the proba-
bility of an attacker forging such a signature is zero.

Corollary 2. If F is a functionality for group signatures providing perfect anon-
ymity and perfect traceability then F cannot be realized.

5 Conclusion and Future Directions

We articulate accepted practice in the literature by giving a precise definition
of an ideal functionality satisfying any given game specification: An ideal func-
tionality must be a process or a set of processes that realize the game conditions
in an information-theoretic, rather than computational complexity, sense. Using
this definition we show that bit commitment, group signatures, and other cryp-
tographic concepts that are definable using games do not have any realizable
ideal functionality.

This proof appears applicable to other functionalities, and to a range of
so-called “setup assumptions.” However, we have not yet characterized the appli-
cable setup assumptions precisely. Some examples of setup assumptions are pre-
shared keys, certificate authorities, random oracles or common reference strings.
These additional assumptions can be captured by a hybrid model where parties
have access to an additional ideal functionality “implementing” the assumption,

Games and the Impossibility of Realizable Ideal Functionality 375

such as a trusted certificate authority. As demonstrated in [13], there are real-
izable ideal functionalities for bit-commitment when parties have access to one
form of common reference string functionality. One possibility is to restrict
attention to functionalities that are used only in the initialization phase. Our
intuition suggests that a similar impossibility proof can be constructed for this
case as long as these setup functionalities are global, i.e. all honest parties can
access them. This does not contradict the common reference string construction
in [13] since a fresh instance of the common reference string functionality is re-
quired for each pair of participants engaged in a session and cannot be accessed
by other honest parties. We hope to develop this idea more fully in future work.

An appealing property of indistinguishability-based specifications is the con-
nection with composability: if a real security mechanism is indistinguishable
from an ideal one, then any larger system using the real mechanism will be-
have in the same way as the same system using the ideal mechanism instead.
In light of the limitations on indistinguishability-based specifications explored
in this paper, there are several modifications to the basic theory that might
provide useful forms of composability. One direction is to relax or modify the
requirements for ideal functionality. For example, information-theoretic equiva-
lence could be replaced with the indistinguishability of random systems in the
sense of [31]. This would allow adaptive, computationally unbounded distin-
guishers to query the system at most polynomially many times in the security
parameter. Another possible direction involves the modification of the Universal
Composability framework recently considered in [32, 33], which allows a com-
mitment functionality. In the modified framework, parties are typed in a certain
way, and the typing must be respected by the simulator. On the other hand, since
the intuition for some of these directions is not clear, it may be more productive
to develop methods for stating and proving conditional forms of composability.
More precisely, primitives and protocols could be guaranteed to operate securely
only in environments that satisfies certain conditions. Games currently provide
a very limited form of conditional composability, since a game condition pro-
vides guarantees for any system whose actions can be regarded as (or reduced
to) moves in a relevant game. We also consider the work on protocol composi-
tion logic [34, 35] a potentially relevant form of conditional composability, since
protocols or primitives proved correct in that framework carry guarantees that
apply to any environment respecting certain invariants expressed explicitly in
the logic.

References

1. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user
setting: Security proofs and improvements. In: Advances in Cryptology - EURO-
CRYPT 2000, International Conference on the Theory and Application of Cryp-
tographic Techniques, Proceeding. Volume 1807 of Lecture Notes in Computer
Science., Springer-Verlag (2000) 259–274

376 A. Datta et al.

2. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: the spi calculus.
Information and Computation 143 (1999) 1–70 Expanded version available as SRC
Research Report 149 (January 1998).

3. Canetti, R.: Universally composable security: A new paradigm for crypto-
graphic protocols. In: FOCS ’01: Proceedings of the 42nd IEEE sympo-
sium on Foundations of Computer Science. (2001) 136 Full version available at
http://eprint.iacr.org/.

4. Lincoln, P., Mitchell, J.C., Mitchell, M., Scedrov, A.: A probabilistic poly-time
framework for protocol analysis. In: ACM Conference on Computer and Commu-
nications Security. (1998) 112–121

5. Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure
reactive systems. In: ACM Conference on Computer and Communications Security.
(2000) 245–254

6. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library
with nested operations. In: CCS ’03: Proceedings of the 10th ACM conference on
Computer and communications security, ACM Press (2003) 220–230

7. Backes, M., Pfitzmann, B., Waidner, M.: A general composition theorem for secure
reactive systems. In: TCC ’04: Proceedings of the 1st Theory of Cryptography
Conference. Volume 2951 of Lecture Notes in Computer Science., Springer-Verlag
(2004) 336–354

8. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004)
http://eprint.iacr.org/2004/332.

9. Backes, M., Hofheinz, D.: How to break and repair a universally composable
signature functionality. In: Information Security, 7th International Conference, ISC
2004, Proceedings. Volume 3225 of Lecture Notes in Computer Science., Springer-
Verlag (2004) 61–72

10. Canetti, R.: Universally composable signature, certification, and authentication.
In: CSFW ’04: Proceedings of the 17th IEEE Computer Security Foundations
Workshop, IEEE Computer Society (2004) 219–233

11. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1) (1989) 186–208

12. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press (2000)

13. Canetti, R., Fischlin, M.: Universally composable commitments. In: Advances in
Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference,
Proceedings. Volume 2139 of Lecture Notes in Computer Science., Springer-Verlag
(2001) 19–40

14. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. In: Advances in
Cryptology - EUROCRYPT 2003, International Conference on the Theory and
Applications of Cryptographic Techniques, Proceedings. Volume 2656 of Lecture
Notes in Computer Science., Springer-Verlag (2003) 68–86

15. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Advances in Cryptology - EUROCRYPT 2001, Inter-
national Conference on the Theory and Application of Cryptographic Techniques,
Proceeding. Volume 2045 of Lecture Notes in Computer Science., Springer-Verlag
(2001) 453–474

16. Milner, R.: Communication and Concurrency. International Series in Computer
Science. Prentice Hall (1989)

Games and the Impossibility of Realizable Ideal Functionality 377

17. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative, and strati-
fied models of probabilistic processes. International Journal on Information and
Computation 121(1) (1995)

18. Ramanathan, A., Mitchell, J.C., Scedrov, A., Teague, V.: Probabilistic bisimula-
tion and equivalence for security analysis of network protocols. In: Foundations
of Software Science and Computation Structures, 7th International Conference,
FOSSACS 2004, Proceedings. Volume 2987 of Lecture Notes in Computer Science.,
Springer-Verlag (2004) 468–483

19. Mitchell, J.C., Mitchell, M., Scedrov, A.: A linguistic characterization of bounded
oracle computation and probabilistic polynomial time. In: FOCS ’98: Proceedings
of the 39th Annual IEEE Symposium on the Foundations of Computer Science,
IEEE Computer Society (1998) 725–733

20. Lincoln, P.D., Mitchell, J.C., Mitchell, M., Scedrov, A.: Probabilistic polynomial-
time equivalence and security protocols. In: Formal Methods World Congress, vol.
I. Number 1708 in Lecture Notes in Computer Science, Springer-Verlag (1999)
776–793

21. Mitchell, J.C., Ramanathan, A., Scedrov, A., Teague, V.: A probabilistic
polynomial-time calculus for the analysis of cryptographic protocols (preliminary
report). In: 17th Annual Conference on the Mathematical Foundations of Program-
ming Semantics. Volume 45., Electronic notes in Theoretical Computer Science
(2001)

22. Ramanathan, A., Mitchell, J.C., Scedrov, A., Teague, V.: Probabilistic bisimula-
tion and equivalence for security analysis of network protocols. Unpublished, see
http://www-cs-students.stanford.edu/∼ajith/ (2003)

23. Datta, A., Küsters, R., Mitchell, J.C., Ramanathan, A., Shmatikov, V.: Unifying
equivalence-based definitions of protocol security. In: 2004 IFIP WG 1.7, ACM
SIGPLAN and GI FoMSESS Workshop on Issues in the Theory of Security (WITS
2004). (2004)

24. Datta, A., Küsters, R., Mitchell, J.C., Ramanathan, A.: On the relationships
between notions of simulation-based security. In: TCC ’05: Proceedings of the 2nd
Theory of Cryptography Conference. Volume 3378 of Lecture Notes in Computer
Science., Springer-Verlag (2005) 476–494

25. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Advances in Cryptology - EUROCRYPT 2002, International
Conference on the Theory and Application of Cryptographic Techniques, Proceed-
ing. Volume 2332 of Lecture Notes in Computer Science., Springer-Verlag (2002)
337–351

26. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC ’02: Proceedings of the 34th
annual ACM symposium on Theory of computing, ACM Press (2002) 494–503

27. Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptology 4(2)
(1991) 151–158

28. Backes, M., Pfitzmann, B.: Symmetric encryption in a simulatable Dolev-Yao style
cryptographic library. In: CSFW ’04: Proceedings of the 17th IEEE Computer
Security Foundations Workshop, IEEE Computer Society (2004) 204–218

29. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of
operation for efficient authenticated encryption. In: CCS ’01: Proceedings of the
8th ACM Conference on Computer and Communications Security, ACM Press
(2001) 196–205

378 A. Datta et al.

30. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Advances in Cryptology - EUROCRYPT 2003, International Conference
on the Theory and Applications of Cryptographic Techniques, Proceedings. Volume
2656 of Lecture Notes in Computer Science., Springer-Verlag (2003) 614–629

31. Maurer, U.M.: Indistinguishability of random systems. In: Advances in Cryptol-
ogy - EUROCRYPT 2002, International Conference on the Theory and Application
of Cryptographic Techniques, Proceeding. Volume 2332 of Lecture Notes in Com-
puter Science., Springer-Verlag (2002) 110–132

32. Prabhakaran, M., Sahai, A.: New notions of security: Achieving universal compos-
ability without trusted setup. In: STOC ’04: Proceedings of the 36th annual ACM
symposium on Theory of computing, ACM Press (2004) 242–251

33. Prabhakaran, M., Sahai, A.: Relaxing environmental security: Monitored function-
alities. In: TCC ’05: Proceedings of the 2nd Theory of Cryptography Conference.
Volume 3378 of Lecture Notes in Computer Science., Springer-Verlag (2005) 104–
127

34. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and com-
positional logic for security protocols. Journal of Computer Security 13 (2005)
423–482

35. He, C., Sundararajan, M., Datta, A., Derek, A., Mitchell, J.C.: A modular cor-
rectness proof of TLS and IEEE 802.11i. In: ACM Conference on Computer and
Communications Security. (2005)

A Proof Sketches

Proof (Proof sketch of Lemma 2). Consider a configuration consisting of an hon-
est initiator running the implementation P , an honest responder running the
implementation P , and an adversary that does nothing. The initiator waits for a
bit from the environment and then commits to that bit. It then waits for a mes-
sage from the environment and then opens its commitment. The responder, after
receiving a commitment, sends a receipt to the environment. After a successful
verification of an attempt to open the commitment, it sends the opened-to value
to the environment. The environment selects a bit, sends it to the initiator and
waits for a receipt from the responder. Once it gets this message, it instructs the
initiator to open its commitment, and then waits for the responder to reveal the
bit to which the initiator committed. If that bit matches the bit the environment
selects at the start of the run, the environment registers success. Otherwise it
registers failure.

By the terminating property of P , we know that this run will complete. The
ideal configuration has the initiator talking to the functionality which talks di-
rectly to the responder. Though a simulator exists in the ideal configuration, it
can do nothing since both the initiator and responder are connected directly to
the functionality. By virtue of the functionality’s correctness, we know that in
the ideal configuration the environment will register success with high probabil-
ity. Since P securely realizes F , the environment must register success in the real
configuration with high probability. Whence the correctness of P is established.

Games and the Impossibility of Realizable Ideal Functionality 379

Proof (Proof sketch of Theorem 2). Assume that P is a terminating G-hybrid
protocol for bit-commitment, which is correct with high probability and pro-
vides perfect hiding and binding. A functionality F = P [G] is clearly an ideal
functionality for bit-commitment. Let Q be a real protocol which is a realization
of G, consider a real protocol R = P [Q] in which all the calls of P to the func-
tionality G are implemented with Q. We claim that R is a secure realization of
F . Choose any real configuration for R, consisting of an attacker A, and parties
P1, . . . , Pn. We need to show that there is a simulator S such that for any en-
vironment E this configuration is indistinguishable from one where parties call
functionality F instead of R. This configuration is also a real configuration for
the protocol Q. Therefore, there is a simulator such that when all calls to Q
are replaced with calls to G, the two configurations are indistinguishable for any
environment. Since this ideal configuration is exactly the ideal configuration for
F we are done with the proof, because by Theorem 1 there can be no protocol
realizing any ideal functionality for bit-commitment.

Proof (Proof sketch of Corollary 1). Assume that F is an ideal functionality for
symmetric encryption and construct a F -hybrid protocol for bit-commitment
providing perfect hiding and binding. The initiator can commit to b by generating
a new key, encrypting b and sending the ciphertext via public channel. To open
the commitment, initiator sends the key. This protocol provides perfect hiding
because of the perfect CCA-security provided F , and provides perfect binding
because of the perfect integrity of ciphertexts provided by F . By Theorem 2,
functionality F cannot be realized.

Proof (Proof sketch of Corollary 2). Construct a F -hybrid protocol for bit-
commitment providing perfect hiding and binding. The initiator can commit
to b by generating all the group keys, signing a random message with b’s signing
key, and then sending, as the signature, the tuple consisting of the b’s signature,
the message, the group public key, and all the signing keys. To open the commit-
ment, the initiator sends the group manager’s secret key. This protocol provides
perfect hiding because of the perfect anonymity provided F , and provides per-
fect binding because of the perfect traceability provided by F . By Theorem 2,
functionality F cannot be realized.

Universally Composable Symbolic Analysis of
Mutual Authentication and Key-Exchange

Protocols�

(Extended Abstract)

Ran Canetti1,�� and Jonathan Herzog2,� � �

1 IBM Research
2 The MITRE Corporation

Abstract. Symbolic analysis of cryptographic protocols is dramatically
simpler than full-fledged cryptographic analysis. In particular, it is sim-
ple enough to be automated. However, symbolic analysis does not, by
itself, provide any cryptographic soundness guarantees. Following recent
work on cryptographically sound symbolic analysis, we demonstrate how
Dolev-Yao style symbolic analysis can be used to assert the security of
cryptographic protocols within the universally composable (UC) security
framework. Consequently, our methods enable security analysis that is
completely symbolic, and at the same time cryptographically sound with
strong composability properties.

More specifically, we concentrate on mutual authentication and key-
exchange protocols. We restrict attention to protocols that use public-
key encryption as their only cryptographic primitive and have a specific
restricted format. We define a mapping from such protocols to Dolev-Yao
style symbolic protocols, and show that the symbolic protocol satisfies a
certain symbolic criterion if and only if the corresponding cryptographic
protocol is UC-secure. For mutual authentication, our symbolic criterion
is similar to the traditional Dolev-Yao criterion. For key exchange, we
demonstrate that the traditional Dolev-Yao style symbolic criterion is
insufficient, and formulate an adequate symbolic criterion.

Finally, to demonstrate the viability of our treatment, we use an ex-
isting tool to automatically verify whether some prominent key-exchange
protocols are UC-secure.

1 Introduction

The analysis of cryptographic protocols is a complex and subtle business. One main
reason is the need to capture an adversary that is very powerful in terms of commu-

� This work was first presented at the DIMACS workshop on protocol security
analysis, June 2004. Most of the research was done while both authors were at
CSAIL, MIT.

�� Supported by NSF CyberTrust Grant #0430450.
� � � The author’s affiliation with The MITRE Corporation is provided for identification

purposes only, and is not intended to convey or imply MITRE’s concurrence with,
or support for, the positions, opinions or viewpoints of the author.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 380–403, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Universally Composable Symbolic Analysis of Mutual Authentication 381

nication, while being computationally bounded. Furthermore, security typically
holds only in a probabilistic sense, and only under computational intractability
assumptions. Indeed, developing adequate mathematical models and formulations
of security properties has been a main endeavor in modern cryptography from its
early stages, beginning with the notions of pseudo-randomness and semantic se-
curity of encryption [13, 14, 41, 25], through zero-knowledge, non-malleability, and
general cryptographicprotocols, e.g. [27, 28, 23, 26, 42, 9, 16, 49, 17]. Consequently,
we now have a variety of mathematical models where one can represent crypto-
graphic protocols, specify the security requirements of cryptographic tasks, and
then potentially prove that (the mathematical representation of) a protocol meets
the specification in a way that is believed to faithfully represent the security of ac-
tual protocols in actual systems.

However, the models above are complex and delicate, even for relatively sim-
ple protocols for simple tasks. In particular, they directly represent adversaries
as resource-bounded and randomized entities, and directly bound their suc-
cess probabilities with a function of the consumed resources. This entails ei-
ther asymptotic formalisms or alternatively parameterized notions of concrete
security. Furthermore, since these notions are typically satisfied only under some
underlying hardness assumptions, proofs of security typically require a reduction
to the underlying hard problem. Coming up with such reductions typically re-
quires “human creativity” which is hard to mechanize. Consequently, full-fledged
cryptographic analysis of even moderately complex cryptographic systems is a
daunting prospect.

Several alternatives to this “computational” approach to protocol security
analysis have been proposed, such as the Dolev-Yao model [24] and its many
derivatives (e.g. [54, 22]), the BAN logic [15], and a number of process calculi
and other models, e.g. [2, 33, 34, 37]. In these approaches, cryptographic primi-
tives are represented as symbolic operations which guarantee a set of idealized
security properties by fiat. (For instance, transmission of encrypted data is mod-
eled as communication that is inaccessible to the adversary, e.g. [15], or as a
symbolic operation that completely hides the message, e.g. [24].) Consequently,
the model becomes dramatically simpler. There is no need for computational
assumptions; randomization can be replaced by non-determinism; and protocols
can be modeled by simple finite constructs without asymptotics. Indeed, proto-
col analysis in these models is much simpler, more mechanical, and amenable to
automation (see e.g. [36, 39, 53, 46, 11]). These are desirable properties when at-
tempting to analyze large-scale systems. Until recently, however, there has been
no concrete justification for this high level of abstraction. Thus, these models
could not be used to prove that protocols remain secure when the abstract se-
curity primitives are realized by actual algorithms.

Within the past few years, however, there have been several efforts towards
devising symbolic models that enjoy the relative simplicity of “abstract cryp-
tography” while maintaining cryptographic soundness. One attractive approach
towards this goal was introduced in the ground-breaking work of Abadi and Ro-
gaway [4] in the context of passive security of symmetric encryption schemes.

382 R. Canetti and J. Herzog

Essentially, they showed that proving indistinguishability of distribution ensem-
bles of a certain class can be done by translating these ensembles to symbolic
forms and verifying a symbolic criterion on these forms. This work has been
extended several times ([44, 3, 31, 5]). Of particular importance is the work of
Micciancio and Warinschi [45] who extend this approach to include active ad-
versaries. Specifically, they provide a formal criteria for two-party protocols, and
show that symbolic protocols which satisfy this criteria achieve mutual authen-
tication (as defined in [10]) if they are implemented with public-key encryption
secure against chosen-ciphertext attacks (as in [51, 23]).

An alternative approach was taken in the works of Backes, Pfitzmann and
Waidner, and Canetti (e.g. [49, 17, 6, 7, 18]). Here, the idea is to define idealized
abstractions of cryptographic primitives directly in a full-fledged cryptographic
model. These abstractions are realizable by actual concrete protocols in a cryp-
tographic setting, but can at the same time be used as abstract primitives by
higher-level protocols. Soundness for this style of abstraction provided via a
strong composition theorem. This approach is attractive due to its generality
and the strong compositional security properties it guarantees when the proto-
col runs together with arbitrary other protocols. Furthermore, the analysis of
the higher-level protocols becomes more straightforward and mechanical when
the lower-level primitives are replaced by their abstractions. However, this model
still requires the analyst to directly reason about protocols within a full-fledged
cryptographic model, with its asymptotics, error probabilities etc., and so this
approach retains much of the original complexity of the problem.

Our Approach. This work demonstrates how formal and symbolic reasoning in
a simple finite model can be used to simplify analyzing the security of protocols
within a full-fledged cryptographic model with strong composability properties.
Specifically, we use the universally composable (UC) security framework [17].
The overall approach follows that of [4, 45]: We want to assert whether a given
concrete, fully specified protocol satisfies a concrete security property. (In our
case, the concrete property is realizing a given ideal functionality within the UC
framework.) Instead of proving this assertion directly, we proceed as follows. The
first step is to abstract out from the cryptographic primitives, and use instead
ideal functionalities that represent these primitives in an idealized manner. This
step is done still within the UC framework, and its soundness comes from secure
composability. The next step is to translate this semi-abstract protocol to a sim-
pler, symbolic (“Dolev-Yao style”) protocol. Now, standard tools for symbolic
protocol analysis are used to prove that the symbolic protocol satisfies a certain
symbolic criterion. Finally, we show that this implies that the concrete protocol
satisfies the concrete security property (i.e., realizes the given ideal functional-
ity). The main gain here is that all steps, except for one, can be done once and
for all. Only the symbolic analysis of the protocol at hand needs to be done
per protocol. This analysis typically considerably simpler than full-fledged cryp-
tographic analysis within the UC framework. The approach is summarized in
Figure 1.

Universally Composable Symbolic Analysis of Mutual Authentication 383

Symbolic protocol Symbolic criterion

Concrete protocol Concrete security

General

Protocol-specific, simple

General
Protocol-specific, complex

Fig. 1. Using symbolic (formal) analysis to simplify cryptographic analysis. Instead of
directly proving that a given concrete protocol π realizes a concrete ideal functionality
F, translate π to a symbolic protocol, verify that the symbolic protocol satisfies a simple
symbolic criterion, and use this to show that π realizes F. The first and third steps are
general and proven once and for all. Only the second step needs to be repeated per
protocol.

In a way, this approach takes the best of the two approaches described above:
On the one hand, it guarantees the strong security and composition properties of
the ideal-functionality approach. On the other hand, we end up with a relatively
simple, finite symbolic model, and symbolic criteria to verify within that model.
In fact, our analysis is even simpler than current ones: The strong compositional
security properties of the UC framework allow us to specify and analyze protocols
in terms of a single instance of the protocol in question. Security in a setting,
where an unbounded number of instances of a protocol may run concurrently
with each other and with arbitrary other protocols, is guaranteed via the UC
and UC with joint state theorems [17, 21]. In contrast, existing symbolic models
(e.g. [24, 54, 22]) directly address the more complex multi-session case, even in
the symbolic model. Consequently, our symbolic modeling involves fewer runtime
states and thus lends to more effective mechanical analysis.

This Work. In this work, we apply the above approach to the problems of
mutual-authentication and key-exchange protocols. In particular, we progress as
follows.

First, we translate concrete protocols to their symbolic counterparts. We fol-
low the approach of [45], and concentrate on a restricted class of concrete cryp-
tographic protocols. We call such protocols simple protocols. Simple protocols
use public-key encryption as their only cryptographic operations and conform
to a restrictive format, or “programming language.” (The reason to use a re-
stricted class of protocols is that existing symbolic models can only handle such
protocols. Indeed, any enrichment in the symbolic model would translate to an
analogous enrichment in the definition of simple protocols, while preserving the
validity of the treatment.) We note that, while restricted, this format is still very
meaningful; in particular, it allows expressing known ‘benchmark’ protocols such
as several variants of the Needham-Schroeder-Lowe (NSL) protocol [47, 35, 36],
and the Dwork-Dolev-Naor [23] protocol.

In order to further simplify the treatment, we require simple protocols to use
an “ideal encryption functionality” rather than directly using some concrete en-
cryption scheme. This ideal functionality, denoted Fcpke (for “certified public-key

384 R. Canetti and J. Herzog

encryption”) allows the parties to encrypt and decrypt messages in an ideally
secure way. Using Fcpke instead of concrete encryption simplifies the analysis in
two ways: first, it allows the entire analysis to be done in terms of a single ses-
sion of the protocol at hand. Next, the entire analysis is unconditional, and does
not make use of computational bounds on the adversaries. As we demonstrate
below, soundness for the case where the parties use concrete encryption schemes
and multiple instances of the protocol run concurrently is guaranteed via the
UC and UC with joint state theorems.

Next, we consider the symbolic and computational criteria for mutual authen-
tication and key exchange. The computational criteria are expressed in terms of
UC functionalities. The symbolic criterion for mutual authentication is tradi-
tional and drawn from the existing literature, but the symbolic criterion for
key-exchange is not. In fact, we demonstrate that the traditional symbolic cri-
terion for key-exchange is strictly weaker than the computational one. This is
done via by example: We show that a natural way to extend the NSL authenti-
cation protocol to key exchange results in a protocol that satisfies the traditional
symbolic secrecy criterion for the key, but whose computational counterpart can
be easily broken. In particular, the computational counterpart is not UC-secure.
We thus define a new symbolic criterion for key exchange which is closer in spirit
to traditional computational criteria.

Finally we show that:

1. The original, concrete protocol realizes the mutual authentication function-
ality in the UC framework if and only if its translation into the symbolic
model fulfills the symbolic mutual authentication criterion, and

2. The original, concrete protocol realizes the key exchange functionality in the
UC framework if and only if its translation into the symbolic mode fulfills
our new symbolic criterion.

We stress that, as in [4], the symbolic criterion is formulated in terms of a finite
and relatively simple model, whereas the concrete criterion (realizing an ideal
functionality) is formulated in the standard asymptotic terms of cryptographic
security. Still, equivalence holds.

As a result, both vertical arrows of Figure 1 are firmly established for mutual
authentication and key exchange. The only work that remains is to show that
particular symbolic protocols fulfill the symbolic criteria. However, this last step
is protocol specific and rather mechanical. In particular, as we demonstrate, it
can be readily automated.

Automated Analysis: Proof of Concept. Since our symbolic key secrecy
criterion is not standard, one might wonder whether this criterion retains the
main advantage of the symbolic model, namely amenability to automation. We
demonstrate that it does, by applying the ProVerif [12] automated verification
tool to verify whether our symbolic key exchange criterion is satisfied by known
protocols.

Specifically, we consider two very natural extensions of the NSL protocol
to key exchange: In one extension the output key is the nonce generated by the

Universally Composable Symbolic Analysis of Mutual Authentication 385

initiator, and in the other extension the output key is the nonce generated by the
responder. As we demonstrate within, one extension is demonstrably insecure,
while the other extension seems secure. The automated analysis supports these
impressions: The insecure extension fails the automates test, while the seemingly
secure extension passes the test. In fact, the tool now provides a proof of security
for this extension.

1.1 Related Work

Pfitzmann and Waidner [49] provide a general definition of integrity proper-
ties and prove that such properties are preserved under protocol composition
in their framework. Our symbolic mutual authentication criterion can be cast
as such an integrity property. In addition, Backes, Pfitzmann and Waidner [7],
building on the idealized cryptographic library in [6], demonstrate that several
known protocols satisfy a property that is similar to our symbolic mutual au-
thentication criterion. However, these results do not answer the question which
is the focus of this work, namely whether a given concrete cryptographic proto-
col realizes an ideal functionality (say, the mutual authentication functionality)
in a cryptographic model (say, the UC framework.) Furthermore, since the [6]
abstraction is inherently multi-session, the [7] analysis has to directly address
the more complex multi-session case.

Our results for mutual authentication protocols follow the lines of Micciancio
and Warinschi [45]. However, since we use the UC abstraction of idealized encryp-
tion, our characterization results are unconditional (rather than based on compu-
tational assumptions), can be meaningfully stated in the simpler terms of a single
session, and provide the stronger security guarantees of the UC framework.

Laud [32] investigates the concrete cryptographic properties guaranteed by
certain symbolic secrecy criteria for protocols using symmetric encryption. He
also shows how these symbolic criteria can be automatically verified. However,
these criteria are different from the ones discussed here. Specifically, following the
traditional symbolic formulation, it is only required that the adversary obtains no
information about the key during the course of the protocol, and “real-or-random
secrecy” against active adversaries is not considered. Consequently, these criteria
do not guarantee secure key exchange, nor are they preserved under composition.

Concurrently to this work, Cortier and Warinschi [52] formulate another sym-
bolic secrecy criterion for key exchange protocols, demonstrate how to automat-
ically verify this criterion, and show that this criterion implies a cryptographic
secrecy criterion in the style of “real-or-random” secrecy against active adver-
saries. However, also in that work the symbolic criterion follows the tradition of
only requiring that the adversary obtains no information on the secret key. Con-
sequently, their cryptographic criterion falls short of guaranteeing secrecy in a
general protocol setting, as exhibited in [50, 20]. In particular, their criterion ad-
mits the above-mentioned buggy extension of the NSL protocol to key exchange.

Blanchet [11] provides a symbolic criterion (cast in a variant of the spi-calculus
[1]) that captures a secrecy property, called “strong secrecy”, that is similar to
our symbolic secrecy criterion for the exchanged key. Essentially, the criterion

386 R. Canetti and J. Herzog

says that the view of any adversarial environment remains unchanged (modulo
renaming of variables) when the symbol representing the secret key is replaced
by a fresh symbol that’s unrelated to the protocol execution. In addition, an
automated tool for verifying this criterion is provided. Indeed, Blanchet’s tool is
the one we use for the automated analysis reported above.

Concurrently to this work, Backes and Pfitzmann [8] propose an abstract
secrecy criterion for key-exchange protocols that use their cryptographic library,
and demonstrate that this criterion suffices for guaranteeing cryptographically
sound secrecy. However, their criterion is still formulated within their full-fledged
cryptographic framework, rather than in a simplified symbolic model as done
here. Furthermore, it does not carry any secure composability guarantees.

Herzog, Liskov and Micali [30] provide an alternative cryptographic realization
of the Dolev-Yao abstraction of public-key encryption. Their realization makes
stronger cryptographic requirements from encryption scheme in use (namely,
they require “plaintext aware encryption”), and assumes a model where both the
sender and the receiver have public keys. Herzog later relaxes this requirement to
standard CCA-2 security [29], but that work (lacking any composition theorems)
still considers the multi-session case. Furthermore, it only connects executions of
protocols in the concrete setting to executions of protocols in the symbolic set-
ting. It does not investigate whether security in the symbolic setting implies or
is implied by security in the concrete setting, which the main focus of this work.

Micciancio and Panjwani [43] study computationally sound symbolic analysis
of group key agreement protocols with adaptively changing membership. How-
ever, both their symbolic and concrete secrecy criteria are very different than
the ones here. In particular, their symbolic criterion is a trace property, rather
than a “real-or-random” style criterion as the one here.

Patil [48] extends the present work to handle also mutual authentication and
key exchange protocols that use digital signatures in addition to public-key en-
cryption. That work demonstrates the flexibility and modularity of the approach
initiated here.

Organization. This paper is an extended abstract of the work presented in [19].
Section 2 contains a very high-level overview of the UC framework and the Dolev-
Yao style symbolic model. Section 3 defines simple protocols and presents two
variants of the NSL protocol, written as simple protocols. It also sketches how
simple protocols can be instantiated using concrete, fully-specified encryption
schemes. Section 4 presents the Mapping lemma, which translates between traces
of simple protocols and symbolic protocols. This lemma plays a central role in
our analysis.

We then turn to the specific tasks of mutual authentication and key-exchange.
Due to lack of space, we omit the treatment of mutual authentication from
this abstract. (Full treatment appear in [19].) The treatment of key exchange is
sketched in Section 5. This includes a discussion of the inadequacy of the tradi-
tional symbolic secrecy criterion, the new symbolic criterion, and the equivalence
with the UC notion of realizing the ideal key exchange functionality. We conclude
by discussing future research directions.

Universally Composable Symbolic Analysis of Mutual Authentication 387

2 Background

2.1 The UC Framework

The UC framework provides a general way for specifying the security require-
ments of cryptographic tasks, and asserting whether a given protocol realizes
the specification. A salient property of this framework is that it provides strong
composability guarantees: A protocol that realizes the specification continues
to realize the specification regardless of the activity in the rest of the network,
without “unexpected side-effects”.

The security requirements of tasks are specified by envisioning an “ideal pro-
cess” where the participants can hand their inputs for the task to an imaginary
“trusted party”, who locally computes the desired outputs and hands them back
to the parties. The code run by the trusted party is called an ideal functionality.
This code is intended to capture the security and correctness requirements of
the cryptographic task at hand.

Deciding whether a protocol π UC-realizes an ideal functionality F (namely,
whether π is a secure protocol for the corresponding task) is done in three
steps, as follows. We first formulate a model for executing the protocol. This
model consists of the parties running the protocol, plus two adversarial entities:
the environment Z, which generates the inputs for the parties and reads their
outputs, and the adversary A, which reads the outgoing messages generated by
the parties, and delivers incoming messages to the parties. The adversary and
the environment can interact freely during the protocol execution. (In fact, in
this model one can treat them as a single entity without losing generality.)

Next, we consider an “ideal process” for realizing the given ideal functionality
(i.e., the task). This process is similar to the process of executing the protocol π,
with two important exceptions. First, the inputs that the environment generates
for the parties running the protocol are given to a trusted party that executes
the code of the ideal functionality F. Similarly, the outputs generated by F are
given to the environment as the outputs coming from the parties. Second, the
adversary A for interacting the protocol is replaced by an adversary S that does
not interact directly with the parties; instead, S interacts directly with F (in a
way specified by F). The communication between S and Z remains arbitrary.

Finally, we say that π UC-realizes functionality F if for any adversary A there
exists an adversary S such that no (polytime) environment Z can tell with non-
negligible probability whether it is interacting with and execution of π with
adversary A, or alternatively with the ideal process for F and adversary S. This
in particular means that the I/O behavior of the good parties in the protocol
execution is essentially the same as that of the ideal functionality; in addition,
the information that the environment learns from A on the execution of π can
be generated (or, “simulated”) by S, given only the information that it learns
legally from interacting with F.

The following universal composition theorem holds in this framework. Let π is a
protocol that UC-realizes functionality F, and let ρ be a protocol that makes calls
to (multiple instances of) the trusted party running F. Let ρπ be the “composed

388 R. Canetti and J. Herzog

protocol” which is identical to ρ except that calls to F are replaced by calls to
π. Then, protocol ρπ behaves in an indistinguishable way from the original ρ. In
particular, if ρ UC-realizes some ideal functionality G then so does ρπ.

An additional theorem that will be useful for substantiating our treatment is
universal composition with joint state (JUC) [21]. Notice that the UC theorem only
applies to protocols ρπ where the honest parties maintain completely disjoint
local states for the different instances of π. In contrast, the JUC theorem applies
to cases where the different instances of π have some joint state. Specifically,
let π̂ be a protocol that, in one instance, UC-realizes multiple instances of ideal
functionality F. (Formally, let F̂ be the ideal functionality that exhibits, in a
single instance, the behavior of multiple instances of F. Then π̂ is a protocol
that UC-realizes F̂.) Let ρ be an arbitrary protocol that uses multiple instances
of F, and let π[π̂] be the composed protocol where each party runs a single
instance of ρ plus a single instance of π̂, and where all the inputs provided by
π to all the instances of F are forwarded to the instance of π̂. Similarly, the
outputs of the single instance of π̂ are given to ρ as coming from the various
instances of F. Then, the JUC theorem states that protocol ρ[π] UC-emulates
the original protocol ρ. Then, the JUC theorem states that protocol ρ[π] behaves
in an indistinguishable way from the original ρ. In particular, if ρ UC-realizes
some ideal functionality G then so does ρπ.

2.2 The Symbolic Model

The symbolic model (also called the “Dolev-Yao” model) is a simplified model for
analyzing protocols that use cryptographic primitives. In this model, messages
are represented as strings of symbols, explicitly describing their parse trees, and
encryption is represented as an abstract operation. Thus, Enc(M ;K) is not the
application of an algorithm to a pair of bit-strings, but the sequence of charac-
ters “Enc(M ;K)” (or the parse-tree created when the encryption constructor is
applied to the sub-trees M and K). Because of its simplicity, this model allows
the analyst to focus on the structure of protocols independently of the specific
algorithms used to implement them. While the full-fledged Dolev-Yao model in-
cludes a variety of primitives such as symmetric encryption and signatures, we
focus on a sub-model which includes only asymmetric encryption.

The symbolic mode has several components. Firstly, the model uses a sym-
bolic algebra A to represent messages of a protocol. The atomic elements of the
algebra are used to represent primitive structures such as party identifiers, public
encryption keys, random challenges (“nonces”), and secret keys. (The party iden-
tifiers and public keys can be either honest, or corrupted.) The two operations
of the algebra represent abstracted pairing (or concatenation) and encryption.
Thus, the compound elements of the algebra (i.e., those messages produced by
the operations) represent those messages that pair or encrypt primitive mes-
sages (or other, simpler, compound messages). Lastly, the algebra is defined to
be free: each message has exactly one representation. Put another way, the alge-
bra admits no equalities other than identity: two distinct parse-trees will always
represent two distinct messages.

Universally Composable Symbolic Analysis of Mutual Authentication 389

Secondly, symbolic protocols are defined simply as sets of roles, which are
themselves defined by a state transition table. Participants that engage in a role
must maintain their current state. (For convenience, this state is defined to
be the sequence of messages they have seen and sent so far.) Then, when a
participant receives a message, it cross-indexes that message and its current state
in the state transition table to discover (1) the message it must then transmit,
and (2) possibly a message to output locally. It then updates its internal state
accordingly. Here all inputs, outputs, and messages are compound messages from
the algebra.

Definition 1. A role R in a symbolic protocol P is a mapping from the set of
states S = (A)∗, an element in the algebra A representing the incoming message,
and a name from the set of names M representing the name of the participant,
to a pair of values from A representing values to transmit and (locally) output
respectively, and a new state (which is the old state with the addition of the new
incoming message). That is:

R : S ×A×M → A×A× S.

Thirdly, the symbolic model considers a very restricted symbolic adversary. In
particular, the adversary is defined in two parts: its initial knowledge (a set of
symbolic messages), and the adversary operations it can use to deduce new mes-
sages from known ones. (These known messages can include not only its initial
knowledge, but also the messages sent during the protocol execution.) These
adversary operations are extremely limited. Specifically, the adversary can con-
catenate messages, de-concatenate elements of a message, encrypt a message with
a given public key, or decrypt a given symbolic ciphertext if the corresponding
public key is corrupted. Note that this list of adversary operations implicitly
defines the strength of “ideal” encryption: it is strong enough to prevent the
adversary from performing any other operations to ciphertexts. The adversary
may, however, combine these basic operations in any way that it pleases. This
gives rise to the definition of closure: the closure of a message (or a set of mes-
sages) is the set of all messages that the adversary can potentially derive from
the given message (or set). That is, the closure operation defines the messages
which the adversary can create and transmit at any point.

With this, the symbolic model defines (in the straightforward way) how sym-
bolic protocols execute in the presence of a symbolic adversary. That is, an
execution consists of a sequence of events where each event is either:

– The delivery of a message to a participant and the participant replying in
accordance with its role, or

– The adversary intercepting a message and replacing it with a message drawn
from the closure.

The trace of an execution is the sequence of these events. The security properties
of the symbolic model are typically (but not always) predicates on sets of traces:
a protocol satisfies such a security property if the predicate is satisfied by the
set of that protocol’s possible (or valid) traces.

390 R. Canetti and J. Herzog

The true power of the symbolic model comes from the fact that so many
aspects of execution (such as complexity-classes and probabilities) are simply
abstracted away, allowing the analyst to focus on “structural flaws”. Also, be-
cause the symbolic adversary is easily described as a simple, non-deterministic
machine, it becomes possible to create specialized algorithms to analyze pro-
tocols in this setting. Examples of this abound (e.g. [36, 40, 46, 38]) and later
in this work we use one such automated tool to perform a symbolic analy-
sis which we have (by then) shown to be computationally sound in the UC
model.

3 Simple Protocols

Although the UC framework and the symbolic model were both designed for
the purpose of security analysis, they differ in some very important ways. For
example, the symbolic model does not explicitly represent the internal workings
of the honest participants, and therefore makes no guarantee that the transition
tables of the honest participants can be efficiently computed. The UC frame-
work, on the other hand, imposes very little structure on the format of messages
and allows participants to create messages using computations that cannot be
modeled in the symbolic model.

Thus, to reconcile these two frameworks, we limit our attention to a particular
class of protocols called simple protocols. These protocols are still sets of roles
(for our purposes, the two roles of initiator and responder) but these roles are
programs written in the programming language of Figure 2.

The language of simple protocols is defined in terms of the UC framework.
Still, the commands of this language reflect the structure of the symbolic model.
Furthermore, the encryption operation of this language is defined in terms of
the abstract UC ‘certified public-key encryption’ functionality Fcpke in Figure 4.
This functionality captures, in an idealized way, the properties of public-key
encryption in the case where parties know the public keys of each other in
advance. In [19] we show how Fcpke can be realized given a certification au-
thority plus any encryption scheme that is secure against chosen ciphertext
attacks.

To demonstrate the expressive power of the programming language that de-
fines simple protocols, we express in this language two protocols. One protocol is
the Dolev-Dwork-Naor authentication protocol which was originally presented in
concrete cryptographic terms [23]. The other protocol is the Needham-Schroeder-
Lowe (NSL) protocol, which is traditionally presented in symbolic form [47, 35, 36].
In fact, we extend the traditional description of NSL (which treat the protocol as a
mutual authentication protocol) to a key exchange protocol. That is, we prescribe
a way for the parties to locally output a key. Furthermore, we present two alter-
native methods for computing the output key. While these two methods look very
similar, they turn out to have very different security properties. See more details
in Section 5. These two variants of NSL are shown in Figure 3.

Universally Composable Symbolic Analysis of Mutual Authentication 391

Π ::= begin; statementlist
begin ::= input(SID, PID0, PID1, RID);

(Store 〈“sid”, SID〉, 〈“pid”, PID0〉, 〈“pid”, PID1〉, 〈“role”, RID〉)
in local variables MySID, MyName, PeerName and MyRole)

statementlist ::= statement statementlist
| finish

statement ::= newrandom(v)
(generate a k-bit random string r and store 〈“random”, r〉 in
v)

| encrypt(v1, v2, v3)
(Send (Encrypt, 〈PID, SID〉 , v2) to Fcpke where
v1 = 〈“pid”, PID〉, receive c, and store
〈“ciphertext”, c, 〈PID1, SID〉〉 in v3)

| decrypt(v1, v2)
(If the value of v1 is 〈“ciphertext”, c′〉 then send
(Decrypt, 〈PID0, SID〉 , c′) to Fcpke instance 〈PID0, SID〉,
receive some value m, and store m in v2. Otherwise, end.)

| send(v)
(Send value of variable v)

| receive(v)
(Receive message, store in v)

| output(v)
(Send value of v to local output)

| pair(v1, v2, v3)
(Store 〈“pair”, σ1, σ2〉 in v3, where σ1 and σ2 are the values of
v1 and v2, respectively.)

| separate(v1, v2, v3)
(If the value of v1 is 〈“join”, σ1, σ2〉, store σ1 in v2 and σ2 in
v3 (else end))

| if (v1 == v2 then statementlist else statementlist
(where v1 and v2 are compared by value, not reference)

finish ::= output(〈“finished”, v〉); end.

The symbols v, v1, v2 and v3 represent program variables. It is assumed that
〈“pair”, σ1, σ2〉 encodes the bit-strings σ1 and σ2 in such a way that they can be
uniquely and efficiently recovered. A party’s input includes its own PID and the PID
of its peer. Recall that the SID of an instance of Fcpke is an encoding 〈SID, PID〉 of the
PID and SID of the legitimate recipient.

Fig. 2. The grammar of simple protocols

3.1 From Simple Protocols to Fully-Specified Protocols

Simple protocols are by themselves somewhat abstract, in that they use
Fcpke rather than some fully-specified public-key encryption. This abstraction
is justified as follows. In [19] we show how Fcpke can be realized using func-
tionality Fpke (which represents the basic properties of public-key encryption
schemes) and functionality Freg (which represents some basic properties of a
certification service). Furthermore, it is shown in [17] how to realize Fpke given
any public-key encryption scheme that is secure against chosen ciphertext
attacks.

392 R. Canetti and J. Herzog

In the standard notation of the symbolic model, the protocol is usually written as:

1. A → B : Enc(A Na; KB)
2. B → A : Enc(b Na Nb; KA)
3. A → B : Enc(Nb; KB)

where A → B : M indicates that A sends the message M to B, Na and Nb are random
values (generated by A and B respectively, and KA and KB are the public encryption
keys of A and B respectively. In Version 1 of the protocol, the parties output Na as
their secret key. In Version 2, As a simple protocol, the parties output Nb as the secret
key. Written as a simple protocol, the protocol involves two roles, as follows:

On input (p1 : PID; r1 : RID; s : SID), (p2 : PID; r2 : RID), do:

Initiator (Minit):

send((p1; r1; s), (p2; r2));
newrandom(na);
pair(p1, na, a na);
encrypt(p2, s, r2, a na, a na enc);
send(a na enc);
receive(b na nb enc);
decrypt(b na nb enc, b na nb);
separate(b na nb,b, na nb);
if (b == p2) then
separate(na nb, na2, nb);
if (na == na2) then
encrypt(p2, s, r2, nb, nb enc);
send(nb enc);
pair(p1, p2, a b);
pair(a b, x , output);
output(〈“finished”, output〉);
end.

else send(〈“finished”, ⊥〉); end.
else send(〈“finished”, ⊥〉); end.

Responder (Mresp):

receive(a na enc);
decrypt(a na Enc(, ; a) na);
separate(a na, a, na);
if (b == p2) then
newrandom(nb);
pair(p1, na, b na);
pair(b na, nb,b na nb);
encrypt(p2, s, r2, b na nb,b na nb enc);
send(b na nb enc);
receive(nb enc);
decrypt(nb enc, nb2);
if (nb == nb2) then
pair(p1, p2, b a);
pair(b a, x , output);
output(〈“finished”, output〉);
end.

else send(〈“finished”, ⊥〉); end.
else send(〈“finished”, ⊥〉); end.

Version 1: x=na (Initiator’s nonce output as secret key)
Version 2: x=nb (Responder’s nonce output as secret key)

Fig. 3. The Needham-Schroeder-Lowe (NSL) protocol

These facts, combined with the UC theorem, provide a straightforward way of
instantiating simple protocols, while preserving security: replace each instance of
Fcpke by an instance of a CCA-secure encryption scheme, and use the certification
authority to publicize the public keys. However, this method results in highly
inefficient protocols, where each instance of the instantiated simple protocol uses
its own instance of the public-key encryption scheme. Instead, we would like
to obtain a protocol where each party uses a single instance of the public-key
encryption scheme for multiple instances of the instantiated simple protocol.

Universally Composable Symbolic Analysis of Mutual Authentication 393

Functionality Fcpke

Fcpke proceeds as follows, when parameterized by message domain M , a prob-
abilistic function E with domain M and range {0, 1}∗, and a probabilistic
function D of domain {0, 1}∗ and range M ∪ error. The SID is assumed to
consist of a pair SID = (PIDowner , SID′), where PIDowner is the identity of a
special party, called the owner of this instance.

Encryption: Upon receiving a value (Encrypt, SID, m) from a party P proceed
as follows:
1. If m /∈ M then return an error message to P.
2. If m ∈ M then:

– If party PIDowner is corrupted, then let ciphertext ← Ek(m).
– Otherwise, let ciphertext ← Ek(1|m|).

Record the pair (m, c), and return c.
Decryption: Upon receiving a value (Decrypt, SID, c) from the owner of this

instance, proceed as follows. (If the input is received from another party
then ignore.)
1. If there is a recorded pair (c, m) for some m, then hand m to P. (If

there is more than a single recorded pair for c entry then return an
error message.)

2. Otherwise, compute m = D(c), and hand m to P.

Fig. 4. The certified public-key encryption functionality, Fcpke

One way to do that would be to consider the entire multi-session interaction
as a single instance of a more complex protocol. That protocol can now use a
single instance of Fcpke per party. But this approach would force us to directly
analyze the more complex multi-session protocols as a single unit. Instead we
would like to be able to specify and analyze simple protocols n terms of a single
instance (e.g., a single exchange of a key in the case of key-exchange), while
making sure that the instantiated protocol uses only a single instance of Fcpke
per party. This can be obtained using the UC with joint state theorem, along
with an additional simple technique from [21].

We first observe that the following protocol realizes, in a single instance,
multiple instances of Fcpke (which has the same decryptor), using only a sin-
gle instance of Fcpke : Whenever some party asks to encrypt a message m for
an instance of Fcpke with session identifier sid, the protocol encrypts the pair
(m, sid). Whenever some party asks to decrypt a ciphertext c for an instance sid,
the protocol decrypts c, verifies that the decrypted value is of the form (m, sid′)
for some m, verifies that sid′ = sid, and returns m. If sid′ �= sid then an error
value is returned. Denote this protocol by es, for “encrypt the session ID”. (This
protocol and its analysis are analogous to the [21] protocol for realizing multiple
instances of an ideal signature functionality using a single instance.)

Now, consider some protocol Π that involves multiple instances of a simple
protocol π. (Protocol Π may simply describe an adversarially-controlled invo-
cation of multiple instances of π, or alternatively Π may be geared towards
realizing some other ideal functionality, potentially calling other protocols as

394 R. Canetti and J. Herzog

subroutines.) In Π , each party uses a different instance of Fcpke per instance of
π. We can now use the JUC theorem to assert that the protocol Π [es] behaves
in the same way as Π . Furthermore, in Π [es] each party uses a single instance
of Fcpke throughout the interaction.

4 The Mapping Lemma

While simple protocols are concrete protocols within the UC framework and
are expressed in terms of interactive Turing machines, etc., they can be can be
thought of as lying in the intersection of the UC framework and the symbolic
model. This intuition is formalized via a protocol mapping which translates a
concrete simple protocol p into a symbolic protocol symb(p). The variables of
the ‘program’ are interpreted as elements of the symbolic message algebra A.
Symbols are used instead of values for names and fresh randomness. Instead of
using the functionality Fcpke for encryption and decryption, the symbolic con-
structor is applied or removed. Lastly, the symbolic pairing operator is applied
or removed in the place of bit-string concatenation or separation.

We proceed as follows. First, we define the trace of an execution of a simple
protocol in the presence of an adversarial environment within the UC frame-
work. The trace provides a global view of the execution, including the views
of the environment and the participants. It consists of a sequence of input,
outputs, messages, and local variables (represented in strings). It also contains
the participants’ calls to Fcpke, thus capturing their internal cryptographic op-
erations. Similarly, we define the trace of an execution of a symbolic protocol
within the symbolic model. Again, the trace represents a global view of the (now
symbolic) execution. Here, the trace consists of a sequence of expressions from
the underlying symbolic algebra, but as opposed to concrete traces the internal
cryptographic operations of participants are not represented.

Next, we define a trace mapping, also denoted symb(), which translates a trace
of a concrete simple protocol into a symbolic trace. This mapping is straightfor-
ward except that the calls to Fcpke in the concrete trace do not map to events in
the symbolic trace, but are instead used as intermediate values in the mapping.

Finally, we show that this mapping provides soundness to trace properties
in the symbolic protocol. That is, symb() almost always translates traces of a
concrete simple protocol to a trace of the corresponding symbolic protocol that
is valid (meaning: one that could have been produced by the symbolic adversary
and symbolic protocol). That is, we prove the following mapping lemma:

Lemma 1. For all simple protocols p, adversaries A, environments Z, and in-
puts z of length polynomial in the security parameter k, the probability

Pr [t ← tracep,A,Z(k, z) : symb(t) is not a valid DY trace for symb(p)]

is negligible.

Thus, the adversary in the UC setting can do nothing with its general computa-
tional power that the symbolic adversary cannot also do (except with negligible
probability).

Universally Composable Symbolic Analysis of Mutual Authentication 395

We note that the statement of the mapping lemma is unconditional. Further-
more, it applies even to computationally unbounded environments and adver-
saries. In fact, the only source or error in the mapping is in cases where the
environment in the concrete model “guesses” the value of some nonce. Since
nonces are chosen at random from a large enough domain, the probability of
error is negligible (in fact, it is exponentially small in the security parameter).

The mapping lemma is a central technical tool in our proofs of equivalence
of the symbolic and concrete security criteria for mutual authentication and key
exchange. Indeed, mutual authentication follows almost immediately from this
lemma. (One can interpret this lemma as saying that trace properties of the
symbolic protocol must also be trace properties of the original simple protocol,
and mutual authentication is a trace property.) The lemma also seems to be of
general interest beyond the rest of this work.

Finally, we note that the approachof mapping computational traces to symbolic
ones comes from [45]. However, there the mapping holds only for computationally
bounded adversaries and only under computational hardness assumptions.

5 Key Exchange

Key-exchange protocols require two security guarantees: an agreement property,
establishing that the two parties share a common key, and a secrecy property
for the agreed key. That is, the agreement property requires that if two parties
P and P ′ obtain keys and associate these keys with each other, then the two
keys are equal. The secrecy requirement requires that in this case the joint key
should be “unknown” to the adversary.

In the UC model, these requirements are both captured in the ideal func-
tionality F2ke (Figure 5). This functionality waits to receive requests from two
parties to exchange a key with each other, and then hands a secretly chosen
random key to the parties. (Each party gets the output key only when the ad-
versary instructs. Furthermore, the key is guaranteed to be random and secret
only if both parties are uncorrupted.1)

Providing a sound symbolic security criterion for key-exchange turns out be a
more delicate task. The traditional symbolic criterion for key exchange requires
these two properties in a straightforward way. Agreement is represented as a trace
property: in any valid trace where both parties output a key symbol, it must be
the same key symbol which is output. Secrecy, on the other hand, is represented
by the separate trace property that there be no valid trace in which the adversary
transmits the shared key ‘in the clear.’ Because the symbolic adversary is able to
transmit any message it can derive, such a requirement implies that the session
key will never be something which the symbolic adversary can learn.

However, notice that this symbolic secrecy property differs in flavor from the
standard definitional approach of the computational model. The traditional sym-
1 The present formulation of F2ke is slightly different than the formulation in [17]. But

the difference only affects the expected order of receiving the initial inputs from the
parties, and does not affect the secrecy and authenticity properties of the exchange.

396 R. Canetti and J. Herzog

Functionality F2ke

F2ke proceeds as follows, running with security parameter k. At the first acti-
vation, choose and record a value κ

R← {0, 1}k. Next:

1. Upon receiving an input (EstablishSession, SID, P, P′, RID) from some
party P send this input to the adversary. In addition, if no pair is recorded,
or the pair (P′, P) is recorded, then record (P, P′). (Note that at most two
pairs are ever recorded, and if there are two pairs, then they consist of the
same party identities in reverse order.)

2. Upon receiving a request (SessionKey, SID, P′′, k̃) from the adversary, do:
(a) If a tuple (P′′, P′′′) is recorded, and P′′′ is corrupted, then output

(Finished, sid, k̃) to P′′. (Here the adversary determines the key.)
(b) If P′′′ is uncorrupted, then Output (Finished, SID, κ) to P′′.
(c) If no tuple (P′′, P′′′) is recorded, then ignore the request.

Fig. 5. The Key Exchange functionality

bolic definition requires only that the adversary be unable to derive the value of
the key. However, the UC definition (following other computational definitions,
e.g. [20]) require that the adversary be unable to distinguish between the real
key and a random key even when given the candidate value during the protocol
execution. It is tempting at first to believe that, since in the symbolic model the
security guarantees are “all or nothing” in flavor, the ability to symbolically gen-
erate a secret and the ability to distinguish it from random should be equivalent.
However, it turns out that this is not the case. That is, there exists a protocol
which provably secure in the sense of the traditional symbolic definition, , but
is insecure when instantiated by real cryptographic primitives. In particular, it
does not realize the functionality F2ke.

Consider the NSL protocol from Figure 3. This protocol was originally pro-
posed for mutual authentication only, but it has long been recognized that either
of the two random values used in the protocol (Na and Nb in the symbolic nota-
tion, na and nb in the simple protocols) could be regarded as a secret session key.
Furthermore, it has been proven many times (e.g., [36, 54]) that both of these
values are secret in the sense of the symbolic definition. However, as seen by the
attack below, the NSL variant which outputs nb as the shared key (version 1
of Figure 3) is insecure in any reasonable protocol setting. In particular, it does
not implement F2ke.

Consider an execution of the NSL protocol that proceeds normally until the
initiator has sent the third message, but before the responder receives that mes-
sage. At this point, the responder is expecting to receive the random value nb,
encrypted in his public encryption key. However, initiator has already completed
the protocol and terminated, and so the attacker has already received the value
nb and must distinguish it from a random value. Rephrased in terms of the
UC framework, the environment has received the local output from one of the
participants but it doesn’t know if this is the real key nb (as in the protocol
setting) or a random key (as in the functionality and simulator setting). The

Universally Composable Symbolic Analysis of Mutual Authentication 397

third message of the protocol provides an straightforward way of distinguishing
these two cases.

We provide a detailed specification of the attack in terms of the UC frame-
work. We stress however that the attack is quite generic, and does not depend
on the specific formulation of one model or another.

The adversary flips a coin to choose a value. If the coin is ‘heads,’ the adversary
chooses the candidate key. If the coin is ‘tails,’ on the other hand, the adversary
chooses a new random key of the same length. In either case, the adversary en-
crypts the chosen value in the public key of the responder and sends it to that
party.

– If the adversary is in the protocol setting, then the responder will be able to
distinguish between the candidate key (which is the actual key) and a new
random value, and progress accordingly.

– If the adversary is in the functionality/simulator setting, the simulator (who
must simulate the responder’s behavior) does not see the session key pro-
duced by F2ke. This it will be unable to determine the coin-flip of the adver-
sary. Thus, the simulator will be able to accurately simulate the responder
with only 50% probability.

The salient point here is that, while the protocol never explicitly leaks the key,
it give the adversary an opportunity to verify candidate values for the key.
Thus, this protocol cannot fulfill the UC definition of key-secrecy, even though
it has been shown to fulfill the traditional symbolic definition. Thus, computa-
tional soundness against the UC framework requires a new symbolic definition of
secrecy.

The New Symbolic Criterion. Unlike the traditional symbolic criterion, our
new definition is not expressed as a predicate on valid traces. Instead, it trans-
lates into the symbolic model the intuition behind the real-or-random secrecy
criterion from cryptographic definitions of secrecy. To do that, we formalize the
notion of a symbolic adversary strategy.

Definition 2 (Adversary Strategy). Let an adversary strategy be a sequence
of adversary events that respect the Dolev-Yao assumptions. That is, a strategy
Ψ is a sequence of instructions I1, I2. . . In, where each Ii has one of the following
forms, where i, j, k are integers:

[“receive”, i] [“enc”, j, k, i] [“dec”, j, k, i]
[“pair”, j, k, i] [“extract-l”, j, i] [“extract-r”, j, i]
[“random”, i] [“name”, i] [“pubkey”, i]

[“deliver”, j, Pi]

When executed against protocol P, a strategy Ψ produces the following Dolev-Yao
trace Ψ(P). Go over the instructions in Ψ one by one, and:

– For each [“receive”, i] instruction, if this is the first activation of party Pi,
or Pi was just activated with a delivered message m, then add to the trace

398 R. Canetti and J. Herzog

a participant event (P ′
j ,L,m) which is consistent with the protocol P. Else

output the trace ⊥.
– For any other instruction, add the corresponding event to the trace, where

the index i is replaced by mi, the message expression in the ith event in the
trace so far. (If adding the event results in an invalid trace then output the
trace ⊥.)

We also need to define the ‘observable portion’ of a trace, which we do using
public-key patterns (due originally to Abadi and Rogaway [4].)

Definition 3 (Public-key pattern[4, 29]). Let T ⊆ KPub (public keys) and
m ∈ A. We recursively define the function p(m, T) to be:

– p(K,T) = K if K ∈ K (public keys)
– p(A, T) = A if A ∈ M (names/party identifiers)
– p(N,T) = N if N ∈ R (random challenges/nonces)
– p(N1|N2, T) = p(N1, T)|p(N2, T) (pairing)

– p(Enc(m;K) , T) =
{

Enc(p(m, T);K) if K ∈ T
〈|T |〉K (where T is the type tree of m) o.w.

Then patternpk (m, T), the public-key pattern of an Dolev-Yao message m rela-
tive to the set T , is

p(m,KPub ∩ C[{m} ∪ T]).

If t = H1,H2, . . .Hn is a Dolev-Yao trace where event Hi contains message mi

then patternpk (t , T) is exactly the same as t except that each mi is replaced
by p(mi,KPub ∩ C[S ∪ T]) where S = {m1,m2, . . .mn}. The base pattern of a
message m, denoted pattern (m), is defined to be patternpk (m, ∅), and pattern (t)
is defined to be patternpk (t , ∅).

Our new symbolic definition of secure key-exchange requires that, for all adver-
sary strategies, when a given strategy is applied to the protocol, the observable
portion of the resulting trace looks the same when the shared key is the output
of the protocol and when it is a fresh key symbol (representing a fresh random
key).

Definition 4 (Variable Renaming). Let R1, R2 be random-strings symbols,
and let t be an expression in the algebra A. Then t[R1 �→R2] is the expression
where every instance of R1 is replaced by R2.

Definition 5 (Symbolic Criterion for Key Exchange). A Dolev-Yao pro-
tocol P provides Dolev-Yao two-party secure key exchange (DY-2SKE) if

1. (Agreement) For all P0 and P1 �∈ MAdv and Dolev-Yao traces valid for P in
which P0 outputs 〈Starting|P0|P1|m〉 and P1 outputs 〈Starting|P1|P0|m′〉, if
participant P0 produces output message 〈Finished |m0〉 and participant P1
produces output message 〈finished|m1〉, then m0 = P0|P1|R and m1 =
P1|P0|R for some R ∈ R.

Universally Composable Symbolic Analysis of Mutual Authentication 399

2. (Real-or-random secrecy) Let Pf be the protocol P except that a fresh fake
key Rf is output by terminating participants in place of the real key Rr. Then
for every adversary strategy Ψ ,

pattern (Ψ(P)) = pattern
(
Ψ(Pf)[Rf �→Rr]

)
Finally, we demonstrate that the new symbolic security criterion for key exchange
is equivalent to the UC criterion. (Again, equivalence holds unconditionally.)

Theorem 1. Let p be a simple protocol. Then p UC-realizes F2ke if and only if
symb(p) achieves Dolev-Yao secure key-exchange.

To demonstrate the “only if” part (namely, the completeness of the symbolic
condition) we show how to turn any symbolic trace of symb(p) that violates the
symbolic key exchange criterion into a strategy of a concrete environment for
distinguishing between an execution of p and the ideal process for F2ke.

The “if” part (namely, the soundness of the symbolic condition) is proven as
follows. Given a simple protocol p, we construct a general strategy for a simulator
(i.e, an ideal-process adversary) within the UC framework. We then show that,
except with negligible probability, any environment that distinguishes between
real and ideal executions can be turned into a (single) symbolic trace of symb(p)
that violates the symbolic key exchange criterion.

This sketch omits many details however; the proof is rather delicate. In par-
ticular, demonstrating the second property with respect to the symbolic secrecy
criterion requires some work.

6 Future Research

This work demonstrates that completely symbolic analysis of security properties
within a simulation-based, compositional cryptographic framework is possible.
Furthermore, the chosen symbolic framework is one that is very close to the
language of known automated verification tools. As such, it opens the door to a
number of questions and challenges. For example one might wish to generalize
our results to a richer and less restrictive “programming language” for proto-
cols. One direction is to enlarge the set of allowed operations and to incorporate
other cryptographic primitives, while retaining the ability to analyze only a
single session of the protocol in question. Natural candidates include the Diffie-
Hellman exchange, signatures schemes, pseudo-random functions, and message
authentication codes. Other generalizations include adaptive security (i.e. secu-
rity against adversaries that corrupt parties throughout the computation), and
protocols where even their symbolic counterparts are randomized.

A second direction is to apply a similar analytical methodology to other cryp-
tographic tasks, and even tasks that were never before addressed using formal
tools. For instance, it may be possible to come up with a symbolic representation
of, say, two-party protocols that use commitment schemes, and provide a sym-
bolic criterion for when such protocols are zero-knowledge protocols (e.g., satisfy
the ideal zero-knowledge functionality). Similarly, one can potentially come up

400 R. Canetti and J. Herzog

with symbolic criteria as to when a protocol UC-realizes an arbitrary given ideal
functionality.

Acknowledgments

We thank Shai Halevi and Akshay Patil for very useful comments and discus-
sions. In particular, Shai discovered a bug in a previous version of the proof of
Theorem 1, and Akshay discovered a bug in a previous formulation of Fcpke.

References

1. Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with secrecy types
and logic programs. In Conference Record of POPL 2002: The 2pth SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 33–44, Jan-
uary 2002.

2. Mart́ın Abadi and Andrew Gordon. A calculus for cryptographic protocols: the spi
calculus. Information and Computation, 148(1):1–70, 1999.

3. Mart́ın Abadi and Jan Jürjens. Formal eavesdropping and its computational in-
terpretation. In Naoki Kobayashi and Benjamin C. Pierce, editors, Proceedings,
4th International Symposium on Theoretical Aspects of Computer Software TACS
2001, volume 2215 of Lecture Notes in Computer Science, pages 82–94. Springer,
2001.

4. Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). Journal of Cryptology, 15(2):103–
127, 2002.

5. Pedro Adao, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Soundness of
abadi-rogaway logics in the presence of key-cycles. In Proceedings of the 10th Eu-
ropean Symposium On Research In Computer Security (ESORICS 2005). Springer,
September 2005.

6. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library
with nested operations (extended abstract). In Proceedings, 10th ACM confer-
ence on computer and communications security (CCS), October 2003. Full version
available at http://eprint.iacr.org/2003/015/.

7. Michael Backes and Birgit Pfitzmann. A cryptographically sound security proof of
the Needham-Schroeder-Lowe public-key protocol. In Proceedings of the 23rd Con-
ference on Foundations of Software Technology and Theoretical Computer Science
– FSTTCS, volume 2914 of Lecture Notes in Computer Science, pages 140–152.
Springer-Verlag, December 2003.

8. Michael Backes and Birgit Pfitzmann. Relating symbolic and cryptographic
secrecy. Cryptology ePrint Archive, Report 2004/300, November 2004.
http://eprint.iacr.org/.

9. Donald Beaver. Secure multiparty protocols and zero-knowledge proof systems
tolerating a faulty minority. Journal of Cryptology, 4(2):75–122, 1991.

10. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution.
In D. Stinson, editor, Advances in Cryptology - CRYPTO 1993, volume 773 of
Lecture Notes in Computer Science, pages 232–249. Springer-Verlag, August 1993.
Full version of paper available at http://www-cse.ucsd.edu/users/mihir/.

Universally Composable Symbolic Analysis of Mutual Authentication 401

11. Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In pro-
ceedings of the 2004 IEEE Symposium on Security and Privacy (S&P), Oakland,
CA, USA, May 2004. IEEE.

12. Bruno Blanchet. ProVerif automatic cryptographic protocol verifier user manual.
Available at http://www.di.ens.fr/ blanchet/crypto-eng.html, November 2004.

13. Manual Blum and Silvio Micali. How to generate cryptographically strong se-
quences of pseudo random bits. In Proceedings, 22th Annual Syposium on Foun-
dations of Computer Science (FOCS 1982), pages 112–117, 1982.

14. Manual Blum and Silvio Micali. How to generate cryptographically strong se-
quences of pseudo-random bits. SIAM Journal on Computing, 13(4):850–864, 1984.

15. Michael Burrows, Mart́ın Abadi, and Roger Needham. A logic of authentication.
ACM Transactions in Computer Systems, 8(1):18–36, February 1990.

16. Ran Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143–202, 2000.

17. Ran Canetti. Universal composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Syposium on Foundations of Computer Science (FOCS
2001), pages 136–145. IEEE Computer Society, October 2001.

18. Ran Canetti. Universally composable signature, certification, and authentication.
In Proceedings of the 17th IEEE Computer Security Foundations Workshop (CSFW
16), pages 219–233. IEEE Computer Society, June 2004.

19. Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of
cryptographic protocols (the case of encryption-based mutual authentication and
key exchange). Cryptology ePrint Archive, Report 2004/334, 2004.

20. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology -
Eurocrypt 2001, volume 2045 of Lecture Notes in Computer Science, pages 453–474.
Springer-Verlag, May 2001.

21. Ran Canetti and Tal Rabin. Universal composition with joint state. In Advances
in Cryptology - CRYPTO 2003, LNCS 2729, 2003, pages 265–281.

22. I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. A meta-
notion for protocol analysis. In Proceedings of the 12th IEEE Computer Security
Foundations Workshop (CSFW 12). IEEE Computer Society, June 1999.

23. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM Journal of
Computing, 30(2):391–437, 2000.

24. D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions
on Information Theory, 29:198–208, 1983.

25. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, 1984.

26. Shafi Goldwasser and Leonid Levin. Fair computation of general functions in
presence of immoral majority. In Alfred Menezes and Scott A. Vanstone, edi-
tors, CRYPTO, volume 537 of Lecture Notes in Computer Science, pages 77–93.
Springer, August 1990.

27. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

28. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital-signature scheme
secure against adaptive chosen-message attacks. SIAM J. Computing, 17(2):281–
308, April 1988.

29. Jonathan Herzog. A computational interpretation of dolev-yao adversaries. Theo-
retical Computer Science, 340:57–81, June 2005.

402 R. Canetti and J. Herzog

30. Jonathan Herzog, Moses Liskov, and Silvio Micali. Plaintext awareness via key
registration. In Advances in Cryptology - CRYPTO 2003, LNCS 2729, 2003, pages
548–564.

31. O. Horvitz and V. Gligor. Weak key authenticity and the computational complete-
ness of formal encryption. In Advances in Cryptology - CRYPTO 2003, LNCS 2729,
2003, pages 530–547.

32. P. Laud. Symmetric encryption in automatic analyses for confidentiality against
active adversaries. In proceedings of the 2004 IEEE Symposium on Security and
Privacy (S&P), Oakland, CA, USA, May 2004. IEEE.

33. P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-
time framework for protocol analysis. In Proceedings of the 5th ACM Conference
on Computer and Communication Security (CCS ’98), pages 112–121, November
1998.

34. P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. Probabilistic
polynomial-time equivalence and security protocols. In Jeannette M. Wing, Jim
Woodcock, and Jim Davies, editors, World Congress on Formal Methods, volume
1708 of Lecture Notes in Computer Science, pages 776–793. Springer, September
1999.

35. Gavin Lowe. An attack on the Needham–Schroeder public-key authentication pro-
tocol. Information Processing Letters, 56:131–133, 1995.

36. Gavin Lowe. Breaking and fixing the Needham–Schroeder public-key protocol using
FDR. In Margaria and Steffen, editors, Tools and Algorithms for the Construction
and Analysis of Systems, volume 1055 of Lecture Notes in Computer Science, pages
147–166. Springer–Verlag, 1996.

37. Nancy Lynch. I/O automaton models and proofs for shared-key communication
systems. In proceedings of the 12th IEEE Computer Security Foundations Work-
shop (CSFW 12). IEEE Computer Society, June 1999.

38. P. Maggi and R. Sisto. Using SPIN to verify security protocols. In Proceedings
of the 9th International SPIN Workshop on Model Checking of Software, number
2318 in Lecture Notes in Computer Science, pages 187–204, 2002.

39. Catherine Meadows. Applying formal methods to the analysis of a key management
protocol. The Journal of Computer Security, 1(1), January 1992.

40. Catherine Meadows. The nrl protocol analyzer: An overview. J. Log. Program.,
26(2):113–131, 1996.

41. Silvio Micali, Charles Rackoff, and Bob Sloan. The notion of security for proba-
bilistic cryptosystems. SIAM Journal on Computing, 17(2):412–426, April 1988.

42. Silvio Micali and Phillip Rogaway. Secure computation (abstract). In Joan Feigen-
baum, editor, CRYPTO, volume 576 of Lecture Notes in Computer Science, pages
392–404. Springer, August 1991.

43. Daniele Micciancio and Saurabh Panjwani. Adaptive security of symbolic encryp-
tion. In Theory of cryptography conference - Proceedings of TCC 2005, volume
3378 of LNCS, pages 169–187. Springer-Verlag, 2005.

44. Daniele Micciancio and Bogdan Warinschi. Completeness theorems for the Abadi-
Rogaway logic of encrypted expressions. Workshop on Issues in the Theory of
Security (WITS ’02), January 2002.

45. Daniele Micciancio and Bogdan Warinschi. Completeness theorems for the Abadi-
Rogaway logic of encrypted expressions. Journal of Computer Security, 12(1):99–
129, 2004.

46. John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated analysis of crypto-
graphic protocols using Murϕ. In Proceedings, 1997 IEEE Symposium on Security
and Privacy, pages 141–153. IEEE, Computer Society Press of the IEEE, 1997.

Universally Composable Symbolic Analysis of Mutual Authentication 403

47. Roger Needham and Michael Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 21(12):993–999, 1978.

48. Akshay Patil. On symbolic analysis of cryptographic protocols. Master’s thesis,
Massachusetts Institute of Technology, May 2005.

49. Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of
secure reactive systems. In Proceedings of the 7th ACM Conference on Computer
and Communication Security (CCS 2000), pages 245–254. ACM Press, November
2000.

50. C. Rackoff. Personal communication. 1995.
51. C. Rackoff and D. Simon. Noninteractive zero-knowledge proof of knowledge and

the chosen-ciphertext attack. In Advances in Cryptology– CRYPTO 91, number
576 in Lecture Notes in Computer Science, pages 433–444, 1991.

52. Shmuel Sagiv, editor. Computationally Sound, Automated Proofs for Security Pro-
tocols., volume 3444 of Lecture Notes in Computer Science. Springer, April 2005.

53. D. Song. Athena, an automatic checker for security protocol analysis. In pro-
ceedings of the 12th IEEE Computer Security Foundations Workshop (CSFW 12).
IEEE Computer Society, June 1999.

54. F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D. Guttman.
Strand spaces: Proving security protocols correct. Journal of Computer Security,
7(2/3):191–230, 1999.

Resource Fairness and Composability
of Cryptographic Protocols

Juan Garay1, Philip MacKenzie2, Manoj Prabhakaran3, and Ke Yang2

1 Bell Labs – Lucent Technologies
garay@research.bell-labs.com

2 Google
philmac@gmail.com, yangke@google.com

3 Computer Science Department, University of Illinois at Urbana-Champaign
mmp@uiuc.edu

Abstract. We introduce the notion of resource-fair protocols. Infor-
mally, this property states that if one party learns the output of the
protocol, then so can all other parties, as long as they expend roughly
the same amount of resources. As opposed to similar previously proposed
definitions, our definition follows the standard simulation paradigm and
enjoys strong composability properties. In particular, our definition is
similar to the security definition in the universal composability (UC)
framework, but works in a model that allows any party to request ad-
ditional resources from the environment to deal with dishonest parties
that may prematurely abort.

In this model we specify the ideally fair functionality as allowing par-
ties to “invest resources” in return for outputs, but in such an event
offering all other parties a fair deal. (The formulation of fair dealings
is kept independent of any particular functionality, by defining it us-
ing a “wrapper.”) Thus, by relaxing the notion of fairness, we avoid
a well-known impossibility result for fair multi-party computation with
corrupted majority; in particular, our definition admits constructions
that tolerate arbitrary number of corruptions. We also show that, as in
the UC framework, protocols in our framework may be arbitrarily and
concurrently composed.

Turning to constructions, we define a “commit-prove-fair-open” func-
tionality and design an efficient resource-fair protocol that securely re-
alizes it, using a new variant of a cryptographic primitive known as
“time-lines.” With (the fairly wrapped version of) this functionality we
show that some of the existing secure multi-party computation protocols
can be easily transformed into resource-fair protocols while preserving
their security.

1 Introduction

Secure multi-party computation (MPC) is one of the most fundamental
problems in cryptography, and has been investigated thoroughly over many
years [54,55,38,7,18,37]. Defining security is one of the first challenges in achiev-
ing this [37,13,48,14,40,43,3,50]. The universal composability (UC) framework

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 404–428, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Resource Fairness and Composability of Cryptographic Protocols 405

of Canetti [14] is among the models that provide perhaps the strongest secu-
rity guarantees. A protocol π that is secure in this framework is guaranteed to
remain secure when arbitrarily composed with other protocols, by means of a
“composition theorem.”

In this paper we investigate a less studied aspect of multiparty computation,
namely fairness. Informally, a protocol is fair if either all the parties learn the
output of the function, or no party learns anything (about the output).1 Clearly,
fairness is a very desirable property for secure MPC protocols, and in fact, many
of the security definitions cited above imply fairness. (See [40] for an overview
of different types of fairness, along with their corresponding histories.) Here we
briefly describe some known results about (complete) fairness. Let n be the total
number of participating parties and t be the number of corrupted parties. It is
known that if t < n/3, then fairness can be achieved without any set-up assump-
tions, both in the information-theoretic setting [7,18] and in the computational
setting [38,37] (assuming the existence of trapdoor permutations). If t < n/2,
one can still achieve fairness if all parties have access to a broadcast channel;
this also holds both information theoretically [51] and computationally [38,37].

Unfortunately, the above fairness results no longer hold when t ≥ n/2, i.e.,
when a majority of the parties are corrupted. In fact, it was proved that there
do not exist fair MPC protocols in this case, even when parties have access to a
broadcast channel [19,37]. Intuitively, this is because the adversary, controlling
a majority of the corrupted parties, can abort the protocol prematurely and
always gain some unfair advantage. This impossibility result easily extends to
the common reference string (CRS) model (where there is a common string
drawn from a prescribed distribution available to all the parties).

Nevertheless, fairness is still important (and necessary) in many applications
in which at least half the parties may be corrupted. One such application is
contract signing (or more generally, the fair exchange of signatures) by two par-
ties [8]. To achieve some form of fairness, various approaches have been explored.
One such approach adds to the model a trusted third party, who is essentially
a judge that can be called in to resolve disputes between the parties. (There
is a large body of work following this approach; see, e.g., [2,12] and references
therein.) This approach requires a trusted external party that is constantly avail-
able. Another recent approach adds an interesting physical communication as-
sumption called an “envelope channel,” which might be described as a “trusted
postman” [42].

A different approach that avoids the available trusted party requirement uses
a mechanism known as “gradual release,” where parties take turns to release
their secrets in a “bit by bit” fashion. Therefore, if a corrupted party aborts
prematurely, it is only a little “ahead” of the honest party, and the honest
party can “catch up” by investing an amount of time that is comparable to
(and maybe greater than) the time spent by the adversary. (Note that this is

1 This property is also known as “complete fairness,” and can be contrasted with
“partial fairness,” where fairness is achieved only when there are certain restrictions
on corruption of parties [40].

406 J. Garay et al.

basically an ad hoc notion of fairness.) Early works in this category include
[8,27,30,39,4,23]. More recent work has focused on making sure — under the
assumption that there exist problems, such as modular exponentiation, that are
not well suited for parallelization2 — that this “unfairness” factor is bounded
by a small constant [11,36,49]. As we discuss below, our constructions also use
a gradual release mechanism secure against parallel attacks.

Resource fairness. In this paper we propose a new notion of fairness with a
rigorous simulation-based security definition (without a trusted third party),
that allows circumvention of the impossibility result discussed above in the case
of corrupted majorities. We call this new notion resource fairness. In a nutshell,
resource fairness means that if any party learns the output of a function, then
all parties will be able to learn the output of the function by expending roughly
the same amount of resources. (In our case, the resource will be time.) In order
to model this, we allow honest parties in our framework (both in the real world
and in the ideal process) to request resources from the environment, and our
definition of resource fairness relates the amount of requested resources to the
amount of resources available to corrupted parties.

Slightly more formally, a resource-fair functionality can be described in two
steps. We start with the most natural notion for a fair functionality F . A critical
feature of a fair functionality is the following:

– There are certain messages that F sends to multiple parties such that all
of them must receive the message in the same round of communication.
(For this it is necessary that the adversary in the ideal process cannot block
messages from F to the honest parties.3)

Then we modify it using a “wrapper” to obtain a functionality W(F). The
wrapper allows the adversary to make “deals” of roughly the following kind:

– Even if F requires a message to be simultaneously delivered to all parties,
the adversary can “invest” computational resources and obtain the message
from W(F) in an earlier communication round.

– However, in this case, W(F) will offer a “fair deal” to the honest parties:
each of them will be given the option of obtaining its message by investing
(at most) the same amount of computational resources as invested by the
adversary.

Once we define W(F) as our ideal notion of a fair functionality, we need to
define when a protocol is considered to be as fair as W(F). We follow the same
paradigm as used in the UC framework for defining security: A protocol π is said
2 Indeed, there have been considerable efforts in finding efficient exponentiation algo-

rithms (e.g., [1,53]) and still the best methods are sequential.
3 In the original formulation of the UC framework [14], the adversary in the ideal

process could block the outputs from the ideal functionality to all the parties. Thus,
the ideal process itself is already completely unfair, and therefore discussing fair
protocols is not possible. The new version [15] also has “immediate functionalities”
as the default—see Section 2.1.

Resource Fairness and Composability of Cryptographic Protocols 407

to be as fair as W(F) if for every real adversary A there exists an ideal adversary
(simulator) S such that no environment can distinguish between interacting with
A and parties running a protocol π (the real world), and interacting with S and
parties talking to W(F) (the ideal world). But in addition we require that S
cannot invest much more resources than A has.

This last condition is crucial for the notion of resource fairness. To see this,
note the following:

– In the ideal world, in the event of the adversary S obtaining a message by
investing some amount of resources, an honest party can be required to invest
the same amount of resources to get its message.

– By the indistinguishability condition, this is the same as the amount of
resources required by the honest parties in the real world. Thus, the resources
required by the honest parties in the real world can be as much as that
invested by the adversary S in the ideal world.

Recall that the (intuitive) notion of resource fairness requires that the resources
required by an honest party in the real world should be comparable to what the
adversary A (in the real world) expends, to obtain its output. Thus, to achieve
the notion, we must insist that the amount of resources invested by the ideal
world adversary S is comparable to what the real world adversary A expends.

Note that for these comparisons, the resources in the ideal world must be
measured using the same units as in the real world. However, these invested
resources do not have a physical meaning in the ideal world: it is just a “currency”
used to ensure that the fairness notion is correctly reflected in the ideal world
process.

The only resource we shall consider in this work is computation time.

Fairness through gradual release. Our definition is designed to capture the fair-
ness guarantees offered by the method of gradual release. The gradual release
method by itself is not new, but our simulation-based definition of fairness is.

Typical protocols using gradual release consist of a “computation” phase,
where some computation is carried out, followed by a “revealing” phase, where
the parties gradually release their private information towards learning a result
y. Our simulation-based definition requires one to be able to simulate both the
computation phase and the release phase. In contrast, previous ad hoc security
definitions did not require this, and consisted, explicitly or implicitly, of the
following three conditions:

1. The protocol must be completely simulatable up to the revealing phase.
2. The revealing phase must be completely simulatable if the simulator knows y.
3. If the adversary aborts in the revealing phase and computes y by brute force

in time t, then all the honest parties can compute y in time comparable to t.4

While carrying some intuition about security and fairness, we note that these
definitions are not fully simulation-based. To see this, consider a situation where
4 As we discussed before, an honest party typically will spend more time than the

adversary in this case.

408 J. Garay et al.

an adversary A aborts early on in the revealing phase, such that it is still in-
feasible for A to find y by brute force. At this time, it is also infeasible for the
honest parties to find y by brute force. Now, how does one simulate A’s view in
the revealing phase? Notice that the revealing phase is simulatable only if the
ideal adversary S knows y. However, since nobody learns y in the real world,
they should not learn y in the ideal world, and, in particular, S should not learn
y. Thus, the above approach gives no guarantee that S can successfully simulate
A’s view. In other words, by aborting early in the revealing phase, A might gain
some unfair advantage. This can become an even more serious security problem
when protocols are composed.

Environment’s role. In our formulation of fairness, if a protocol is aborted, the
honest parties get the option of investing resources and recovering a message
from the functionality. However, the decision of whether to exercise this option
is not specified by the protocol itself, but left to the environment. Just being
provided with this option is considered fair.5 The fairness guarantee is that the
amount of resources that need to be invested by the adversary to recover the
message will be comparable to what the honest party requires. Whether the
adversary actually makes that investment or not is not known to the honest
parties.

Leaving the recovery decision to the environment has the consequence that our
notion of fairness becomes a robust “relative” notion. In some environments the
execution might be (intuitively) unfair if, for instance, the environment refuses
to grant any requests for resources. However, this is analogous to the situation
in the case of security: Some environments can choose to reveal all the honest
parties’ inputs to the adversary. The protocol’s guarantee is limited to mimicking
the ideal functionality (which by definition is secure and fair). We do not seek
to incorporate absolute guarantees of fairness (or security) into the protocol, as
they are dependent on the environment.

Our results. We now summarize the main results presented in this paper.

1. A fair multi-party computation framework. We start with a frame-
work for fair multi-party computation (FMPC), which is a variation of the
UC framework, but with modifications so that it is possible to design func-
tionalities such that the ideal process is (intuitively) fair.We then present a
generic wrapper functionality, denoted W(·), that converts a fair function-
ality into one that allows for a resource-fair realization in the real world.
We then present definitions for resource-fair protocols that securely real-
ize functionalities in this framework. We emphasize that these definitions

5 In a previous version of this work [35], we insisted that the protocol itself must
decide whether or not to invest computational resources and recover a message from
an aborted protocol. Further, for being fair, we required that if the adversary could
have obtained its part of the message, then the protocol must carry out the recovery.
This leads to the unnatural requirement that the protocol must be aware of the
computational power of the adversary (up to a constant).

Resource Fairness and Composability of Cryptographic Protocols 409

are in the (standard) simulation paradigm6 and admit protocols that tol-
erate an arbitrary number of corruptions. Finally, we prove a composition
theorem similar to the one in the UC framework.

2. The “commit, prove and fair-open” functionality. We define a
commit-prove-fair-open functionality FCPFO in the FMPC framework. This
functionality allows all parties to each commit to a value, prove relations
about the committed value, and more importantly, open all committed
values simultaneously to all parties. This functionality (more specifically,
a wrapped version of it) lies at the heart of our constructions of resource-
fair MPC protocols. We then construct an efficient resource-fair protocol
GradRel that securely realizes FCPFO, assuming static corruptions. Our
protocol uses a new variant of a cryptographic primitive known as time-
lines [31], which enjoys a property that we call strong pseudorandomness.
In turn, the construction of time-lines hinges on a refinement of the gener-
alized BBS assumption [11], which has broader applicability.

3. Efficient and resource-fair MPC protocols. By using the W(FCPFO)
functionality, many existing secure MPC protocols can be easily trans-
formed into resource-fair protocols while preserving their security. In par-
ticular, we present two such constructions. The first construction converts
the universally composable MPC protocol by Canetti et al. [17] into a
resource-fair MPC protocol that is secure against static corruptions in the
CRS model in the FMPC framework. Essentially, the only thing we need to
do here is to replace an invocation of a functionality in the protocol called
“commit-and-prove” by our W(FCPFO) functionality.

The second construction turns the efficient MPC protocol by Cramer et
al. [21] into a resource-fair one in the “public key infrastructure” (PKI)
model in a similar fashion. The resulting protocol becomes secure and re-
source fair (assuming static corruptions) in the FMPC framework, while
preserving the efficiency of the original protocol — an additive overhead of
only O(κ2n) bits of communication and an additional O(κ) rounds, for κ
the security parameter.

Organization of the paper. The paper has two main components: the formaliza-
tion of the notion of resource-fairness, and protocol constructions satisfying this
notion. In Section 2 we present the new notion, and Section 3 is dedicated to
explaining the protocol constructions. Within Section 2, we describe the FMPC
framework, describe “wrapped” functionalities, give security and fairness defini-
tions and finally state a composition theorem. In Section 3 we present the FCPFO
functionality and show a protocol that realizes a wrapped version of it, which
we then use to achieve resource-fair MPC. Due to space limitations, proofs,
detailed remarks and extensions are omittied from this extended abstract and
can be found in the full version of the paper [32].

6 Indeed, as explained in Section 2.4, our definition of resource fairness subsumes the
UC definition of security.

410 J. Garay et al.

2 FMPC Framework and Resource Fairness

2.1 The FMPC Framework

We now define the new framework used in our paper, which we call the fair multi-
party computation (FMPC) framework. It is similar to the universal composabil-
ity (UC) framework [14,15]. In particular, there are n parties, P1, P2, ..., Pn, a
real-world adversary A, an ideal adversary S, an ideal functionality F , and an
environment Z. However, FMPC contains some modifications so that fairness
becomes possible. We stress that the FMPC framework still inherits the strong
security of UC, and we shall prove a composition theorem in the FMPC frame-
work similar to UC.

Instead of describing the FMPC framework from scratch, we only discuss its
most relevant features and differences from the UC framework. Refer to [15] for
a detailed presentation of the UC framework. The critical features of the FMPC
framework are:

Interactive circuits/PRAMs. Instead of interactive Turing machines, we as-
sume the computation models in the FMPC framework are non-uniform inter-
active PRAMs (IPRAMs).7 This is a non-trivial distinction, since we will work
with exact time bounds in our security definition, and the “equivalence” between
various computation models does not carry over there. The reason to make this
modification is that, we will need to model machines that allow for simulation
and subroutine access with no significant overhead. Thus, if we have two proto-
cols, and one calls the other as a black-box, then the total running time of the
two protocols together will be simply the sum of their running times. Obviously,
Turing machines are not suitable here.

We say an IPRAM is t-bounded if it runs for a total of at most t steps.8 We
always assume that t is a polynomial of the security parameter κ, though for
simplicity we do not explicitly write t(κ). We can view a t-bounded IPRAM as
a “normal” IPRAM with an explicit “clock” attached to it that terminates the
execution after a total number of t cumulative steps (notice that an IPRAM is
reactive: i.e., it maintains state across activations).

Synchronous communication with rounds. In the UC framework, the com-
munication is asynchronous, and controlled by the adversary, and further there
is no notion of time. This makes fair MPC impossible, since the adversary may,
for example, choose not to deliver the final protocol message to an uncorrupted
party Pi. In this case, Pi will never obtain the final result because it is never
activated again. What is needed is to let parties be able to time out if they do
not receive an expected message within some time bound. However, instead of
incorporating a full-fledged notion of time into the model, for simplicity we shall
work in a “synchronous model.” Specifically, in the FMPC framework there will
7 IPRAMs are simply extensions to the PRAM machines with special read-only and

write-only memories for interacting with each other.
8 For simplicity, we assume that an IPRAM can compute a modular squaring operation

(i.e., compute x2 mod M on input (x, M)) in constant time.

Resource Fairness and Composability of Cryptographic Protocols 411

be synchronous rounds of communication in both the real world and the ideal
process. (See [41,45] for other synchronous versions of the UC framework.)

In each round we allow the adversary to see the messages sent by other parties
in that round, before generating its messages (i.e., we use a rushing adversary
model.

Note that this model of communication is used in both the real and ideal
worlds used for defining security. (As we shall see later, a resource-fair ideal
functionality is designed to be aware of this round structure. This is necessary
because the amount of resources required by an honest party to retrieve messages
that the adversary blocks, is directly related to the number of communication
rounds in the protocol that pass prior to that.) This allows also the environment
to be aware of the round structure.

We stress that in our protocols, we use the synchronous communication model
only as a substitute for having time-outs on messages (which are sequentially
numbered). Our use of the synchronous model is only that if a message does not
arrive in a communication round in which it is expected, then the protocol can
specify an action to take.

For simplifying our protocols, we also incorporate an authenticated broadcast
capability into our communication model. (This is not essential for the defini-
tions and composition theorem.) The broadcast can be used to ensure that all
parties receive the same message; however no fairness guarantee is assumed: some
parties may not receive a message broadcast to them. Indeed, such a broadcast
mechanism can be replaced by resorting to, for instance, the broadcast protocol
from [40] (with a slight modification to the ideal abstraction of broadcasting, to
allow for the round structure in our synchronous model).

Guaranteed-round message delivery from functionalities. Following the
revised formulation of the UC framework [15], in our model the messages from
an ideal functionality F are forwarded directly to the uncorrupted parties and
cannot be blocked by S.9 (Note that this is not guaranteed by the previous
specification regarding synchronous communication.) Specifically, F may out-
put (fairdeliver, sid,msg-id, {(msg1, Pi1), . . . , (msgm, Pim

)}, j), meaning that each
message msgi will be delivered to the appropriate party Pi at round j. We will
call this feature guaranteed-round message delivery.

Resource requests. Typically, an honest party’s execution time (per activa-
tion) is bounded a priori by a polynomial in the security parameter. But in our
model, an honest party can “request” the environment to allow it extra compu-
tation time. If the request is granted, then the party can run for longer in its
activations, for as many computation steps as granted by the environment. More
formally, an honest party in the real-world execution can send a message of the
form (dealoffer, sid,msg-id, β) to the environment; if the environment responds

9 In the original UC formulation, messages from the ideal functionality F were for-
warded to the uncorrupted parties by the ideal adversary S, who may block these
messages and never actually deliver them. The ability of S to block messages from
F makes the ideal process inherently unfair.

412 J. Garay et al.

Functionality Ff

Ff proceeds as follows, running with security parameter κ, parties P1, . . . , Pn, and
an adversary S.

Upon receiving a value (input, sid, v) from Pi, set xi ← v.
As soon as inputs have been received from all parties, compute
y ← f(x1, . . . , xn).
Wait to receive message (deliverat, sid, s) from S. As soon as the message is
received, output (fairdeliver, sid, 0, {((output, y), Pi)}1≤i≤n, s), that is, set up
a fair delivery of message (output, sid, y) to all parties for delivery in the sth
round.

Fig. 1. The SFE functionality for evaluating an n party function f

to this with (dealaccept, sid,msg-id), then the party gets a “credit” of β extra
computational steps (which gets added to the credits it accumulated before). In
a hybrid model, these credits may also be used to accept deals offered by sub-
functionality instances. Note that the environment can decide to grant a request
or not, depending on the situation.

2.2 A Fair SFE Functionality

Before we introduce the notion of “wrapped functionalities,” it is useful to note
that in the model described above, we can construct a functionality that can be
considered a fair secure function evaluation functionality Ff . This functionality
is similar to the homonymous functionality in the UC framework [14], except
for (1) the fact that there is no reference to the number of corrupted parties, as
in our case it may be arbitrary, (2) the output is a single public value, instead
of private outputs to each party10, (3) the added round structure—in particu-
lar, the adversary specifies the round at which the outputs are to be produced
(deliverat message)11, and (4) the use of the fair delivery mechanism of the FMPC
framework.

We emphasize that in the FMPC framework, and because Ff uses the fair
delivery mechanism, it is easy to see that in the ideal model, the functionality Ff

satisfies the intuitive definition of fairness for secure function evaluation. (This is
called “complete fairness” in [40].) Specifically, if one party receives the output,
all parties receive the output.

10 This can be easily extended to the case where each party receives a different private
output, since y may contain information for each individual party, encrypted using a
one-time pad. In fact, the framework developed here accommodates interactive func-
tionalities with even more general fairness requirements, where different messages
from the functionality can be fairly delivered to different sets of parties at multiple
points in the execution.

11 Alternatively, the functionality could take the number of rounds as a parameter.

Resource Fairness and Composability of Cryptographic Protocols 413

2.3 Wrapped Functionalities

As we have stated previously, according to the result of Cleve [19], it is impos-
sible to construct fair protocols, and thus there is no protocol that could realize
the functionality Ff describe above. Therefore we will create a relaxation of Ff

that can be realized, and that will be amenable to analysis in terms of resource
fairness. To do this, we will actually construct a more general wrapper func-
tionality which provides an interface to any functionality and will be crucial to
defining resource fairness. We denote the wrapper functionality as W(), and a
wrapped functionality as W(F).12

The wrapper operates as follows. For ease of explanation, assume the func-
tionality F schedules a single fair delivery to all parties with the same message.
Basically, the wrapper handles this fair delivery by storing the message inter-
nally until the specified round for delivery, and then outputing the message to
be delivered immediately to each party. It also allows the adversary S to invest
resources and obtain the message in advance. (Of course, in the ideal process,
this investment is simply notational - the adversary does not actually expend any
resources.) It will still deliver the message to each party at the specified round
unless S offers a deal to a party to “expend” a certain amount of resources. If
that party does not take the deal, then the wrapper will not deliver the mes-
sage at any round. The wrapper enforces the condition that it only allows S to
offer a deal for at most the amount of resources that S itself invested. Except
for the messages discussed above, all communication to and from F are simply
forwarded directly to and from F .

The formal definition of W(F) is given in Figure 2. Here we provide some in-
tuition behind some of the labels and variables. Let F (msg-id) denote a fairdeliver
message record (containing message-destination pairs (msgi, Pi) and (msgS ,S)),
with identifier msg-id. Associated with any such record is a round number, which
specifies the communication round in which the messages in that record will be
delivered to all the parties and S. Initially each such record is marked unopened
to signify that no party has received any of the messages yet. At any round
the adversary S has the option of obtaining its messages (i.e., messages for the
corrupt players and S) by investing αmsg-id amount of resources.13 If it does so,
then the record is marked opened. Once a message is marked opened, W(F) will
ensure that each honest party is offered a fair deal. For each honest party Pi

this can happen in one of two ways: either the adversary offers a deal to the
honest party to obtain its message msgi by investing at most αmsg-id amount of
resources (in which case the pair (msgi, Pi) is marked dealt), or if the adversary

12 Assuming F is a fair functionality, one could say that W(F) is a “resource-fair”
functionality. However, there is an important distinction: a protocol that securely
realizes F would be called a “fair” protocol, while a protocol that securely realizes
F would not be called a “resource-fair” protocol unless it satisfies an additional
requirement, as is discussed below.

13 This simply means that the adversary sends a message (invest, sid,msg-id, αmsg-id)
to W(F), and the amount αmsg-id is counted towards the total amount of resources
invested by S.

414 J. Garay et al.

Wrapper functionality W(F)
W(F) proceeds as follows, running with parties P1, . . . , Pn, and an adversary S:
It internally runs a copy of F .

– Whenever it receives an incoming communication, which is not one of the
special messages (invest, noinvest, dealoffer and dealaccept), it immediately
passes this message on to F .

– Whenever F outputs any message not marked for fair delivery, output this
message (i.e., pass it on to its destination, allowing the adversary to block
this messagea).

– Whenever F outputs a record (fairdeliver, sid,msg-id, {(msg1, Pi1), . . . ,
(msgm, Pim), (msgS , S)}, j),b W(F) stores this for future delivery (in commu-
nication round j). The message record is marked unopened to indicate that
the adversary has not yet obtained this message. Also all the pairs (msgi, Pi)
in the record are marked undealt to indicate that no deal has been offered to
the party Pi for obtaining this message.

– If a record with ID msg-id is marked as unopened and the adversary sends a
message (noinvest, sid,msg-id), then that record is erased (and the messages
in it will not be delivered to any party).

– If msg-id is marked as unopened and the adversary S sends a message
(invest, sid,msg-id, α), then

the record with ID msg-id is marked as opened, and α is stored as αmsg-id.
For each corrupt party Pi, if the record contains the message (msg, Pi),
that message is delivered to S immediately (even if the round j has not
yet been reached). If the record contains (msgS , S) then that message is
also delivered to S at this point.

– At any round in which a fairdeliver record (marked unopened or opened) is
stored for delivery at that round, for every pair (msg, P) in that record marked
undealt, msg is output for immediate delivery to P (i.e., using the fair delivery
mechanism). Then that record is erased.

– If a record msg-id is marked as opened and the adversary sends
(dealoffer, sid,msg-id, Pi, β) for some honest party Pi, then

W(F) marks the pair (msgi, Pi) in the record msg-id as dealt, and sends
(dealoffer, sid,msg-id, β′) to Pi, where β′ = min(β, αmsg-id).

– If an honest party Pi responds to (dealoffer, sid,msg-id, β) with
(dealaccept, sid,msg-id, β), then the stored message msgi is immediately de-
livered to Pi, and erased from the stored record.

a In a typical fair functionality, all messages from F could be marked for fair
delivery. However we allow for non-fair message delivery also in the model.

b A message record is identified using the ID msg-id, which F will ensure is
unique for each record.

Fig. 2. The wrapper functionality W(F)

makes no such offer, then Pi receives the message at the specified round without
having to make any investment at all.

Resource Fairness and Composability of Cryptographic Protocols 415

The following fact is easy to verify.

Fact 1. If the adversary obtains a message that was set for fair delivery with
message ID msg-id, every honest party that is set to receive a message in the
fair delivery with message ID msg-id will either receive it at the specified round,
or will be offered a deal for at most the amount invested by the adversary.

Conventions. Below we clarify some of the conventions in the new framework.

– Using resource-requesting subroutines. A protocol interfaces with a
resource-requesting subroutine in a natural way. When a protocol ρ uses
a subroutine π which makes resource requests (for instance, if π accesses a
wrapped functionality W(F), or if π securely realizes a wrapped functionality
W(F)), it is for ρ to decide when to grant resource requests made by π. ρ
can grant resource requests only using resources it already has (which is
either part of its running time, or part of resources granted to it by its
environment). In the cases we consider, the outer protocol ρ will simply
transfer resource requests it receives to its environment, and will transfer
the resources granted to it back to the subroutine.

– Resource requests granted by the environment. We do not impose
any restriction on the amount of resources that the environment can grant
to the honest parties. In particular, the environment could grant a super-
polynomial amount of resources to an honest party. This allows a wider class
of environments for which the security guarantee holds. Jumping ahead,
we point out that this does not render the system insecure, because of an
extra condition that the entire system be simulatable in polynomial time,
independent of the amount of resources granted by the environment. This
requirement is captured in the definition of security using a device called the
full simulator (see Definition 1).

– Dummy honest parties in the ideal world. An honest party in the
ideal world is typically a “dummy” party. In the original UC framework this
means that it acts as a transparent mediator in the communication between
the environment and the ideal functionality. In our framework too this is
true, but now the interaction also involves dealoffer and dealaccept messages.

– A’s resources in a hybrid model. When working in W(F)-hybrid model,
the convention regarding bounding the resources of the adversary A needs
special attention: any amount of resources that A sends as investment to
W(F) gets counted towards its running time. That is, if A is a t-bounded
IPRAM, then the total amount invested by it plus the total number of steps
it runs is at most t.

2.4 Security and Fairness Definitions

So far, we have described the ideal world notion of fairness. As mentioned in
Section 1, for a protocol to be resource-fair, for each real world adversary A,
the ideal world adversary S built to simulate the protocol should be such that
the amount of resources S invests is not much more than that available to A.

416 J. Garay et al.

Below we shall quantify the resource fairness of a protocol by the ratio of the
amount of resources that S invests to the actual resources available to A (which
technically also includes those available to the environment).

The typical order of quantifiers in the simulation-based security definitions
allows the ideal-world adversary to depend on the real-world adversary that
it simulates, but it should be independent of the environment (i.e., ∀A∃S∀Z).
A stronger definition of security (which all current constructions in the UC
framework satisfy) could require the ideal-world adversary to be a “black-box”
simulator which depends on A only by making black-box invocations of A. We
employ a slight weakening of this definition: we pass S a bound t on the running
times of A and Z, as an input parameter. More formally we model A and Z as
bounded IPRAMs. Our security definition will use the order of quantifiers ∃S
∀t-bounded A and Z, and it will refer to SA(t). Now recall that we allow the
ideal-world adversary to invest resources with an ideal functionality. An ideal-
world adversary S with input parameter t (see above) is said to be λ-restricted
if there is a polynomial ζ(κ) such that the sum of all investments sent by S to
the ideal functionality is bounded by λt+ ζ(κ).

The definition of security and fairness using the simulator captures the in-
tuitive requirements of these notions. However, this by itself does not give us
universal composability. We shall strengthen the definition as described below
to guarantee universal composition as well.

The full simulator. The strengthening is by requiring that (in addition to the se-
curity requirement above) there should exist a “full simulator” which can replace
A and the honest parties running the protocol in the real world, without an en-
vironment being able to detect the change. We call it a full simulator because it
simulates all of the execution of a session to the environment, in contrast to a sim-
ulator which does not control the honest parties. In this new scenario, since there
are no more honest parties involved in the execution, there is no ideal function-
ality involved. Such a full simulation would be trivial, because the full simulator
has access to all the inputs of A as well as of the honest parties, and it can simply
execute the code of these parties in its simulation. The non-triviality comes from
another requirement: the running time of full simulator should be bounded by
a fixed polynomial, independent of the resource-requests granted by Z.

We shall denote the random variable corresponding to the output produced
by Z on interaction with a full simulator X by FSIMXA,Z .

Definition 1 (Securely Realizing Functionalities). Let W1 and W2 be two
functionalities. We say a protocol π securely realizes the functionality W1 in the
W2-hybrid model if there exist an ideal world adversary S and a full simulator
X , such that for all t-bounded A and Z

1. HYBW2
ρ,A,Z ≈ IDEALW1,SA(t),Z , and

2. HYBW2
ρ,A,Z ≈ FSIMXA,Z .

Furthermore, if S is λ-restricted, then π securely realizes W1 with λ-investment
(in the W2-hybrid model).

Resource Fairness and Composability of Cryptographic Protocols 417

Although the definition above is stated with respect to general functionalities
(and this will be useful in proving our composition theorem), this notion of
realizing a functionality with λ-investment will be particularly relevant in the
case when W1 is a wrapped functionality, and specifically a wrapped “fair”
functionality. To elaborate, let us consider the case where W1 is W(F) for some
F . (The functionality W2 can be a wrapped or non-wrapped functionality, i.e.,
W2 above can be a non-wrapped functionality like FCRS, or it can be a wrapped
functionality which we use as a module in a larger protocol.) Then we make the
following definition.

Definition 2. Let π be a protocol that securely realizes W(F) with λ-investment.
Then π λ-fairly realizes F .

Let us give some intuition behind this definition. First, by Fact 1, W guarantees
that any time a corrupted party (or in particular, the ideal adversary that has
corrupted that party) receives its fairdeliver message, then every honest party is
at least offered a deal to receive its fairdeliver message, and this deal is bounded
by the amount that the ideal adversary invests. Second, by the definition above,
the ideal adversary invests an amount within a factor of λ to the resources
available to the real adversary. Thus, by expending resources at most a factor
λ more than the amount available to the real adversary, an honest party in the
ideal world may obtain its message. Since the ideal world is indistinguishable
from the real world, the honest party in the real world may also obtain the
message expending that amount of resources.

To summarize, we use the term λ-fairly to denote “resource fairness” where an
honest party may need to spend at most a factor of λ more resources (i.e., time)
than an adversary in order to keep the fair deliveries “fair.” Now we consider
the case where F is in fact the fair SFE functionality Ff , and formally define
resource fairness and (standard) fairness.

Definition 3. Let π be a protocol that securely realizes W(Ff) with λ-
investment. Then we say π is λ-fair. If λ = O(n), then we say π is resource
fair, and if λ = 0, then we say π is fair.

Note that in a “fair” protocol, only a fixed polynomial investment is made by
the ideal adversary, and thus all deals are bounded by a fixed polynomial. This
could simply be incorporated into the protocol, and thus no deals would need
to be made. Thus the protocol would actually securely realize Ff . (Of course,
as discussed above, if the adversary may corrupt more than a strict minority of
parties, then no such protocol exists.)

On choosing λ = O(n). The intuition behind the choice of λ = O(n) for resource-
fair protocols is as follows. As discussed before, since corrupted parties can abort
and gain unfair advantage, an honest party needs more time to catch up. In the
worst case, there can be (n − 1) corrupted parties against one honest party.
Since the honest party may need to invest a certain amount of work against
every corrupted party, we expect that the honest party would run about (n− 1)
times as long as the adversary. Thus, we believe that O(nt) is the “necessary”

418 J. Garay et al.

amount of time an honest party needs for a t-bounded adversary. On the other
hand, as we show in the sequel, there exist O(n)-fair protocols in the FMPC
framework, and thus λ = O(n) is also sufficient.

Security of resource-fair protocols. Our definition of resource fairness subsumes
the UC definition of security. First of all, if a protocol π λ-fairly realizes F ,
then, by definition it is also a secure realization of W(F). However it is not a
secure realization of F itself, because W(F) offers extra features. But note that
for adversaries which never use the feature of sending an invest message, F and
W(F) behave identically. In fact, F in the original (unfair) UC model of [14] can
be modeled using a rigged wrapper: consider W ′(F) which behaves like W(F)
except that it does not offer any deals to the honest parties (but interacts with
the adversary in the same way: in particular, it allows the adversary to obtain its
outputs by “investing” any amount of resources). Except for the round structure
we use, W ′(F) is an exact modeling of F in the original UC framework. Clearly
W(F), is intuitively as secure as W ′(F) (but is also fair).

2.5 A Composition Theorem

We now examine the composition of protocols. It turns out that the composi-
tion theorem of the UC framework does not automatically imply an analog in
the FMPC framework. The main reason for this is that the running time of a
resource-requesting protocol is not bounded a priori, as there is no bound on
the amount of time the environment may decide to grant it in response to a re-
quest. This is the reason we introduced the full simulator, whose running time is
bounded by a polynomial, independent of the environment, and added the extra
requirement concerning the full simulator in our definition of security. Using this
extra requirement, we are able to prove the composition theorem below.

For simplicity, we shall modify Definition 1, so that the simulator S is passed
t which is a bound on the sum of the running times of the environment Z and
the adversary A (rather than on the maximum of these two). We state the
composition theorem accordingly. This makes a difference of at most a constant
factor in the parameters below.

Theorem 2 (Universal Composition of Resource-Fair Protocols). Let
W2 be an ideal functionality. Let π be a protocol in the W2-hybrid model, which
uses atmost � sessions of W2. Let ρ be a protocol that securely and λ-fairly
realizes W2. Then there exists a λ′-restricted black-box hybrid-mode adversary
H, such that for all t, for any t1-bounded real-world adversary A and t2-bounded
environment Z such that t1 + t2 ≤ t, we have

REALπρ,A,Z ≈ HYBW2
π,HA(t),Z , (1)

where λ′ = λ�.

Corollary 1. Let W1 and W2 be ideal functionalities. Let π be a protocol that
securely realizes W1 with λ-investment in the W2-hybrid model. Let ρ be a pro-
tocol that securely realizes W2 with λ′-investment. Then the protocol πρ securely

Resource Fairness and Composability of Cryptographic Protocols 419

realizes W1 with λ′′-investment. Here, if � is an upperbound on the number of
sessions of W2 used by π, then λ′′ = λ(�(λ′ + 1)).

3 Resource-Fair Protocols

3.1 The Commit-Prove-Fair-Open Functionality

We first present the “commit-prove-fair-open” functionality FCPFO, and then
show how to construct a protocol, GradRel, that securely realizes W(FCPFO) with
O(n)-investment using “time-lines.” Functionality FCPFO is described below.

Functionality FR
CPFO

FR
CPFO is parameterized by a polynomial-time computable binary relation R. It

proceeds as follows, running with parties P1, P2, ..., Pn and an adversary S.

Round 1 – commit phase: Receive message (commit, sid, xi) from every party
Pi and broadcast (RECEIPT, sid, Pi) to all parties and S.

Round 2 – prove phase: Receive message (prove, sid, yi) from every party Pi,
and if R(yi, xi) = 1, broadcast (PROOF, sid, Pi, yi) to all parties and S.

Oopen phase: Wait to receive message (open, sid) from party Pi,
1 ≤ i ≤ n, and a message (deliverat, sid, s) from S. As
soon as all n open messages and the deliverat message are re-
ceived, output (fairdeliver, sid, 0, {((DATA, (x1, x2, ..., xn)), Pi)}1≤i≤n ∪
{((DATA, (x1, x2, ..., xn)), S)}, s).

Fig. 3. The commit-prove-fair-open functionality FCPFO with relation R

Functionality FCPFO is similar to the “commit-and-prove” functionality FCP
in [17] in that both functionalities allow a party to commit to a value v and
prove relations about v. Note that although FCP does not provide an explicit
“opening” phase, the opening of v can be achieved by proving an “equality”
relation. However, while FCP is not concerned with fairness, FCPFO is specifically
designed to enforce fairness in the opening. In the open phase, FCPFO does not
require the outputs to be handed over to the parties as soon as the parties request
an opening. Instead, it specifies (to W(FCPFO)) a round s in the future when
the outputs are to be handed over. We allow the adversary to determine this
round by sending a deliverat message to FCPFO. (Implicitly we assume that if the
round number in the deliverat message is less than the current round number,
then the functionality will ignore it.)

Later in the paper, we shall see that by replacing some invocations to the FCP
functionality by invocations to W(FCPFO), we can convert the MPC protocol
by Canetti et al. (which is completely unfair) into a resource-fair protocol.

Before showing a protocol that securely realizes W(FCPFO), we present a
variant of a cryptographic primitive known as “time-lines” [31] that will play an
essential role in the construction of resource-fair protocols. Before doing that,
we present the assumptions used by these protocols.

420 J. Garay et al.

Preliminaries for protocol constructions. Let κ be the cryptographic security
parameter. A function f : Z → [0, 1] is negligible if for all α > 0 there exists an
κα > 0 such that for all κ > κα, f(κ) < |κ|−α. All functions we use in this paper
will include a security parameter as input, either implicitly or explicitly, and
we say that these functions are negligible if they are negligible in the security
parameter. (They will be polynomial in all other parameters.) Furthermore, we
assume that n, the number of parties, is polynomially bounded by κ as well.

A prime p is safe if p′ = (p−1)/2 is also a prime. A Blum integer is a product
of two primes, each equivalent to 3 modulo 4. We will be working with a special
class of Blum integers N = p1p2 where p1 and p2 are both safe primes. We call
such numbers safe Blum integers.

The assumptions used in this paper are the composite decisional Diffie-
Hellman assumption (CDDH) [10], the decision composite residuosity assump-
tion (DCRA) [46], and a further refinement of the generalized Blum-Blum-Shub
assumption (GBBS) [11], which we now state.14

Given security parameter κ, let N = p1p2 be a safe Blum integer with
|p1| = |p2| = κ, and let k be an integer bounded from below by κc for some
positive c. Let a be an arbitrary �-dimensional vector where 0 = a[1] <
a[2] < · · · < a[�] < 2k, and x be an integer between 0 and 2k such that
Dist(x,a) = S, where Dist(x,a) denotes the minimal absolute difference be-
tween x and elements in a. (Note that, in particular, we have x ≥ S, since
a[1] = 0.) Let g be a random element in Z∗

N ; define the “repeated squaring”
function as RepSqN,g(x) = g2x

mod N . Let u be an �-dimensional vector such
that u[i] = RepSqN,g(a[i]), for i = 1, ..., �.

Now let A be a PRAM algorithm whose running time is bounded by δ ·S for
some constant δ, and let R be a random element in Z∗

N . The GBBS assumption
states that there exists a negligible function ε(κ) such that for any A,∣∣Pr[A(N, g,a,u, x,RepSqN,g(x)) = 1] − Pr[A(N, g,a,u, x,R2) = 1]

∣∣ ≤ ε(κ).
(2)

In this paper we present protocols that work in the CRS model and in the
PKI model. In the CRS model, there is a common reference string (CRS) gener-
ated from a prescribed distribution accessible to all parties at the beginning of
the protocol. The FCRS functionality simply returns the CRS. The public key
infrastructure (PKI) model is stronger. Upon initial activation, a PKI function-
ality, FPKI, generates a public string as well as a private string for each party.
We note that both models can be defined in the UC and the FMPC frame-
works.

Time-lines. We present a definition of a time-line suitable for our purposes,
followed by an efficient way to generate them (according to this definition), the
security of which relies on GBBS and CDDH-QR.

14 Refer to [32] for remarks on the differences between the version presented here and
the original one.

Resource Fairness and Composability of Cryptographic Protocols 421

Definition 4. Let κ be a security parameter. A decreasing time-line is a tuple
L = 〈N, g,u〉, where N = p1p2 is a safe Blum integer where both p1 and p2
are κ-bit safe primes, g is an element in Z∗

N , and u is a κ-dimensional vector
defined as u[i] = RepSqN,g(2κ − 2κ−i) for i = 1, 2, ..., κ. We call N the time-line
modulus, g the seed, the elements of u the points in L, and u[κ] the end point
in L.
To randomly generate a time-line, one picks a random safe Blum integer N

along with g
R← Z∗

N as the seed, and then produces the points. Naturally, one
can compute the points by repeated squaring: By squaring the seed g 2κ−1

times, we get u[1], and from then on, we can compute u[i] by squaring u[i−1]; it
is not hard to verify that u[i] = RepSqN,u[i−1](2κ−i), for i = 2, ..., κ. Obviously,
using this method to compute all the points would take exponential time. How-
ever, if one knows the factorization of N , then the time-line can be efficiently
computed [11].

Alternatively, and assuming one time-line is already known, Garay and Jakob-
sson [31] suggested the following way to efficiently generate additional time-lines.
Given a time-line L, one can easily derive a new time-line from L, by raising the
seed and every point in L to a fixed power α. Clearly, the result is a time-line
with the same modulus.

Definition 5. Let L = 〈N, g,u〉 and L′ = 〈N,h,v〉 be two lines of identical
modulus. We say that time-line L′ is derived from L with shifting factor α if
there exists an α ∈ Z[1, N−1

2] such that h = gα mod N . We call L the master
time-line.

Note that the cost of derivation is just one exponentiation per point, and there
is no need to know the factorization of N . In fact, without knowing the master
time-line L, if an adversary A of running time δ ·2� sees only the seed and the last
(�+ 1) points of a derived time-line L′, the previous point (which is at distance
2� away) appears pseudorandom to A, assuming that the GBBS assumption
holds. Obviously, this pseudorandomness is no longer true if A also knows the
entire master time-line L and the shifting factor α, since it can then use the
deriving method to find the previous point (in fact, any point) on L′ efficiently.
Nevertheless, as we state in the following lemma, assuming CDDH and GBBS,
this pseudorandomness remains true if A knows L, but not the shifting factor α.

Lemma 1 (Strong Pseudorandomness). Let L = 〈N, g,u〉 be a randomly
generated decreasing time-line and L′ = 〈N,h,v〉 be a time-line derived from L
with random shifting factor α. Let κ and δ be as in the GBBS assumption. Let w
be the vector containing the last (�+1) elements in v, i.e., w = (v[κ−�], v[κ−�+
1], ..., v[κ]). Let A be a PRAM algorithm whose running time is bounded by δ ·2�

for some constant δ. Let R be a random element in Z∗
N . Then, assuming CDDH

and GBBS hold, there exists a negligible function ε(·) such that, for any A,∣∣Pr[A(N, g,u, h,w, v[κ− �− 1]) = 1] − Pr[A(N, g,u, h,w, R2) = 1]
∣∣ ≤ ε(κ).

(3)

422 J. Garay et al.

Realizing W(FCPFO): Protocol GradRel. Now we construct a protocol, GradRel,
that securely realizes wrapped functionality W(FCPFO) in the (FCRS, F̂ZK)-
hybrid model using the time-lines introduced above. We use the multi-session
version of the “one-to-many” F̂ZK functionality from [17], which is shown in Fig-
ure 4.15 In particular, we need the F̂ZK functionality for the following relations.

Functionality F̂R
ZK

F̂R
ZK proceeds as follows, running parties P1, . . . , Pn, and an adversary S:

– Upon receiving (zk-prove, sid, ssid, x, w) from Pi: If R(x, w) does not hold,
ignore. Otherwise, request S for permission to send (ZK-PROOF, sid,
ssid, Pi, x) to each of Pj (j 	= i). Send the messages as permissions are
granted.

Fig. 4. The (multi-session) zero-knowledge functionality for relation R

Discrete log. DL = {((M, g, h), α) | h = gα mod M}.
Diffie-Hellman quadruple. DH = {((M, g, h, x, y), α) | h = gα mod M ∧ y =

xα mod M}.
Blinded relation. Given a binary relation R(y, x), we define a “blinded” rela-

tion R̂ as: R̂((M, g, h, w, z, y), α) = (h = gα mod M) ∧R(y, z/wα mod M).
Intuitively, R̂ “blinds” the witness x using the Diffie-Hellman tuple (g, h, w, z/x).
Obviously R̂ is an NP relation if R is.

We now describe protocol GradRel informally. The CRS in GradRel consists of
a master time-line L = 〈N, g,u〉. To commit to a value xi, party Pi derives a new
time-line Li = 〈N, gi,vi〉, and uses the tail of Li to “blind” xi. More precisely,
Pi sends zi = vi[κ] · xi as a “timeline-commitment” to xi together with a zero-
knowledge proof of knowledge (through F̂DL

ZK) that it knows Li’s shifting factor,
and thus, xi. Note that any party can force-open the commitment by performing
repeated squaring from points in the time-line. However, forced opening can take
a long time, and in particular, since vi[κ] is (2κ − 1) steps away from the seed
gi, it appears pseudorandom to the adversary.

The prove phase is directly handled by the F̂ R̂
ZK functionality. The opening

phase consists of κ rounds. In the i-th round, all parties reveal the ith point
in their derived time-lines, followed by a zero-knowledge proof that this point
is valid (through F̂DH

ZK), for i = 1, 2, ...κ. If at any time in the gradual opening
stage, an uncorrupted party does not receive a ZK-PROOF message in a round
when it is expected (possibly because the adversary blocked it, or a corrupted
party did not send a proper zk-prove message to an F̂ZK functionality) then
it enters the panic mode. In this mode, an uncorrupted party requests time
from the environment to force-open the commitments of all other parties. If the
environment accepts, the party forces-open the commitment; otherwise it aborts.
15 In [17] the framework used is that originally presented in [14]. However, since we are

using the modified version from [15], we modify the functionality F̂ZK by explicitly
allowing the adversary to block messages from the functionality to the parties.

Resource Fairness and Composability of Cryptographic Protocols 423

Protocol GradRelR

Set-up: The CRS consists of a master time-line L = 〈N, g, u〉.
Round 1 (commit phase) For each party Pi, 1 ≤ i ≤ n, upon receiving input

(commit, sid, xi), do:
1. Pick αi

R← [1, N−1
2], set gi ← gαi mod N , and compute from L a derived

time-line Li = 〈N, gi, vi〉.
2. Set zi ← vi[κ]·xi = (u[κ])αi ·xi mod N and broadcast message (commit,

sid, Pi, gi, zi).

3. Send message (zk-prove, sid, 0, (N, g, gi), αi) to the F̂DL
ZK functionality.

All parties output (RECEIPT, sid, Pi) after receiving (ZK-PROOF, sid, 0, Pi,
(N, g, gi)) from F̂DL

ZK.
Round 2 (prove phase) For each party Pi, 1 ≤ i ≤ n, upon receiving input

(prove, sid, yi), do:
1. Send message (zk-prove, sid, 0, (N, g, gi, u[κ], zi, yi), α) to the F̂ R̂

ZK func-
tionality.

2. After receiving messages (ZK-PROOF, sid, 0, Pi, (N, g, gi, u[κ], zi, yi))
from F̂ R̂

ZK, all parties output (PROOF, sid, Pi, yi).
Round r = 3, . . . , (κ + 2) (open phase) Let 	 = r − 2. For each party Pi, 1 ≤

i ≤ n, do:
1. Broadcast (release, sid, vi[]) and send message (zk-prove, sid, r,

(N, g, gi, u[], vi[]), αi) to ideal functionality F̂DH
ZK.

2. After receiving all n release and ZK-PROOF messages, proceed to the
next round. Otherwise, if any of the broadcast messages is missing, go
to panic mode.

At the end of round (κ+2), compute xj = zj ·(vj [κ])−1 mod N , for 1 ≤ j ≤ n,
output (DATA, sid, x1, x2, ..., xn) and terminate.

Panic mode: For each party Pi, 1 ≤ i ≤ n, do:
– Send (dealoffer, sid, ∅, nδ · 2κ−�+1) to the environment.
– If the environment responds with (dealaccept, sid, ∅), for j = 1, 2, ..., n, and

use vj [− 1] from the previous round to directly compute xj committed

by Pj as xj = zj ·
(
RepSqN,vj [�−1](2

κ−�+1 − 1)
)−1

mod N . Then output
(DATA, sid, x1, x2, ..., xn) in round (κ + 2) and terminate.

– Otherwise, output ⊥ in round (κ + 2) and terminate.

Fig. 5. Protocol GradRel, running in the CRS model in (κ + 2) rounds

The detailed description of the protocol is given in Figure 5. The security of
this protocol is based on CDDH, DCRA, and GBBS. The δ in the protocol is
the constant δ from the GBBS assumption. As a technical note, GradRel assumes
that all the committed values are quadratic residues in Z∗

N . In [32] we discuss how
this assumption can be removed. Clearly, protocol GradRel uses O(κ2n) bits of
communication. As mentioned in Section 2.1, the protocol employs a broadcast
channel for convenience.

424 J. Garay et al.

We can show an ideal adversary for W(FR
CPFO) that invests nt/δ and produces

a simulation indistinguishable from GradRel. Therefore, GradRel securely realizes
W(FR

CPFO) with n/δ-investment.

Theorem 3. Assume that GBBS and CDDH hold. Then protocol GradRel se-
curely realizes the ideal functionality W(FR

CPFO) with O(n)-investment in the
(FCRS, F̂DL

ZK, F̂DH
ZK , F̂ R̂

ZK)-hybrid model, assuming static corruptions.

Refer to [32] for the proof of this theorem. Here we sketch the essential new
elements involving the wrapper. In constructing a simulator S, the most inter-
esting aspect is the simulation of the fair-open phase. Note that the opening
takes place in rounds, with the value released in each round being “closer” to
the value to be revealed.

– S internally runs the adversary A, and simulates to it the protocol messages
from the honest parties. Initially S uses random values to simulate the values
released by the honest parties in each round.

– However, once the released value gets sufficiently close to the final value,
S can no longer use random values, because even a t-bounded adversary
and environment can distinguish between that and the values released by
the honest party in an actual execution. So, before that point, S will in-
vest sufficient amount of time with W(FCPFO) and obtain the value to be
opened. (The “sufficient” amount is the same as what an honest party en-
tering the panic mode at this point would have requested the environment.)
Further rounds in the simulation are carried out using the value obtained
from W(FCPFO) (and hence in those rounds the simulation is perfect).

– At this point a deal is still not offered by W(FCPFO) to any honest party.
But if in a future round, the adversary A causes a release or a ZK-PROOF
message not to reach an honest party P (which in the real execution would
prompt P to enter the panic mode), at that point S would request W(FCPFO)
to send a deal to P , with investment required from P being the actual time
that the protocol would request the environment then. This amount will be
no more than what S invested.

– In the ideal world protocol, if P receives a deal offer from W(FCPFO), then
it would pass it on to the environment, and if the deal is accepted by the
environment, then P will invest the amount of time specified in the deal, and
obtain the committed value from W(FCPFO). In the real world protocol, if
P enters the panic mode it will send the deal offer to the environment, and
if the deal is accepted by the environment, then P will use the amount of
time specified in the deal offer to force-open the computed value. In either,
case the environment sees the same behavior from P .

To show that this simulation is good, we depend on the fact that the values
released in the initial rounds of the actual execution are pseudorandom, and that
in the simulation S switches to the actual values before this pseudorandomness
ceases to hold. The O(n) factor in the amount invested by S is because of the
fact that S has to make the advance investment for commitments by all honest

Resource Fairness and Composability of Cryptographic Protocols 425

parties (at most n), whereas the adversary A might choose to attack any one
of them. The O(n) factor also includes (in the constant) the factor δ from the
GBBS assumption.

To prove the theorem we must also show a full simulator. A full simulator is
essentially a faithful execution of the adversary and the honest parties. The only
non-triviality resides in that its running time should not depend on the amount
of resources granted by the environment. This is not a problem, since the full
simulator will know the committed values and need not extract it as the honest
parties do in the protocol.

By “plugging in” the UCZK protocol from [17] into protocol GradRel, we have
the following corollary.

Corollary 2. Assume GBBS and CDDH hold, and that enhanced trapdoor per-
mutations exist. Then there exists a protocol that securely realizes W(FR

CPFO)
with O(n)-investment in the FCRS-hybrid model, assuming static corruptions.

3.2 Resource-Fair Multi-party Computation

We show how to construct resource-fair protocols that securely realize the
(wrapped) SFE functionality in the FMPC framework. At a high level, our strat-
egy is very simple. Typical secure multi-party protocols (e.g., [21,17,25]) contain
an “output” phase, in which every party reveals a secret value, and once all
secret values are revealed, every party computes the output of the function. We
modify the output phase to have the parties invoke the W(FCPFO) functionality.
A bit more concretely, assuming each party Pi holds a secret value vi to reveal,
each Pi first commits to vi and then proves its correctness. Finally W(FCPFO)
opens all the commitments simultaneously.

In the full paper, we present two constructions that convert the MPC protocols
of Canetti et al. [17] and Cramer et al. [21] into resource-fair MPC protocols.
Here we state the results.

Theorem 4. Assuming the existence of enhanced trapdoor permutations,
for any polynomial-time computable function f , there exists a polynomial-
time protocol that securely realizes W(Ff) with O(n)-investment in the
(FCRS,W(FCPFO))-hybrid model in the FMPC framework, assuming static cor-
ruptions.

Corollary 3. Assuming GBBS, CDDH, and the existence of enhanced trap-
door permutations, for any polynomial-time computable function f , there exists
a resource-fair protocol that securely realizes W(Ff) in the FCRS-hybrid model
in the FMPC framework, assuming static corruptions.

Theorem 5. Assuming GBBS, CDDH, DCRA, and strong RSA, for any poly-
nomial-time computable function f , there exists a resource-fair protocol that
securely realizes W(Ff) in the (FPKI,W(FCPFO))-hybrid model in the FMPC
framework, assuming static corruptions. Furthermore, this protocol has commu-
nication complexity O(κn|C| + κ2n) bits and consists of O(d+ κ) rounds.

426 J. Garay et al.

Acknowledgements. We thank Amit Sahai for helpful discussions on the for-
mulation of the notion of resource fairness, and Yehuda Lindell and Jesper
Nielsen, as well as the anonymous reviewers for TCC ’06 for their many helpful
comments.

References

1. L. Adleman and K. Kompella. Using smoothness to achieve parallelism. In 20th
STOC, pp. 528–538, 1988.

2. N. Asokan, V. Shoup, and M. Waidner. Optimistic Fair Exchange of Digital Sig-
natures (Extended Abstract). In EUROCRYPT 1998, pp. 591–606, 1998.

3. M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for
secure reactive systems. In 1st Theory of Cryptography Conference (TCC), LNCS
2951, pp. 336-354, 2004.

4. D. Beaver and S. Goldwasser. Multiparty Computation with Faulty Majority. In
30th FOCS, pages 503–513, 1990.

5. J. Benaloh and M. de Mare. One-Way Accumulators: A Decentralized Alternative
to Digital Signatures. In Eurocrypt 1993, LNCS 765, pp. 274–285, 1994.

6. M. Ben-Or, O. Goldreich, S. Micali and R. Rivest. A Fair Protocol for Signing
Contracts. IEEE Transactions on Information Theory 36(1):40–46, 1990.

7. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In 20th STOC, pp. 1–10,
1988.

8. M. Blum. How to exchange (secret) keys. In ACM Transactions on Computer
Systems, 1(2):175–193, May 1983.

9. L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number
generator. SIAM Journal on Computing, 15(2):364–383, May 1986.

10. D. Boneh. The decision Diffie-Hellman problem. In Proceedings of the Third Algo-
rithmic Number Theory Symposium, LNCS 1423, pp. 48–63, 1998.

11. D. Boneh and M. Naor. Timed commitments (extended abstract). In Advances in
Cryptology—CRYPTO ’00, LNCS 1880, pp. 236–254, Springer-Verlag, 2000.

12. C. Cachin and J. Camenisch. Optimistic Fair Secure Computation. In Advances in
Cryptology—CRYPTO ’00, LNCS 1880, pp. 93–111, Springer-Verlag, 2000.

13. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143-202, Winter 2000.

14. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Electronic Colloquium on Computational Complexity (ECCC) TR01-
016, 2001. Previous version “A unified framework for analyzing security of proto-
cols” availabe at the ECCC archive TR01-016. Extended abstract in FOCS 2001.

15. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2005. Revised version of
[14].

16. R. Canetti and M. Fischlin. Universally composable commitments. In CRYPTO
2001, LNCS 2139, pp. 19–40, 2001.

17. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally Composable Two-
party and Multi-party Secure Computation. In 34th STOC, 2002.

18. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure pro-
tocols. In 20th STOC, pp. 11–19, 1988.

Resource Fairness and Composability of Cryptographic Protocols 427

19. R. Cleve. Limits on the security of coin flips when half the processors are faulty. In
Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC
1986), pp. 364-369, 1986.

20. R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. Ph.D.
Thesis. CWI and University of Amsterdam, 1997.

21. R. Cramer, I. Damg̊ard, and J. Nielsen. Multiparty Computation from Threshold
Homomorphic Encryption In Advances in Cryptology - EuroCrypt 2001 Proceed-
ings, LNCS 2045, pp. 280–300, Springer-Verlag, 2001.

22. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In Advances in Cryptology -
CRYPTO ’94, LNCS 839, pp. 174–187, 1994.

23. I. Damg̊ard. Practical and Provably Secure Release of a Secret and Exchange of
Signatures. In Journal of Cryptology 8(4), pp. 201–222, 1995.

24. I. Damg̊ard and M .Jurik. Efficient protocols based probabilistic encryptions using
composite degree residue classes. In Research Series RS-00-5, BRICS, Department
of Computer Science, University of Aarhus, 2000.

25. I. Damg̊ard, and J. Nielsen. Universally Composable Efficient Multiparty Com-
putation from Threshold Homomorphic Encryption. In Advances in Cryptology -
CRYPTO ’03, 2003.

26. D. Dolev, C. Dwork and M. Naor. Non-malleable cryptography. SIAM J. on Com-
put., 30(2):391–437, 2000. An earlier version appeared in 23rd ACM Symp. on
Theory of Computing, pp. 542–552, 1991.

27. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28(6):637–647, June 1985.

28. M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein and A. Smith. Detectable Byzantine
Agreement Tolerating Faulty Majorities (from scratch). In 21st PODC, pp. 118–
126, 2002.

29. P. Fouque, G .Poupard, and J. Stern. Sharing decryption in the context of voting
or lotteries. In Proceedings of Financial Crypto 2000, 2000.

30. Z. Galil, S. Haber, and M. Yung. Cryptographic Computation: Secure Fault-
tolerant Protocols and the Public-Key Model. In CRYPTO’87, pp. 135–155, 1988.

31. J. Garay and M. Jakobsson. Timed Release of Standard Digital Signatures. In
Financial Cryptography ’02, LNCS 2357, pp. 168–182, Springer-Verlag, 2002.

32. J. Garay, P. MacKenzie, M. Prabhakaran and K. Yang. Resource Fairness
and Composability of Cryptographic Protocols. In Cryptology ePrint Archive,
http://eprint.iacr.org/2005/370.

33. J. Garay, P. MacKenzie and K. Yang. Strengthening Zero-Knowledge Pro-
tocols using Signatures. In Advances in Cryptology – Eurocrypt 2003,
LNCS 2656, pp.177-194, 2003. Full version in Cryptology ePrint Archive,
http://eprint.iacr.org/2003/037, 2003. To appear in Journal of Cryptology.

34. J. Garay, P. MacKenzie and K. Yang. Efficient and Universally Composable Com-
mitted Oblivious Transfer and Applications. In 1st Theory of Cryptography Con-
ference (TCC), LNCS 2951, pp. 297-316, 2004.

35. J. Garay, P. MacKenzie and K. Yang. Efficient and Secure Multi-Party Computa-
tion with Faulty Majority and Complete Fairness. In Cryptology ePrint Archive,
http://eprint.iacr.org/2004/019.

36. J. Garay and C. Pomerance. Timed Fair Exchange of Standard Signatures. In
Financial Cryptography 2003, LNCS 2742, pp. 190–207, Springer-Verlag, 2003.

37. O. Goldreich. Secure Multi-Party Computation (Working Draft, Version
1.2), March 2000. Available from http://www.wisdom.weizmann.ac.il/∼oded/
pp.html.

428 J. Garay et al.

38. O. Goldreich, S. Micali, and A. Wigderson. How to Play any Mental Game – A
Completeness Theorem for Protocols with Honest Majority. In 19th ACM Sympo-
sium on the Theory of Computing, pp. 218–229, 1987.

39. S. Goldwasser and L. Levin. Fair computation of general functions in presence of
immoral majority, In CRYPTO ’90, pp. 77-93, Springer-Verlag, 1991.

40. S. Goldwasser and Y. Lindell. Secure Computation Without Agreement. In Journal
of Cryptology, 18(3), pp. 247-287, 2005.

41. D. Hofheinz and J. Müller-Quade. A Synchronous Model for Multi-Party Compu-
tation and Incompleteness of Oblivious Transfer. In Cryptology ePrint Archive,
http://eprint.iacr.org/2004/016, 2004.

42. M. Lepinski, S. Micali, C. Peikert, and A. Shelat. Completely fair SFE and
coalition-safe cheap talk. In 23rd PODC, pp. 1–10, 2004.

43. Y. Lindell. General Composition and Universal Composability in Secure Multi-
Party Computation.In FOCS 2003.

44. P. MacKenzie and K. Yang. On Simulation Sound Trapdoor Commitments. In
Advances in Cryptology–Eurocrypt ’04, pp.382–400, 2004.

45. J. B. Nielsen. On Protocol Security in the Cryptographi Model. Ph.D. Thesis.
Aarhus University, 2003.

46. P. Paillier. Public-key cryptosystems based on composite degree residue classes. In
Advances in Cryptology–Eurocrypt ’99, pp.223–238, 1999.

47. T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In Advances in Cryptology – CRYPTO ’91, LNCS 576, 129–140, Springer-
Verlag, 1991.

48. B. Pfitzmann and M. Waidner. Composition and Integrity Preservation of Secure
Reactive Systems. In ACM Conference on Computer and Communications Security
(CSS), pp. 245–254, 2000.

49. B. Pinkas. Fair Secure Two-Party Computation. In Eurocrypt 2003, pp. 87–105,
2003.

50. M. Prabhakaran and A. Sahai. New notions of security: Achieving universal com-
posability without trusted setup. Cryptology ePrint Archive, Report 2004/139.
Extended abstract in Proc. 36th STOC, pp. 242–251, 2004.

51. T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority. In 21st STOC, pp. 73–85, 1989.

52. V. Shoup. A Computational Introduction to Number Theory and Algebra. Prelim-
inary book, available at http://shoup.net/ntb/.

53. J. Sorenson. A Sublinear-Time Parallel Algorithm for Integer Modu-
lar Exponentiation. Available from http://citeseer.nj.nec.com/sorenson99
sublineartime.html.

54. A. Yao. Protocols for Secure Computation. In FOCS 1982, pp. 160–164, 1982.
55. A. Yao. How to generate and exchange secrets. In FOCS 1986, pp. 162–167, 1986.

Finding Pessiland�

Hoeteck Wee

Computer Science Division,
University of California, Berkeley
hoeteck@cs.berkeley.edu

Abstract. We explore the minimal assumptions that are necessary for non-
trivial argument systems, such as Kilian’s argument system for NP with poly-
logarithmic communication complexity [K92]. We exhibit an oracle relative to
which there is a 2-round argument system with poly-logarithmic communication
complexity for some language in NP, but no one-way functions. The language
lies outside BPTime(2o(n)), so the relaxation to computational soundness is
essential for achieving sublinear communication complexity. We obtain as a
corollary that under black-box reductions, non-trivial argument systems do not
imply one-way functions.

1 Introduction

Pessiland, coined by Impagliazzo [I95], is a world in which there are hard-on-average
languages in NP but no one-way functions. In Pessiland, generating hard instances
of NP-languages is easy, but we do not know of a way of exploiting these hard-
on-average problems in cryptography. In fact, Impagliazzo and Luby [IL89] proved
that most cryptographic applications, including bit commitment, private-key encryption
and digital signatures, require one-way functions (which allow us to generate hard
instances of NP-languages along with a witness) and are therefore impossible to realize
in Pessiland.

Recently, Barak’s construction of (non-black-box) zero-knowledge arguments [B01]
renewed interest in the round complexity and the minimal assumptions necessary for
the existence of non-trivial argument systems for NP and NEXP [K92, M00, BG02,
W05]. We consider an argument system for NP or NEXP to be non-trivial if the
communication complexity is subpolynomial in the length of the witness. Currently, the
best construction for NEXP is a 4-round protocol based on the existence of (standard)
collision-resistant hash functions [BG02]. If we could relax the assumption to one-
way functions, then Barak’s construction would yield a constant-round zero-knowledge
argument for NP under the same assumption. On the other hand, we do not even
know if one-way functions are necessary for non-trivial argument systems. For 2-round
argument systems, it is known that a relaxation of hard-on-average languages in NP is
necessary [W05] (also, Appendix A.2).

� Work supported by US-Israel BSF Grant 2002246. Presently visiting Tsinghua University,
Beijing, China.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 429–442, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

430 H. Wee

1.1 Main Results

In this work, we establish a connection between the two problems: we provide a
relativized construction of Pessiland which contains a non-trivial 2-round argument
system for a language in NP.

Theorem 1. There exists an oracle relative to which there exists a strongly hard-on-
average language in NP∩ coNP, but no one-way functions. Furthermore, there is a
2-round public-coin argument system with poly-logarithmic communication complexity
for a language that lies within NP but outside BPTime(2o(n)).

It is important that our argument system is for a language outside BPTime(2o(n)),
as it means that the relaxation to computational soundness is essential for achiev-
ing sublinear communication complexity. This rules out trivial 2-round argument
systems with poly-logarithmic communication complexity for languages in BPP or
NTime(log2 n). In particular, a relativizing argument in [GH98] implies that languages
outside BPTime(2o(n)) do not have interactive proof systems with sublinear (total)
communication complexity, regardless of the number of rounds, and even if the verifier
is allowed a polynomial amount of private randomness.

As a corollary, we deduce that there does not exist a black-box construction (such
as those used in [V04, W05]) of one-way functions or collision-resistant hash functions
from non-trivial 2-round argument systems. This partially explains why we have not
been able to prove a statement of the form “if there exists a non-trivial 2-round
argument system, then there exists one-way functions”. In particular, a proof of this
statement must use a non-relativizing argument or make some stronger assumptions on
the underlying language. On the other hand, we do not expect to disprove this statement.
Suppose non-trivial 2-round argument systems do not exist (which is quite plausible);
then, the statement is vacuously true.

The black-box construction of primitives from interactive protocols in [V04, W05]
only yields auxiliary-input primitives, as the input instance for the protocol is hard-
wired into the algorithm computing the primitive. As such, one would ideally like to
rule out auxiliary-input one-way functions (that is, we only require that the function be
computable by a nonuniform polynomial-time algorithm) while exhibiting a non-trivial
argument system. At this point, we are only able to achieve a much weaker result:

Theorem 2. There exists an oracle relative to which there exists a strongly hard-on-
average language in NP, but no auxiliary-input one-way functions.

The analysis of our first construction is fairly straight-forward apart from some subtle
details, and uses several techniques from previous work (such as [IR89, GT00]); the
insight lies in the construction and in establishing a connection between Pessiland and
non-trivial argument systems. Our second construction, on the other hand, requires a
more intricate and novel analysis.

1.2 Perspective and Related Works

Round-efficient argument systems. All previous constructions of non-trivial argument
systems (in the standard model) [K92, BG02] require 4 rounds and the existence of

Finding Pessiland 431

collision-resistant hash functions. Micali [M00] gave the first relativized construction of
a non-trivial 2-round argument system, by using a random oracle to instantiate collision-
resistant hash functions and the Fiat-Shamir paradigm in Kilian’s 4-round protocol
[K92]. While these previous constructions were for either NP-complete or NEXP-
complete languages, our relativized construction (which does not require one-way
functions or collision-resistant hash functions) is for a language in NP but possibly not
NP-complete. We stress that previous work [W05] deducing hard-on-average problems
in NP from non-trivial argument systems for NP (and NEXP) does not exploit the
structure of NP in any way; it merely uses the fact NP does not have a proof system
with the same communication complexity as the underlying argument system under
standard complexity assumptions.

Relationships between cryptographic primitives. Starting with the work of Impagliazzo
and Rudich [IR89], the study of relationships between cryptographic primitives has
focused on the impossibility of basing complex primitives on simpler ones, particularly
one-way functions and one-way permutations. Our main result goes in the reverse
direction: it shows the impossibility of constructing simpler primitives from a specific
cryptographic application (in a black-box manner). It also provides an example of a
cryptographic application (for a contrived language, unfortunately) which may be based
on weaker assumptions than the existence of one-way functions. In an unpublished
work, Impagliazzo and Rudich gave the first1 relativized construction of Pessiland,
which yields a black-box separation between hard-on-average languages in NP and
one-way functions.

2 Preliminaries

We use Π� to denote the set of all permutations on {0,1}�, Fn,� to denote the set
of all functions from {0,1}n to {0,1}�, and Un to denote the uniform distribution
over {0,1}n. A negligible function is a function of the form n−ω(1). In the context of
describing probability distributions, we write x ∼Un to denote choosing x according to
the distribution Un; we also use x ∈ S to denote choosing an element x from the set S
uniformly at random. We use · to denote the standard dot product of binary strings, and
H(·) to denote the Shannon entropy function, namely, H(p)=−p log p−(1−p) log(1− p),
for p ∈ [0,1].

2.1 Models of Computation

A circuit has AND and OR gates where each gate has in-degree 2 and out-degree 1,
and is labeled with a bit that indicates whether its value should be negated. The size of
a circuit is the number of gates. A nonuniform polynomial-time algorithm refers to a

1 We only learnt about the work of Impagliazzo and Rudich after independently arriving at the
same construction. We also clarify that finding in the title alludes to the search for constructions
of Pessiland with stronger cryptographic implications (and a positive result for exploiting
average-case hardness) than a mere separation between hard-on-average languages and one-
way functions.

432 H. Wee

family of polynomial-size circuits; specifically, we may consider the polynomial-time
algorithm as being circuit evaluation and the nonuniformity being the corresponding
circuit. An oracle circuit has 3 types of gates: AND, OR and oracle gates. The in/out-
degree of the oracle gate matches the input/output length of the oracle. It is easy to
see that an oracle circuit of size s having input/output length n and oracle access to a
function f : {0,1}n → {0,1} can be encoded using O(sn log(sn)) bits. A nonuniform
oracle polynomial-time algorithm refers to a family of polynomial-size oracle circuits.

2.2 Average-Case Hardness and One-Way Functions

Definition 1. For any α ∈ [0,1/2], a function f : {0,1}n → {0,1} is α-hard for size s
if every circuit of size s fails to compute f on an α fraction of inputs.

Definition 2. For any function α : N → [0,1/2], a function f : {0,1}∗ → {0,1} is α-
hard if for every nonuniform polynomial-time algorithm A, for all sufficiently large n’s,

Pr
x∼Un

[A(x) �= f (x)]> α(n)

A function f is weakly hard-on-average (resp. strongly hard-on-average) if f is α-hard
for some α(n) = n−c where c > 0 is a constant (resp. some α(n) = 1/2− n−ω(1)). A
language L is α-hard if the characteristic function for L is α-hard. We also extend the
notions of weakly and strongly hard-on-average to languages.

Definition 3. For any function α : N→ [0,1], a function f : {0,1}∗ → {0,1}∗ is α-one-
way (resp. auxiliary-input α-one-way) if f is computable in polynomial time (resp. by
a nonuniform polynomial-time algorithm) and if for every nonuniform polynomial-time
algorithm A, and all sufficiently large n’s,

Pr
x∼Un

[A(f (x)) /∈ f−1(f (x))]> α(n)

A function f is weakly one-way (resp. strongly one-way) if f is α-one-way for some
α(n) = n−c where c > 0 is a constant (resp. some α(n) = 1−n−ω(1)).

All of these notions extend naturally to the setting of oracle nonuniform polynomial-
time algorithms (and oracle circuits). We will often appeal to the following technical
lemma from [GT00] stating that random permutations are strongly one-way. We will
also use the fact that the proof relativizes.

Lemma 1 ([GT00]). For all sufficiently large �, with probability 1−2−2�/2
over π ∈Π�,

for all oracle circuits A of size 2�/5,

Pr
x∼U�

[Aπ(π(x)) �= x]> 1−2−�/5

2.3 Interactive Proofs and Argument Systems

For a relation R ⊆ {0,1}∗ × {0,1}∗, the language associated with R is LR = {x :
∃y (x,y) ∈ R}.

Finding Pessiland 433

Definition 4. An interactive protocol (P,V) is an interactive proof system for a
language L if there is a relation R such that L = LR, and functions c,s : IN → [0,1]
such that 1− c(n)> s(n)+1/poly(n) and the following holds:

– (efficiency): the length of all the messages are bounded by a polynomial in the
length of the common input x, and V is computable in probabilistic polynomial
time.

– (completeness): for all (x,w) ∈ R, then V accepts in (P(w),V)(x) with probability
at least 1− c(|x|),

– (soundness): for all x /∈ L, then for every P∗, V accepts in (P∗,V)(x) with
probability at most s(|x|).

We call c(·) the completeness error and s(·) the soundness error. We say that (P,V) has
negligible error if both c and s are negligible. We say that it has perfect completeness if
c = 0. P is an efficient prover if P(w) is computable by a probabilistic polynomial-time
algorithm when (x,w) ∈ R. The communication complexity of the proof system is the
total length of all the messages exchanged by both parties, and the round complexity is
the total number of messages exchanged by both parties (in both directions).

Definition 5. An argument system (P,V) is defined in the same way as an interactive
proof system, with the following modification:

– The soundness condition is replaced with computational soundness: For every
nonuniform polynomial-time machine P∗ and for all sufficiently long x /∈ L, the
verifier V accepts in (P∗,V)(x) with probability at most s(|x|).

In this paper, we focus on public-coin argument systems with perfect completeness,
negligible soundness error, and an efficient prover.

2.4 Relativization and Black-Box Reductions

In each of our relativized constructions, we consider a family of oracles O = {On}n≥1,
with an oracle for each input length. For simplicity, we will only present our results for
the model where an oracle Turing machine (respectively an oracle circuit) on an input of
length m only queries On for a single value of n, where n = n(m) is polynomially related
to m. This is already sufficient to capture most black-box reductions and transformations
used in cryptography.

For black-box constructions of cryptographic primitives from interactive protocols,
we require that the construction uses oracle access to the efficiently computable entities
in the protocol, such as the verifier, the efficient prover (if one exists), and the simulator
(in the case of zero-knowledge). An example is the construction of one-way functions
from zero-knowledge proof systems in [V04], where the function is computed using
black-box access to the simulator and the verifier for the underlying proof system. Such
constructions usually only yield auxiliary-input cryptographic primitives because we
need to hardwire the instance used in the protocol into the algorithm for computing the
primitive. We omit a formal definition of black-box constructions used in this work (as
a sufficiently general framework will be fairly involved without yielding any additional
insight); instead, we refer the reader to [RTV04] for a formal treatment of black-box
constructions and reductions.

434 H. Wee

3 The Impagliazzo-Rudich Construction

We begin by reviewing the relativized construction of Pessiland due to Impagliazzo and
Rudich (unpublished). We use some of the ideas and proofs in our main constructions.

Theorem 3 (Impagliazzo-Rudich). There exists an oracle relative to which there
exists a strongly hard-on-average language in NP∩ coNP, but no one-way functions.

For any f ∈ Fn,n (namely, a function from {0,1}n to {0,1}n), we define a verification
oracle for f :

Vf (x,y) =

{
1 if f (x) = y

0 otherwise

The construction used in the proof of Theorem 3 is as follows:

Construction 1. For each n ∈ N, we have an oracle Vπ , for some permutation π ∈ Πn

(specifically, one that satisfies the condition in Lemma 1 and that in Lemma 2 below).
In addition, we provide access to a PSPACE oracle.

We choose π by sampling a random permutation on {0,1}n. If π is strongly one-way,
then the NP-relation {(x,w) | π(w) = x} yields a hard-on-average search problem (with
a unique witness), and upon applying the Goldreich-Levin transformation [GL89], we
obtain a strongly hard-on-average language in NP∩coNP. Furthermore, a polynomial-
time oracle Turing machine M makes a query to Vπ of the form (x,π(x)) with negligible
probability, so MZ agrees with MVπ on almost all inputs. Here, Z : {0,1}∗ → {0,1}
denotes the function that evaluates to 0 everywhere. Using the PSPACE oracle, we may
then invert MZ everywhere and thus MVπ almost everywhere.

Lemma 2. Fix T (n) = nlogn and an encoding of oracle Turing machines. For all
sufficiently large n, with probability at least 1/2n2 over π ∈ Πn, for all oracle Turing
machines M that can be described using at most logn bits and makes at most T (n)
oracle queries,

Pr
x∼Un

[
MVπ (x) = MZ(x)

]
≥ 1− 1

2T (n)

Proof. Fix an oracle Turing machine M. By linearity of expectations, we have

Eπ∈Πn

[∣∣{x ∈ {0,1}n : MVπ (x) �= MZ(x)}
∣∣]≤ 2n · T (n)

2n −T (n)

By Markov’s inequality,

Pr
π∈Πn

[∣∣{x ∈ {0,1}n : MVπ (x) �= MZ(x)}
∣∣≥ 2n

2T (n)

]
≤ 2T (n)2

2n −T (n)
<

1
4n3

This allows us to take a union bound over all oracle Turing machines M with description
at most logn bits (there are at most 2n of them). ��

Finding Pessiland 435

Remark 1. As stated, the above lemma only allows us to rule out one-way functions
computed by oracle Turing machines M that on an input of length n, only queries Vπ
corresponding to a permutation on {0,1}n. To handle the case where M queries oracles
corresponding to permutations on different input lengths, we choose π ∈ Πn to allow
for a union bound over all oracle Turing machines M that can be described using at most
logn bits and makes at most T (n) queries to Vπ on some input of length m(n) where
m(n) is polynomially related to n (instead of only considering m(n) = n).

Lemma 3 ([LTW05]). Let f ,g : {0,1}n → {0,1}n be functions that agree on an ε
fraction of inputs. Let A() be the probabilistic procedure that, for every y ∈ {0,1}n,
A(y) outputs ⊥ if f (−1)(y) = /0, and a uniformly random element of f (−1)(y) otherwise.
Then, the probability that A(g(x)) ∈ g(−1)(g(x)) is at least ε2, when taken over the
uniform choice of x ∈ {0,1}n and over the internal coin tosses of A.

Remark 2. Since we also provide access to a PSPACE oracle, we should say that
with overwhelming probability over π , MZ,PSPACE agrees with MVπ ,PSPACE almost
everywhere. This is true since the proof of Lemma 2 relativizes. With a PSPACE oracle,
we may uniformly sample pre-images for MZ,PSPACE in probabilistic polynomial time,
which together with Lemma 3, is sufficient to rule out one-way functions.

Lemma 4 ([GT00, GL89]). For all sufficiently large n, with probability 1− o(1/n2)
over π ∈ Πn, the function f : {0,1}2n → {0,1} given by f (y,r) = π−1(y) · r is (1/2−
n− logn)-hard against oracle circuits of size nlogn with oracle access to π .

4 Our First Pessiland

We present our construction that establishes Theorem 1. Fix n and � = 100log2 n. For
each f ∈ Fn,3n and a collection of permutations {πy ∈ Π� | y ∈ {0,1}3n}, we define a
3-tuple (Vπ ,Vf ,T) where Vπ and Vf are verification oracles for checking the relations
induced by {πy} and f , and T is a trapdoor permutation oracle for computing πy and
π−1

y if given (w,y) such that f (w) = y.
Our 2-round protocol for the language L f = {y | ∃w : f (w) = y} is shown in Fig 1. On

input y ∈ {0,1}3n, the prover is asked to invert πy on a random input, and the verifier
checks the answer using the verification oracle Vπ . The trapdoor permutation oracle
yields an efficient prover for the YES instances. For the NO instances, generating an
accepting response is as hard as inverting a random permutation.

Vπ(y,α,β) =

{
1 if πy(α) = β
0 otherwise

Vf (w,y) =

{
1 if f (w) = y

0 otherwise

T (w,y,b,z) =

⎧⎪⎨⎪⎩
πy(z) if f (w) = y and b = 0

π−1
y (z) if f (w) = y and b = 1

⊥ otherwise

436 H. Wee

Common input: An instance y ∈ {0,1}3n.
Prover’s private input: A witness w ∈ {0,1}n.

V → P : Send β R←− {0,1}O(log2 n).
P →V : Send α = T (w,y,β).

Verification: V accepts if Vπ (y,α ,β) = 1 (that is, πy(α) = β).

Fig. 1. 2-round public-coin protocol prot for the language L f = {y | ∃w : f (w) = y}

Construction 2. For each n ∈ N, we have an oracle (Vπ ,Vf ,T), for some appropriate
choices of f ∈ Fn,3n and {πy ∈ ΠO(log2 n) | y ∈ {0,1}3n}. In addition, we provide access
to a PSPACE oracle.

We begin with an overview of the analysis for our construction.

Computational soundness. A successful cheating prover is one that inverts πy on a
noticeable fraction of inputs, for some y /∈ L f . However, for each y /∈ L f , the random
permutation πy is one-way against oracle circuits of size nlogn with probability

1−2−nlogn
(Lemma 1). This holds even if the circuit is given oracle access to Vf ,πy

and (πy′ ,π−1
y′) for all y′ �= y (which are sufficient to simulate the oracles (Vπ ,Vf ,T)),

because πy′ and f are chosen independently of πy. We can then take a union bound to
ensure that every permutation in the collection {πy} is strongly one-way, as shown
in Lemma 5.

Ruling out low-communication proof systems. A 2-round argument system for L f

with communication complexity �(n) is only interesting if we could rule out 2-
round interactive proof systems for the language L f with the same communication
complexity. We prove in Lemma 6 that there is no subexponential-size oracle circuits
for deciding L f , given oracle access to Vf and to {(πy,π−1

y)}y∈{0,1}3n , which is

sufficient to simulate oracle access to (Vπ ,Vf ,T). This implies L f /∈ BPTime(2o(n)).
Note that an algorithm running in time BPTime(2O(�(n))) can compute and invert the
permutations πy everywhere given oracle access to Vπ . It is therefore essential to our
proof that the collection of permutations {πy} is defined independently of f .

Ruling out one-way functions. The analysis is virtually identical to that for the
Impagliazzo-Rudich Pessiland, since a polynomial-time oracle Turing machine is
unlikely to query (Vπ ,Vf ,T) at any input where the answer is neither 0 nor ⊥. Note
that in order to satisfy the efficient prover condition (for YES instances), it suffices
to provide oracle access to π−1

f (w) in T . By incorporating oracle access to π f (w) into

T , we also rule out the trivial auxiliary-input one-way permutation given by π−1
f (w).

However, we do not know how to rule out every auxiliary-input one-way function
for this construction.

A strongly hard-on-average language. We can construct the language from the strongly
hard-on-average function given by g : {0,1}3n+2� → {0,1} where g(y,β ,r)
= π−1

y (β) · r.

Finding Pessiland 437

Lemma 5. For all sufficiently large n, for every f ∈ Fn,3n, with probability 1 −
2−Ω(nlogn) over {πy}y∈{0,1}3n ∈ Π 23n

� , for all y ∈ {0,1}3n and for all oracle circuits A

of size nlogn,

Pr
x∼U�

[AVf ,πy,{(πy′ ,π
−1
y′)|y′ �=y}(πy(x)) = x]< 2−nlogn

Proof. By Lemma 1 (and the fact that it relativizes), if we fix a sufficiently large n,
along with any f ∈ Fn,3n, any y ∈ {0,1}3n, and any πy′ ∈ Π� for all y′ �= y, we know that

with probability 2−Ω(nlogn) over πy ∈ Π�, for all oracle circuits A of size nlogn,

Pr
x∼U�

[AVf ,πy,{(πy′ ,π
−1
y′)|y′ �=y}(πy(x)) = x]< 2−nlogn

The lemma follows from taking a union bound over all y ∈ {0,1}3n. ��
Lemma 6. For all sufficiently large n, for every collection of permutations{πy}y∈{0,1}3n ,

with probability 1− 2−Ω(2n) over f ∈ Fn,3n, there is no oracle circuit of size 2n/5 that
given oracle access to Vf and to {(πy,π−1

y)}y∈{0,1}3n decides L f .

Proof. We establish this result following the counting argument in [GT00]. We may
neglect oracle access to {(πy,π−1

y)}y∈{0,1}3n since the argument relativizes. The idea is
to show that any function f for which there is an oracle circuit A that given oracle access
to Vf decides L f has a “short” description (given A). There are very few such functions,
so a random f satisfies the hardness property with overwhelming probability.

Formally, fix an oracle circuit A : {0,1}3n → {0,1} of size 2n/5 and suppose A on
oracle access to Vf decides L f for some f ∈ Fn,3n. We simulate A on every input in
{0,1}3n in lexicographic order and observe the queries that A makes to Vf . WLOG,
assume A never makes the same query twice on a given input. Define X ⊆ {0,1}n to be
all x such that A queries Vf on (x, f (x)).

CASE 1: |X | ≤ 3
4 ·2n. Given the set X and f |X , we may simulate A on all inputs without

oracle access to Vf , thereby recovering the set f ({0,1}n). We may then specify f
on each input outside X using just n bits (instead of 3n bits) since we only need n
bits to specify an element in the set f ({0,1}n).

CASE 2: |X | > 3
4 · 2n. Over all possible inputs, A makes at most 23n · 2n/5 queries to

Vf . Therefore, there are at most 1
4 · 2n values of x for which A makes more than

4 · 22n · 2n/5 queries to Vf of the form (x, ·). In particular, there is a subset X ′ of X
with 1

2 ·2n elements, and for each x ∈ X ′, A makes at most 4 ·22n ·2n/5 queries to Vf

of the form (x, ·). Given the circuit A, the set X ′ and f |{0,1}n\X ′ , we may specify f
on each input in X ′ using 11n/5+2 bits (instead of 3n bits) since we only need to
specify i such that the i’th query A makes of the form (x, ·) returns 1.

In both cases, given A, we may specify f with 2n(2n/5− 2) less bits (relative to the
2n ·3n bits required to specify a function in Fn,3n). It takes an additional O(2n/5n2) bits
to specify A. ��

438 H. Wee

5 A Second Pessiland

We present our next construction that establishes Theorem 2. It is similar to the
Impagliazzo-Rudich Pessiland except we provide a verification oracle for a random
function instead of a random permutation.

Construction 3. For each n ∈ N, we have an oracle Vf , for some appropriate choice
of f ∈ Fn,n. In addition, we provide access to a PSPACE oracle.

First, we show that for most f ∈ Fn,n, the language L f = {y | ∃x : f (x) = y} is
weakly hard-on-average (Lemma 7); the proof is an extension of that for Lemma 6,
except more involved because we are establishing average-case hardness instead of
worst-case hardness. Since the main technical result from [HVV04] on hardness
amplification within NP relativizes, we may deduce that there is a strongly hard-on-
average language L′

f in NP/poly, obtained by applying some monotone transformation
to some padded variant of L f . We provide an additional oracle that on input 1n, outputs
the nonuniformity needed to compute L′

f in NP. To rule out auxiliary-input one-way
functions, it suffices to show that the function computed by any small oracle circuit
may be approximated by the function computed by a standard circuit with a polynomial
blow-up in size (Lemma 8).

Lemma 7. For all sufficiently large n, with probability 1− 2−Ω(n2) over f ∈ Fn,n, the
language L f = {y | ∃x : f (x) = y} is 0.01-hard against oracle circuits of size 2o(n) with
oracle access to Vf .

Proof (sketch). A standard “balls in bins” analysis (e.g. [MR95, Theorem 4.18]) tells us
that with probability 1−2−Ω(2n) over f ∈ Fn,n, | f ({0,1}n)| is bounded from above by
2
3 ·2n (we may replace 2

3 by any constant larger than 1− 1
e). We may then simply focus

on f such that | f ({0,1}n)|< 2
3 ·2n, and proceed as in the proof of Lemma 6. Again, we

consider an oracle circuit A : {0,1}n → {0,1} that solves L f on at least a 0.99 fraction
of inputs and we define X to be all x such that A queries Vf on (x, f (x)).

CASE 1: |X | ≤ 0.02 · 2n. Let Y = {y | A(y) �= L f (y)}, that is, the subset of inputs
on which A is wrong. Given f |X and the sets X ,Y (which may be specified using
(0.02n + H(0.02) + H(0.01) + o(1))2n bits), we may simulate A on all inputs
without oracle access to Vf , thereby recovering the set f ({0,1}n). We may then
specific f on inputs outside X using log(2

3 · 2n) bits. Therefore, given the circuit
A, we may specify f using 2nn − (0.98log 3

2 − H(0.01)− H(0.02)− o(1))2n <
2n(n−0.35) bits.

CASE 2: |X |> 0.02 ·2n. We argue that there is a subset X ′ of X with 0.01 ·2n elements,
and for each x∈X ′, A makes at most 100 ·2o(n) queries to Vf of the form (x, ·). Given
the circuit A, we may then specify f using (0.99+o(1))2nn bits. ��

To facilitate the proof of the next lemma, we introduction an additional notation: for
any f ∈ Fn,n and any subset Q of {0,1}n, we define:

Vf ,Q(x,y) =

{
1 if f (x) = y and x ∈ Q

0 otherwise

Finding Pessiland 439

Lemma 8. For all sufficiently large n, with probability 1− 2−Ω(n2) over f ∈ Fn,n, for
all oracle circuits C of size s where n ≤ s ≤ 2n/10 and for all ε ≥ 2−n/10, there exists a
circuit C′ of size O(s4n3/ε2) such that CVf and C′ agree on a 1−ε/2 fraction of inputs.

To see why the naive approach of setting C′ = CZ (as in Lemma 2) fails, consider an
oracle circuit C that independent of its input, outputs Vf (0n,1n). Then, with probability
1−2−n, C′ and C agree on all inputs, and with probability 2−n, disagree on all inputs.
This is not sufficient for a union bound over all polynomial-size circuits. To work
around this, we hardwire into C′ information about f . Specifically, we show that with
overwhelming probability over f ∈Fn,n, for all C of size s, there exists a set Q ⊆{0,1}n

of size O(s4n2/ε2) such that the circuit CVf ,Q agrees with CVf on a 1− ε/2 fraction of
inputs. Note that we allow Q to depend on f . We may specify f |Q using |Q|n bits of
nonuniformity, so CVf ,Q may be computed by a circuit C′ of size O(s4n3/ε2) (without
oracle access to Vf).

Here is an outline of the analysis. Let us examine the first oracle query made by
the circuit C on different inputs, and we define Q1 to be all x such that the first query
C makes to Vf matches (x, ·) on more than a ε3/s3n2 fraction of inputs. Therefore,
|Q1| = poly(s,n,1/ε). Now, consider the oracle circuit C1 that behaves like C, except
the first oracle query is made to Vf ,Q1 instead of Vf . Suppose C and C1 differs on a ε/2s
fraction of inputs. This must be because for a ε/2s fraction of inputs, the first query
C makes to Vf matches (x, f (x)), for some x /∈ Q1. For a random f and a fixed x, this
happens with probability 2−n. Moreover, this must happen for at least s2n2/ε2 different
values of x not in Q1 (since each x /∈ Q1 accounts for at most a ε3/s3n2 fraction of
inputs). For a random f , the evaluation of f on each of these x values are independent.
Thus, the probability (over f) that C and C1 differs on a ε/2s fraction of inputs is
roughly 2−Ω(ns2).

Proof. Formally, fix f ∈ Fn,n. We define oracle circuits C0,C1, . . . ,Cs and subsets
Q0,Q1, . . . ,Qs of {0,1}n inductively as follows:

– Q0 = /0 and C0 = C.
– Qi is union of Qi−1 and the set{

x∈{0,1}n
∣∣Pr
z

[
i’th oracle query for computing C

Vf
i−1(z) matches (x, ·)

]
≥ ε2/s3n2

}
– Ci on input z and oracle access to Vf simulates the computation of CVf (z) except

for j = 1,2, . . . , i, the j’th oracle query is answered using Vf ,Q j instead of Vf . We
will hardwire the description of the sets Q1, . . . ,Qi into Ci, so upon oracle access to
Vf , Ci may simulate the oracles Vf ,Q j , j = 1, . . . , i.

Claim. For all i = 1,2, . . . ,s, Pr f∈Fn,n

[
Prz

[
C

Vf
i−1(z) �=C

Vf
i (z)

]
< ε/2s

]
≥ 1−2−Ω(sn2)

It follows readily from the claim that

Pr
f∈Fn,n

[
Pr
z

[
CVf (z) �= C

Vf
s (z)

]
< ε/2

]
≥ 1− s ·2−Ω(sn2)

440 H. Wee

This implies that with overwhelming probability over f , CVf and CVf ,Qs agree on a
1−ε/2 fraction of inputs. We may bound |Qs| by s4n2/ε2 since |Qi| ≤ |Qi−1|+s3n2/ε2.
Hence, CVf ,Qs may be computed by a circuit C′ of size O(s4n2/ε2). The lemma then
follows from taking a union bound over all circuits of size s, all s between n and 2n/10,
and all 1/ε between 2 and 2n/10. ��

Now, we provide the proof of the above claim.

Proof (of claim). We start with the case i = 1. Note that the definition of Q1 does
not depend on f . Consider any input z to CVf . If the first oracle query made by

CVf corresponds to an element in Q1, then Pr f [C
Vf
1 (z) = CVf (z)] = 1. Otherwise,

Pr f [C
Vf
1 (z) = CVf (z)] = 1−2−n. For each x ∈ {0,1}n, we define

αx =

{
Prz

[
first oracle query for CVf (z) matches (x, ·)

]
if x /∈ Q1

0 otherwise

(note that αx is independent of f) and Yx to be the random variable (where the
randomness is over f ∈ Fn,n) for the probability

Pr
z

[
first oracle query for CVf (z) matches (x, ·) and CVf (z) �= C

Vf
1 (z)

]
Hence, we have ∑x αx ≤ 1 and for all x ∈ {0,1}n:

0 ≤ Yx ≤ αx ≤ ε2/s3n2 and E f [Yx] = αx2−n

In addition,
Pr
f ,z

[
C

Vf
1 (z) �= CVf (z)

]
= E f

[
∑
x

Yx

]
By convexity, we have ∑x α2

x ≤ ε2/s3n2. Applying the Hoeffding bound [H63] yields:

Pr
f

[
∑
x

Yx −2−n ≥ ε/4s
]
≤ e−2(ε/4s)2/∑x α2

x ≤ e−sn2/8

In the general case, we fix an assignment to f |Qi−1 , so the set Qi is also fixed. As
before, we define

αx =

{
Prz

[
i’th oracle query for C

Vf
i−1(z) matches (x, ·)

]
if x /∈ Qi

0 otherwise

(here, αx is independent of f |{0,1}n\Qi−1
) and Yx to be the random variable (where the

randomness is over f |{0,1}n\Qi−1
) for the probability

Pr
z

[
i’th oracle query for C

Vf
i−1(z) matches (x, ·) and C

Vf
i−1(z) �= C

Vf
i (z)

]
Again, the Hoeffding bound yields:

Pr
f |{0,1}n\Qi−1

[
∑
x

Yx −2−n ≥ ε/4s
]
≤ e−sn2/8

Finding Pessiland 441

This holds for all f |Qi−1 . Averaging over all possible assignments of f |Qi−1 , we have:

Pr
f

[
Pr
z

[
C

Vf
i−1(z) �= C

Vf
i (z)

]
≥ ε/4s+2−n

]
≤ e−sn2/8

This completes the proof of the technical claim. ��

Acknowledgements

I am grateful towards Salil Vadhan for sharing his insightful observations which led me
towards the problems addressed in this work, and Luca Trevisan for his help with the
proofs in Section 5. In addition, I thank Lance Fortnow and Russell Impagliazzo for
pointing out previous constructions of Pessiland, and the anonymous referees for their
helpful and constructive feedback.

References

[B01] B. Barak. How to go beyond the black-box simulation barrier. In Proc. 42nd FOCS,
2001.

[BG02] B. Barak and O. Goldreich. Universal arguments and their applications. In Proc.
17th CCC, 2002.

[GH98] O. Goldreich and J. Håstad. On the complexity of interactive proofs with bounded
communication. IPL, 67(4):205–214, 1998.

[GL89] O. Goldreich and L. Levin. Hard-core predicates for any one-way function. In Proc.
21st STOC, 1989.

[GT00] R. Gennaro and L. Trevisan. Lower bounds on efficiency of generic cryptographic
constructions. In Proc. 41st FOCS, 2000.

[H63] W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58:13–30, 1963.

[HVV04] A. Healy, S. Vadhan, and E. Viola. Using nondeterminism to amplify hardness. In
Proc. 36th STOC, 2004.

[I95] R. Impagliazzo. A personal view of average-case complexity. In Proc. 10th Structure
in Complexity Theory Conference, 1995.

[IL89] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based
cryptography. In Proc. 30th FOCS, 1989.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In Proc. 21st STOC, 1989.

[K92] J. Kilian. A note on efficient zero-knowledge proofs and arguments. In Proc. 24th
STOC, 1992.

[LTW05] H. Lin, L. Trevisan, and H. Wee. On hardness amplification of one-way functions.
In Proc. 2nd TCC, 2005.

[M00] S. Micali. Computationally sound proofs. SICOMP, 30(4):1253–1298, 2000.
[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,

1995.
[RTV04] O. Reingold, L. Trevisan, and S. Vadhan. Notions of reducibility between

cryptographic primitives. In Proc. 1st TCC, 2004.
[V04] S. Vadhan. An unconditional study of computational zero knowledge. In Proc. 45th

FOCS, 2004.
[W05] H. Wee. On round-efficient argument systems. In Proc. 32nd ICALP (Track C),

2005.

442 H. Wee

A Appendix

A.1 The Hoeffding Bound

We state the concentration result for sum of independent bounded random variables
(with possibly arbitrary distributions) used in the proof of Lemma 8.

Lemma 9 ([H63]). If X1, . . . ,Xn are independent random variables such that ai ≤ Xi ≤
bi, i = 1,2, . . . ,n, then for all t > 0,

Pr[X −E[X] ≥ t] ≤ e−2t2/∑i(bi−ai)2

where X = X1 + . . .Xn.

A.2 Necessity of Hardness Assumptions

For ease of reference, we reproduce the proof from [W05] (with a minor improvement
in the result) that a 2-round argument system for NP with subpolynomial communi-
cation complexity implies hard-on-average search problems in NP. Under complexity
assumptions, such a protocol cannot be a proof system [GH98]. Hence, there exists
infinitely many NO instances that are merely “computationally sound”, from which we
may construct hard-on-average search problems in NP. We stress that the construction
of hard-on-average search problems uses the underlying verifier in a black-box manner.

Lemma 10 ([W05]). Suppose a promise problem Π = (ΠY ,ΠN) has a 2-round
public-coin argument system (P,V) with communication complexity m(n), perfect
completeness and negligible soundness error. Then, there exists a subset I ⊂ ΠN such
that:

– Ignoring inputs in I, Π has a 2-round public-coin proof system with communication
complexity m(n), perfect completeness and soundness error less than 1. This
implies (ΠY ,ΠN \ I) ∈ DTime(2O(m(n))).

– When x ∈ I, the predicate V (x, ·, ·) induces a distribution over hard-on-average
search instances in NP. That is, for every x ∈ I:

Pr
r
[∃ y : V (x,r,y) = 1] = 1,

but for every n, every x ∈ I ∩ {0,1}n and every nonuniform polynomial-time
algorithm A, there exists a negligible function ε(n) such that

Pr
r
[V (x,r,A(r)) = 1]< ε(n)

Theorem 4 ([W05]). Suppose NP has a 2-round public-coin argument system (P,V)
with communication complexity no(1), perfect completeness and negligible soundness
error. Then, (at least) one of the following is true:

– NP ⊆ DTime(2no(1)
)

– There exists an infinite set I such that for all x ∈ I, the predicate V (x, ·, ·) induces
a distribution over hard-on-average search instances in NP (as formalized in
Lemma 10). This yields an auxiliary-input samplable distribution over satisfiable
instances in NP where the search problem is infinitely-often strongly hard-on-
average.

Pseudorandom Generators from
One-Way Functions:

A Simple Construction for Any Hardness

Thomas Holenstein

ETH Zurich, Department of Computer Science, CH-8092, Zurich
thomahol@inf.ethz.ch

Abstract. In a seminal paper, H̊astad, Impagliazzo, Levin, and Luby
showed that pseudorandom generators exist if and only if one-way func-
tions exist. The construction they propose to obtain a pseudorandom
generator from an n-bit one-way function uses O(n8) random bits in
the input (which is the most important complexity measure of such a
construction). In this work we study how much this can be reduced if
the one-way function satisfies a stronger security requirement. For exam-
ple, we show how to obtain a pseudorandom generator which satisfies a
standard notion of security using only O(n4 log2(n)) bits of randomness
if a one-way function with exponential security is given, i.e., a one-way
function for which no polynomial time algorithm has probability higher
than 2−cn in inverting for some constant c.

Using the uniform variant of Impagliazzo’s hard-core lemma given in
[7] our constructions and proofs are self-contained within this paper, and
as a special case of our main theorem, we give the first explicit description
of the most efficient construction from [6].

1 Introduction

A pseudorandom generator is a deterministic function which takes a uniform
random bit string as input and outputs a longer bit string which cannot be dis-
tinguished from a uniform random string by any polynomial time algorithm. This
concept, introduced in the fundamental papers of Yao [16] and Blum and Micali
[1] has many uses. For example, it immediately gives a semantically secure cryp-
tosystem: the input of the pseudorandom generator is the key of the cryptosys-
tem, and the output is used as a one-time pad. Other uses of pseudorandom gen-
erators include the construction of pseudorandom functions [2], pseudorandom
permutations [11], statistically binding bit commitment [13], and many more.

Such a pseudorandom generator can be obtained from an arbitrary one-way
function, as shown in [6]. The given construction is not efficient enough to be
used in practice, as it requires O(n8) bits of input randomness (for example, if
one would like to have approximately the security of a one-way function with
n = 100 input bits, the resulting pseudorandom generator would need several
petabits of input, which is clearly impractical). On the other hand, it is possible

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 443–461, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

444 T. Holenstein

to obtain a pseudorandom generator very efficiently from an arbitrary one-way
permutation [4] or from an arbitrary regular one-way function [3] (see also [5]),
i.e., a one-way function where every image has the same number of preimages.
In other words, if we have certain guarantees on the combinatorial structure of
the one-way function, we can get very efficient reductions.

In this paper we study the question whether a pseudorandom generator can
be obtained more efficiently under a stronger assumption on the computational
difficulty of the one-way function. In particular, assume that the one-way func-
tion is harder to invert than usually assumed. In this case, one single invocation
of the one-way function could be more useful, and fewer invocations might be
needed. We will see that is indeed the case, even if the pseudorandom generator
is supposed to inherit a stronger security requirement from the one-way function,
and not only if it is supposed to satisfy the standard security notion.

2 Overview of the Construction

The construction given in [6] uses several stages: first the one-way function is
used to construct a false entropy generator, i.e., a function whose output is com-
putationally indistinguishable from a distribution with more entropy. (This is
the technically most difficult part of the construction and the security proof can
be significantly simplified by using the uniform hard-core lemma from [7].) Next,
the false entropy generator is used to construct a pseudoentropy generator (a
function whose output is computationally indistinguishable from a distribution
which has more entropy than the input), and finally a pseudorandom generator
is built on top of that. If done in this way, their construction is very inefficient
(requiring inputs of length O(n34)), but it is also sketched in [6] how to “un-
roll” the construction in order to obtain an O(n10) construction. Similarly it is
mentioned that an O(n8) construction is possible (by being more careful).

In this work we explicitly describe an O(n8) construction (in an unrolled
version the construction we describe is the one sketched in [6]). Compared to [6]
we choose a different way of presenting this construction; namely we use a two-
step approach (see Figure 1). First, (in Section 4) we use the one-way function
to construct a pair (g, P) where g is an efficiently evaluable function and P is a
predicate. The pair will satisfy that predicting P (x) from g(x) is computationally

Pseudorandom generator

Pseudo-entropy pair

One-way function

�Section 4

�Section 5

One copy

Many copies

Fig. 1. Overview of our construction

Pseudorandom Generators from One-Way Functions 445

difficult (in particular, more difficult than it would be information theoretically).
In [5] the term pseudo-entropy pair is coined for such a pair and we will use this
term as well. In a second step we use many instances of such a pseudo-entropy
pair to construct a pseudorandom generator.

Further, we generalize the construction to the case where stronger security
guarantees on the one-way function are given. This enables us to give more
efficient reductions under stronger assumptions.

Indepenently of this work, Haitner, Harnik, and Reingold [5] give a better
method to construct a pseudo-entropy pair from a one-way function. Their con-
struction has the advantage that the entropy of P (x) given g(x) can be esti-
mated, which makes the construction of the pseudorandom generator from the
pseudo-entropy pair more efficient.

3 Definitions and Result

3.1 Definitions and Notation

Definition 1. A one-way function with security s(n) against t(n)-bounded in-
verters is an efficiently evaluable family of functions f : {0, 1}n → {0, 1}m such
that for any algorithm running in time at most t(n)

Pr
x←R{0,1}n

[f(A(f(x))) = f(x)] <
1

s(n)

for all but finitely many n.

For example the standard notion of a one-way function is a function which is one-
way with security p(n) against p(n)-bounded inverters for all polynomials p(n).

In [15] it is shown that a random permutation is 2n/10-secure against 2n/5-
bounded inverters, and also other reasons are given why it is not completely
unreasonable to assume the existence of one-way permutations with exponential
security. In our main theorem we can use one-way functions with exponential
security, a weaker primitive than such permutations.

Definition 2. A pseudorandom-generator with security s(�) against t(�)-boun-
ded distinguishers is an efficiently evaluable family of (expanding) functions
h : {0, 1}� → {0, 1}�+1 such that for any algorithm running in time at most t(�)∣∣∣ Pr

x←R{0,1}�
[A(h(x)) = 1] − Pr

u←R{0,1}�+1
[A(u) = 1]

∣∣∣ ≤ 1
s(�)

,

for all but finitely many �.

The standard notion of a pseudorandom generator is a pseudorandom generator
with security p(�) against p(�)-bounded distinguishers, for all polynomials p(�).

As mentioned above, we use pseudo-entropy pairs as a step in our construc-
tion. For such a pair of functions we first define the advantage an algorithm A
has in predicting P (w) from g(w) (by convention, we use the letter w to denote
the input here).

446 T. Holenstein

Definition 3. For any algorithm A, any function g : {0, 1}n → {0, 1}m and
any predicate P : {0, 1}n → {0, 1}, the advantage of A in predicting P given g is

AdvA(g, P) := 2
(

Pr
w←R{0,1}n

[A(g(w)) = P (w)] − 1
2

)
.

The following definition of a pseudo-entropy pair contains (somewhat surpris-
ingly) the conditioned entropy H(P (W)|g(W)); we give an explanation below.

Definition 4. A pseudo-entropy pair with gap φ(n) against t(n)-bounded pre-
dictors is a pair (g, P) of efficiently evaluable functions g : {0, 1}n → {0, 1}m

and P : {0, 1}n → {0, 1} such that for any algorithm A running in time t(n)

AdvA(g, P) ≤ 1 −H(P (W)|g(W)) − φ,

for all but finitely many n (where W is uniformly distributed over {0, 1}n).

The reader might think that it would be more natural if we used the best advan-
tage for computationally unbounded algorithms (i.e., the information theoretic
advantage), instead of 1−H(P (W)|g(W)). Then φ would be the gap which comes
from the use of t(n)-bounded predictors. We quickly explain why we chose the
above definition. First, to get an intuition for the expression 1−H(P (W)|g(W)),
assume that the pair (g, P) has the additional property that for every input w,
g(w) either fixes P (w) completely or does not give any information about it, i.e.,
for a fixed value v either H(P (W)|g(W) = v) = 1 or H(P (W)|g(W) = v) = 0
holds. Then, a simple computation shows that 1−H(P (W)|g(W)) is a tight up-
per bound on the advantage of computationally unbounded algorithms, i.e., in
this case our definition coincides with the above “more natural definition”. We
mention here that the pairs (g, P) we construct will be close to pairs which have
this property. If there are values v such that 0 < H(P (W)|g(W) = v) < 1, the
expression 1 −H(P (W)|g(W)) is not an upper bound anymore and in fact one
might achieve significantly greater advantage than 1 −H(P (W)|g(W)). There-
fore in this case, Definition 4 requires something stronger than the “more natural
definition”, and, consequently, constructing a pseudorandom generator from a
pseudo-entropy pair becomes easier.1

We use ‖ to denote concatenation of strings, ax denotes the multiplication
of bitstrings a and x over GF(2n) (with an arbitrary representation), and x|λ
denotes the first �λ� bits of the bit string x. For fixed x and x, x �= x, the
probability that (ax)|i equals (ax)|i for uniformly chosen a can be computed
as

Pr
a←{0,1}n

[
(ax)|i = (ax)|i

]
= Pr

a←{0,1}n

[
(a(x− x))|i = 0i

]
= 2−i, (1)

an expression we will use later.

1 In fact, we do not know a direct way to construct a pseudorandom generator from
a pseudo-entropy pair with the “more natural definition”.

Pseudorandom Generators from One-Way Functions 447

For bitstrings x and r of the same length n we use x/ r :=
⊕n

i=1 xiri for the
inner product. We use the convention that f−1(y) :=

{
x ∈ {0, 1}n|f(x) = y

}
,

i.e., f−1 returns a set.
For two distributions PX0 and PX1 over X the statistical distance is

Δ(X0, X1) :=
1
2

∑
x∈X

|PX0(x) − PX1(x)|.

We also say that a distribution is ε-close to another distribution if the statis-
tical distance of the distributions is at most ε. For a distribution PX over X
the min-entropy is H∞(X) := − log(maxx∈X PX(x)). For joint distributions
PXY over X × Y the conditional min-entropy is defined with H∞(X|Y) :=
miny∈Y H∞(X|Y = y).

Finally, we define [n] := {1, . . . , n}.

3.2 Result

We give a general construction of a pseudorandom generator from a one-way
function. The construction is parametrized by two parameters ε and φ. The pa-
rameter ε should be chosen such that it is smaller than the target indistinguisha-
bility of the pseudorandom generator: an algorithm which distinguishes the out-
put of the pseudorandom generator with advantage less than ε will not help us
in inverting f . The second parameter φ should be chosen such that the given
one-way function cannot be inverted with probability more than about 2−nφ (as
an example, for standard security notions choosing φ = 1

n and ε = 2−n would
be reasonable – these should be considered the canonical choices).

Theorem 1. Let functions f : {0, 1}n → {0, 1}m, φ : N → [0, 1], ε : N → [0, 1]
be given, computable in time poly(n), and satisfying 2−n ≤ ε ≤ 1

n ≤ φ.
There exists an efficient to evaluate oracle function hf

ε,φ with the following
properties:

– hf
ε,φ is expanding,

– hf
ε,φ has input of length O(n4

φ4 log(1
ε)), and

– an algorithm A which distinguishes the output of hf
ε,φ from a uniform bit

string with advantage γ can be used to get an oracle algorithm which inverts
f with probability O(1

n3)2−nφ, using poly(n, 1
γ−ε) calls to A.

For example, if we set φ := log(n)/n and ε := n− log(n) = 2− log2(n) and use
a standard one-way function in the place of f , then hf

ε,φ will be a standard
pseudorandom generator, using O(n8) bits2 of randomness.

Corollary 1. Assume that f : {0, 1}n → {0, 1}m is a one-way function with
security p(n) against p(n)-bounded inverters, for all polynomials p(n). Then
there exists a pseudorandom generator h : {0, 1}� → {0, 1}�+1 with security p(�)
against p(�)-bounded distinguishers, for all polynomials p(�). The construction
calls the one-way function for one fixed n dependent of � and satisfies � ∈ O(n8).
2 This could be insignificantly reduced by choosing ε slightly bigger.

448 T. Holenstein

Alternatively if we have a much stronger one-way function which no polynomial
time algorithm can invert with better probability than 2−cn for some constant c,
we can set φ to some appropriate small constant and ε := n− log(n), which gives
us a pseudorandom generator using O(n4 log2(n)) bits of input:

Corollary 2. Assume that f : {0, 1}n → {0, 1}m is a one-way function with se-
curity 2−cn against p(n)-bounded inverters, for some constant c and all polyno-
mials p(n). Then there exists a pseudorandom generator h : {0, 1}� → {0, 1}�+1

with security p(�) against p(�)-bounded distinguishers, for all polynomials p(�).
The construction calls the one-way function for one fixed n dependent of �, and
satisfies � ∈ O(n4 log2(n)).

If we want a pseudorandom generator with stronger security we set ε smaller in
our construction. For example, if a one-way function f has security 2cn against
2cn bounded distinguishers, we set φ (again) to an appropriate constant and
ε := 2−n. With these parameters our construction needs O(n5) input bits, and,
for an appropriate constant d, an algorithm with distinguishing advantage 2−dn,
and running in time 2dn, can be used to get an inverting algorithm which con-
tradicts the assumption about f . (A corollary similar to the ones before could
be formulated here).

The proof of Theorem 1 is in two steps (see Figure 1). In Section 4 we use the
Goldreich-Levin Theorem and two-universal hash-functions to obtain a pseudo-
entropy pair. In Section 5 we show how such a pair can be used to obtain a
pseudorandom generator.

3.3 Extractors

Informally, an extractor is a function which can extract a uniform bit string from
a random string with sufficient min-entropy. The following well known left-over
hash lemma from [10] shows that multiplication over GF(2n) with a randomly
chosen string a and then cutting off an appropriate number of bits can be used
to extract randomness. For completeness we give a proof (adapted from [12]).

Lemma 1 (Left-over hash lemma). Let x ∈ {0, 1}n be chosen according to
any source with min-entropy λ. Then, for any ε > 0, and uniform random a, the
distribution of

(
(ax)|λ−2 log(1

ε)

∥∥ a
)

is ε
2 -close to a uniform bit string of length

�λ− 2 log(1
ε)� + n.

Proof. Letm := �λ−2 log(1
ε)�, and PV A be the distribution of (ax)|m‖a. Further,

let PU be the uniform distribution over {0, 1}m+n. Using the Cauchy-Schwartz
inequality (

∑k
i=1 ai)2 ≤ k

∑k
i=1 a

2
i we obtain for the statistical distance in ques-

tion

Δ(V A,U) =
1
2

∑
v∈{0,1}m,a∈{0,1}n

∣∣∣PV A(v, a) − 1
2n 2m

∣∣∣

Pseudorandom Generators from One-Way Functions 449

≤ 1
2

√
2n 2m

√√√√∑
v,a

P 2
V A(v, a) − 2

∑
v,a

PV A(v, a)
2n 2m

+
∑
v,a

(1
2n 2m

)2

=
1
2

√
2n 2m

√∑
v,a

P 2
V A(v, a) − 1

2n 2m
. (2)

Let now X0 and X1 be independently distributed according to PX (i.e., the
source with min-entropy λ). Further, let A0 and A1 be independent over {0, 1}n.
The collision probability of the output distribution is

Pr
[(

(X0A0)|m
∥∥ A0

)
=

(
(X1A1)|m

∥∥ A1
)]

=
∑
v,a

P 2
V A(v, a).

Thus we see that equation (2) gives an un upper bound on Δ(V A,U) in terms
of the collision probability of two independent invocations of the hash-function
on two independent samples from the distribution PX . We can estimate this
collision probability as follows:

Pr
[(

(X0A0)|m
∥∥ A0

)
=

(
(X1A1)|m

∥∥ A1
)]

= Pr[A0 = A1] Pr[(X0A0)|m = (X1A0)|m]

≤ Pr[A0 = A1]
(
Pr[X0 = X1] + Pr

[
(X0A0)|m = (X1A0)|m

∣∣∣ X0 �= X1

])
≤ 1

2n

(1
2m+2 log(1/ε) +

1
2m

)
=

1 + ε2

2n 2m
, (3)

where we used (1) in the last inequality. We now insert (3) into (2) and get
Δ(V A,U) ≤ ε

2 . ��

Using the usual definition of an extractor, the above lemma states that multi-
plying with a random element of GF(2n) and then cutting off the last bits is a
strong extractor. Consequently, we will sometimes use the notation Extm(x, a)
to denote the function Extm(x, a) := (ax)|m

∥∥ a, extracting �m� bits from x.
Further we use the following proposition on independent repetitions from

[8], which is a quantitative version of the statement that for k independent
repetitions of random variables, the min-entropy of the resulting concatenation
is roughly k times the (Shannon-)entropy of a single instance (assuming k large
enough and tolerating a small probability that something improbable occured).
A similar lemma with slightly weaker parameters is given in [10] (the latter would
be sufficient for our application, but the expression from [8] is easier to use).

Proposition 1. Let (X1, Y1), . . . , (Xk, Yk) i.i.d. according to PXY . For any ε
there exists a distribution PX Y which has statistical distance at most ε

2 from
(X1, . . . , Xk, Y1, . . . , Yk) and satisfies

H∞(X|Y) ≥ kH(X|Y) − 6
√
k log(1/ε) log(|X |).

We can combine the above propositions as follows:

450 T. Holenstein

Lemma 2. Let k, ε with k > log(1/ε) be given. Let (X1, Y1), . . . , (Xk, Yk) i.i.d.
according to PXY over X ×Y with X ⊆ {0, 1}n. Let A be uniform over {0, 1}kn.

Then,

Ext
kH(X|Y)−8 log(|X |)

√
k log(1/ε)

(
X1‖ · · · ‖Xk, A

)
‖Y1‖ · · · ‖Yk

is ε-close to U × Y k, where U is an independent uniform chosen bitstring of
length �kH(X|Y) − 8 log(|X |)

√
k log(1/ε)� + kn.

Proof. Combine Lemma 1 and Proposition 1. ��

4 A Pseudo-Entropy Pair from Any One-Way Function

The basic building block we use to get a pseudo-entropy pair is the following
theorem by Goldreich and Levin [4] (recall that x/ r = x1r1 ⊕ · · · ⊕ xnrn is the
inner product of x and r):

Proposition 2 (Goldreich-Levin). There is an oracle algorithm B(·) such
that for any x ∈ {0, 1}n and any oracle A satisfying

Pr
r←R{0,1}n

[A(r) = x/ r] ≥ 1
2

+ γ

BA does O(n
γ2) queries to A and then efficiently outputs a list of O(1

γ2) elements
such that x is in the list with probability 1

2 .

This proposition implies that for any one-way function f , no efficient algorithm
will be able to predict x/r from f(x) and r much better than random guessing,
as otherwise the one-way function can be broken.

This suggests the following method to get a pseudo-entropy pair: if we define
g(x, r) := f(x)‖r and P (x, r) := x / r, then predicting P (x, r) from g(x, r) is
computationally hard. The problem with this approach is that since f(x) may
have many different preimages, H(P (X,R)|g(X,R)) ≈ 1 is possible. In this case,
P (x, r) would not only be computationally unpredictable, but also information
theoretically unpredictable, and thus (g, P) will not be a pseudo-entropy pair.

The solution of this problem (as given in [6]), is that one additionally ex-
tracts some information of the input x to f ; the amount of information ex-
tracted is also random. The idea is that in case one is lucky and extracts roughly
log

(∣∣f−1(f(x))
∣∣) bits, then these extracted bits and f(x) fix x in an informa-

tion theoretic way, but computationally x/ r is still hard to predict because of
Proposition 2.

Thus, we define functions g : {0, 1}4n → {0, 1}m+4n and P : {0, 1}4n → {0, 1}
as follows (where i ∈ [n] is a number3, x, a, and r are bitstrings, and we ignore
padding which should be used to get (ax)|i to length n)
3 Technically, we should choose i as a uniform number from [n]. We can use an n bit

string to choose a uniform number from [2n] and from this we can get an “almost”
uniform number from [n] (for example by computing the remainder when dividing
by n). This only gives an exponentially small error which we ignore from now on.

Pseudorandom Generators from One-Way Functions 451

g(x, i, a, r) := f(x)
∥∥ i ∥∥ a ∥∥ (ax)|i

∥∥ r (4)
P (x, i, a, r) := x/ r. (5)

We will alternatively write g(w) and P (w), i.e., we use w as an abbreviation
for (x, i, a, r). We will prove that (g, P) is a pseudo-entropy pair in case f is
a one-way function. Thus we show that no algorithm exceeds advantage 1 −
H(P (W)|g(W)) − φ in predicting P (w) from g(w) (the gap φ does not appear
in the construction, but the pair will have a bigger gap if the one-way function
satisfies as stronger security requirement, as we will see).

We first give an estimate on H(P (W)|g(W)). The idea is that we can distin-
guish two cases: either i ≥ log(|f−1(f(x))|), in which case H(P (W)|g(W)) ≈ 0,
since (ax)|i, a, and f(x) roughly fix x, or i < log(|f−1(f(x))|), in which case
H(P (W)|g(W)) ≈ 1.

Lemma 3. For the functions g and P as defined above

H(P (W)|g(W)) ≤
Ex←R{0,1}n [log(|f−1(f(x))|)] + 2

n

Proof. From (1) and the union bound we see that if i > log(|f−1(y)|) the prob-
ability that x is not determined by the output of g is at most 2−(i−log(|f−1(y)|)).
This implies H(P (W)|g(W), f(X) = y, I = i) ≤ 2−(i−log(|f−1(y)|)), and thus

H(P (W)|g(W)) =
1
2n

∑
x∈{0,1}n

H
(
P (W)|g(W), f(X) = f(x)

)
=

1
2n

∑
x∈{0,1}n

1
n

n∑
i=1

H
(
P (W)|g(W), f(X) = f(x), I = i

)
≤ 1

2n

∑
x∈{0,1}n

(
log(|f−1(f(x))|)

n

+
1
n

n∑
i=�log(|f−1(f(x))|)�

2−(i−log(|f−1(f(x))|))))

≤ 1
2n

∑
x∈{0,1}n

log(|f−1(f(x))|) + 2
n

=
Ex←R{0,1}n [log(|f−1(f(x))|)] + 2

n
.

��

We can now show that (g, P) is a pseudo-entropy pair. For this, we show that
any algorithm which predicts P from g with sufficient probability can be used
to invert f . Recall that φ is usually 1

n .

Lemma 4. Let f : {0, 1}n → {0, 1}m and φ : N → [0, 1] be computable in
time poly(n). Let functions g and P be as defined above. There exists an oracle

452 T. Holenstein

algorithm B(·) such that, for any A which has advantage AdvA(gf , P f) ≥ 1 −
H(P f (W)|gf (W)) − φ in predicting P f from gf , BA inverts f with probability
Ω(1

n3)2−nφ and O(n3) calls to A.

We find it convenient to present our proof using random experiments called
“games”, similar to the method presented in [14].

Proof. Assume that a given algorithm A(y, i, a, z, r) has an advantage exceeding
the bound in the lemma in predicting P from g. To invert a given input y = f(x),
we will choose i, a, and z uniformly at random. Then we run the Goldreich-
Levin algorithm using A(y, i, a, z, ·), i.e., the Goldreich-Levin calls A(y, i, a, z, r)
for many different r, but always using the same y, i, a, and z. This gives us
a list L containing elements from {0, 1}n. For every x ∈ L we check whether
f(x) = y. If at least one x ∈ L satisfies this we succeeded in inverting f .

In order to see whether this approach is successful, we first define α to be the
advantage of A for a fixed y, i, a and z in predicting x/ r for a preimage x of y:

α(y, i, a, z) := max
x∈f−1(y)

(
2 Pr

r←{0,1}n
[A(y, i, a, z, r) = x/ r] − 1

)
.

We maximize over all possible x ∈ f−1(y), since it is sufficient if the above
method finds any preimage of y. We will set the parameters of the algorithm such
that it succeeds with probability 1

2 if α(y, i, a, z) > 1
4n (i.e., with probability 1

2
the list returned by the algorithm contains x). It is thus sufficient to show for
uniformly chosen x, i, a, and z the inequality α(f(x), i, a, z) > 1

4n is satisfied
with probability Ω(1

n3)2−nφ.
Together with Lemma 3, the requirement of this lemma implies that in the

following Game 0 the expectation of the output is at least 1−H(P f (W)|gf (W))−
φ ≥ 1− 1

n Ex[log(|f−1(f(x))|)]− 2
n −φ (this holds even without the maximization

in the definition of α and using x = x instead – clearly, the maximization cannot
reduce the expected output of Game 0).

Game 0:
x←R {0, 1}n, y := f(x), i←R [n]
a←R {0, 1}n, z := (ax)|i
output α(y, i, a, z)

Note that even though we can approximate α(y, i, a, z) we do not know how to
compute the exact value in reasonable time. However, we do not worry about
finding an efficient implementation of our games.

If i is much larger than log(|f−1(y)|) then predicting P (w) from g(w) is not
very useful in order to invert f , since (ax)|i gives much information about x
which we do not have if we try to invert y. Thus, we ignore the cases where i is
much larger than log(|f−1(y)|) in Game 1.

Game 1:
x←R {0, 1}n, y := f(x), i←R [n]
if i ≤ log(|f−1(y)|) + nφ+ 3 then

a←R {0, 1}n, z := (ax)|i

Pseudorandom Generators from One-Way Functions 453

output α(y, i, a, z)
fi
output 0

It is not so hard to see that the probability that the if clause fails is at most
1− 1

nEx[log(|f−1(f(x))|)]− 3
n −φ. Thus, in Game 1 the expectation of the output

is at least 1
n (because the output only decreases in case the if clause fails, and

in this case by at most one).
In Game 2, we only choose the first j bits of z as above, where j is chosen

such that these bits will be 1
4n -close to uniform (this will be used later). We fill

up the rest of z with the best possible choice; clearly, this cannot decrease the
expectation of the output.

Game 2:
x←R {0, 1}n, y := f(x), i←R [n]
if i ≤ log(|f−1(y)|) + nφ+ 3 then

j := min(�log(|f−1(y)|) − 2 log(4n)�, i)
a←R {0, 1}n, z1 := (ax)|j
set z2 ∈ {0, 1}j−i such that α(y, i, a, z1‖z2) is maximal
output α(y, i, a, z1‖z2)

fi
output 0

We now chose z1 uniformly at random. Lemma 1 implies that the statistical dis-
tance of the previous distribution of z1 to the uniform distribution (given a, i,
and y but not x) is at most 1

4n . Thus, the expecation of the output is at least 1
2n .

Game 3:
x←R {0, 1}n, y := f(x), i←R [n]
if i ≤ log(|f−1(y)|) + nφ+ 3 then

j := min(�log(|f−1(y)|) − 2 log(4n)�, i)
a←R {0, 1}n, z1 ←R {0, 1}j

set z2 ∈ {0, 1}j−i such that α(y, i, a, z1‖z2) is maximal
output α(y, i, a, z1‖z2)

fi
output 0

As mentioned above, we will be satisfied if we have values y, i, a, (z1‖z2) such
that α(y, i, a, z1‖z2) ≥ 1

4n . In Game 4, we thus do not compute the expectation
of α anymore, but only output success if this is satisfied, and fail otherwise.

Game 4:
x←R {0, 1}n, y := f(x), i←R [n]
if i ≤ log(|f−1(y)|) + nφ+ 3 then

j := min(�log(|f−1(y)|) − 2 log(4n)�, i)
a←R {0, 1}n, z1 ←R {0, 1}j

set z2 ∈ {0, 1}j−i such that α(y, i, a, z1‖z2) is maximal
if α(y, i, a, z1‖z2) > 1

4n
output success

454 T. Holenstein

fi
fi
output fail

The usual Markov style argument shows that the probability that the output is
success is at least 1

4n (this is easiest seen by assuming otherwise and computing
an upper bound on the expectation of the output in Game 3: it would be less
than 1

2n).
In Game 5, we choose all of z uniformly at random.

Game 5:
x←R {0, 1}n, y := f(x), i←R [n]
if i ≤ log(|f−1(y)|) + nφ+ 3 then

a←R {0, 1}n, z ←R {0, 1}i

if α(y, i, a, z) > 1
4n

output success
fi

fi
output fail

In Game 5, we can assume that z is still chosen as z1‖z2. For z1, the distribution
is the same as in Game 4, for z2, we hope that we are lucky and choose it exactly
as in Game 4. The length of z2 is at most 2 log(4n)+nφ+3, and thus this happens
with probability at least 1

128n2 2−nφ. Thus, in Game 4, with probability at least
1

512n3 2−nφ the output is success. As mentioned at the start of the proof, in this
case running the Goldreich-Levin algorithm with parameter 1

4n will invert f
with probability 1

2 , which means that in total we have probability Ω(1
n3)2−nφ in

inverting f . ��

5 A Pseudorandom Generator from a Pseudo-Entropy
Pair

We now show how we can obtain a pseudorandom generator from a pseudo-
entropy pair (g, P) as constructed in the last section. The idea here is that we
use many (say k) parallel copies of the function g. We can then extract about
kH(g(W)) bits from the concatenated outputs of g, about kH(W |g(W)P (W))
bits from the concatenated inputs, and about k(H(P (W)|g(W)) + φ) bits from
the concatenated outputs of P . Using the identity H(g(W))+H(P (W)|g(W))+
H(W |g(W)P (W)) = H(W), we can see that this will be expanding, and we can
say that the kφ bits of pseudorandomness from P are used to get the expanding
property of h.

The key lemma in order to prove the security of the construction is the fol-
lowing variant of Impagliazzo’s hard-core lemma [9] proven in [7]4. For a set T
4 The proposition here is slightly stronger then the corresponding lemma in [7], as we

do not require γ to be noticeable. It is easy to see that the proof in [7] works in this
case as well.

Pseudorandom Generators from One-Way Functions 455

let χT be the characteristic function of T :

χT (x) :=

{
1 x ∈ T
0 x /∈ T .

Proposition 3 (Uniform Hard-Core Lemma). Assume that the given func-
tions g : {0, 1}n → {0, 1}m, P : {0, 1}n → {0, 1}, δ : N → [0, 1] and γ : N → [0, 1]
are computable in time poly(n), where δ is noticeable and γ > 2−n/3.

Further, assume that there exists an oracle algorithm A(·) such that, for in-
finitely many n, the following holds: for any set T ⊆ {0, 1}n with |T | ≥ δ2n,
AχT outputs a circuit C satisfying

E
[

Pr
x←RT

[C(g(x)) = P (x)]
]
≥ 1 + γ

2

(where the expectation is over the randomness of A).
Then, there is an algorithm B which calls A as a black box poly(1

γ , n) times,
such that

AdvB(g, P) ≥ 1 − δ

for infinitely many n. The runtime of B is bounded by poly(1
γ , n) times the

runtime of A.

The advantage of using Proposition 3 is as follows: in order to get a contra-
diction, we will use a given algorithm A as oracle to contradict the hardness
of a pseudo-entropy pair, i.e., we will give B such that AdvB(g, P) ≥ 1 −
H(P (W)|g(W))−φ. Proposition 3 states that for this it is sufficient to show how
to get circuits which perform slightly better than random guessing on a fixed set
of size 2n(H(P (W)|g(W)) + φ), given access to a description of this set. Often,
this is a much simpler task.

In the following construction of a pseudorandom generator from a pseudo-
entropy pair we assume that parameters ε and φ are provided (thus they
reappear in Theorem 1). The parameter ε describes how much we lose in the
indistinguishability (by making our extractors imperfect), while φ is the gap of
the pseudo-entropy pair.

Further we assume that parameters α and β are known which give certain
information about the combinatorial structure of the given predicate. We will
get rid of this assumption later by trying multiple values for α and β such that
one of them must be correct.5

Lemma 5. Let g and P be efficiently evaluable functions, g : {0, 1}n → {0, 1}m,
P : {0, 1}n → {0, 1}, ε : [0, 1] → N, and φ : [0, 1] → N be computable in

5 Haitner, Harnik, and Reingold [5] construct a pseudo-entropy pair for which
H(P (W)|g(W)) = 1

2 is fixed. Because of this, they are able to save a factor of n in
the seed length under standard assumptions (they do not need to try different values
for α).

456 T. Holenstein

polynomial time, φ > 1
n . Assume that parameters α and β are such that

α ≤ H(P (W)|g(W)) ≤ α+ φ/4
β ≤ H(g(W)) ≤ β + φ/4 .

There is an efficient to evaluate oracle function hg
α,β,ε,φ with the following

properties:

– hg
α,β,ε,φ is expanding,

– hg
α,β,ε,φ has inputs of length O(n3 1

φ2 log(1
ε)), and

– any algorithm A which distinguishes the output of hg
α,β,ε,φ from a uniform bit

string with advantage γ can be used to get an oracle algorithm BA satisfying
AdvB(g, P) ≥ 1 −H(P (W)|g(W)) − φ which does poly(1

γ−ε , n) calls to A.

Proof. Let k := 4096 · (n
φ)2 · log(3

ε) be the number of repetitions (this is chosen
such that

kφ

8
= 512

n2

φ
log

(3
ε

)
= 8n

√
k log

(3
ε

)
, (6)

which we use later). To simplify notation we set λ := n − α − β − φ/2. Using
the notation wk := w1‖ . . . ‖wk, g(k)(wk) := g(w1)‖ . . . ‖g(wk) and P (k)(wk) :=
P (w1)‖ . . . ‖P (wk), the function hα,β,ε,φ is defined as

hα,β,ε,φ(wk, s1, s2, s3) :=

Extk(β−φ/8)
(
g(k)(wk), s1

) ∥∥∥ Extk(α+7φ/8)
(
P (k)(wk), s2

) ∥∥∥ Extk(λ−φ/8)
(
wk, s3

)
.

Clearly, the input length is O(n3 1
φ2 log(1

ε)). We further see by inspection that,
excluding the additional randomness s1, s2, and s3, the function h maps kn bits
to at least k(α + β + λ) + 5k φ

8 − 3 = k(n− φ
2) + k 5φ

8 − 3 = k(n+ φ
8) − 3 > kn

bits. Since the additional randomness is also completely contained in the output,
hα,β,ε,φ is expanding for almost all n.

We now show that an algorithm A which has advantage γ in distinguishing
hα,β,ε,φ(wk, s1, s2, s3) from a uniform bit string of the same length can be used
to predict P (w) given g(w) as claimed above. Per definition the probability that
the output is true in the following game is at least 1+γ

2 .

Game 0:
(w1, . . . , wk) ←R {0, 1}nk

b←R {0, 1}
if b = 0 then (Run A with the output of h)

s1 ←R {0, 1}mk, v1 := Extk(β−φ/8)
(
g(k)(wk), s1

)
s2 ←R {0, 1}k, v2 := Extk(α+7φ/8)

(
P (k)(wk), s2

)
s3 ←R {0, 1}nk, v3 := Extk(λ−φ/8)

(
wk, s3

)
else (Run A with uniform randomness)

v1 ←R {0, 1}mk+k(β−φ/8)

Pseudorandom Generators from One-Way Functions 457

v2 ←R {0, 1}k+k(α+7φ/8)

v3 ←R {0, 1}nk+k(λ−φ/8)

fi
output b = A(v1‖v2‖v3)

We now make two transition based on statistical indistinguishability. First, we
replace the last part v3 in the if -clause of Game 0 with uniform random bits.
Because H(W |g(W)P (W)) = H(W) − H(g(W)) − H(P (W)|g(W)) ≥ n −
α − β − φ

2 = λ, Lemma 2 implies that conditioned on the output of g(k)

and P (k) (and thus also conditioned on the extracted bits of those outputs)
Extkλ−kφ/8(wk, s3) = Ext

kλ−8n·
√

k log(3
ε)(w

k, s3) is ε
3 -close to the uniform dis-

tribution (here we used (6)). Thus this only loses ε/3 of the advantage γ in
distinguishing.

Second, we replace v1 in the else-clause with Extk(β−φ/8)(g(k)(wk), s1). Since
H(g(W)) ≥ β, Lemma 2 implies that we only lose ε/3 in the advantage again. In
total, in the following Game 1 we have advantage at least γ− 2ε/3 over random
guessing.

Game 1:
(w1, . . . , wk) ←R {0, 1}nk

b←R {0, 1}
if b = 0 then

s1 ←R {0, 1}mk, v1 := Extk(β−φ/8)
(
g(k)(wk), s1

)
s2 ←R {0, 1}k, v2 := Extk(α+7φ/8)

(
P (k)(wk), s2

)
v3 ←R {0, 1}nk+k(λ−φ/8)

else
s1 ←R {0, 1}mk, v1 := Extk(β−φ/8)

(
g(k)(wk), s1

)
v2 ←R {0, 1}k+k(α+7φ/8)

v3 ←R {0, 1}nk+k(λ−φ/8)

fi
output b = A(v1‖v2‖v3)

We would like to ignore the parts which are the same in case b = 0 and b = 1.
It is easy to see that A′ in Game 2 can be designed such that it calls A with the
same distribution as in Game 1.

Game 2:
(w1, . . . , wk) ←R {0, 1}nk

b←R {0, 1}
if b = 0 then

s←R {0, 1}k, v := Extk(α+7φ/8)
(
P (k)(wk), s

)
else

v ←R {0, 1}k+k(α+7φ/8)

fi
output b = A′(g(k)(wk)‖v)

458 T. Holenstein

Later we want to use Proposition 3. Thus we will have an oracle χT which
implements the characteristic function of a set T of size at least (α+φ)2n. From
now on we will use the oracle implicitly in the games by testing whether w ∈ T .

In Game 3 it is easy to check that in case b = 0 the distribution with which A′

is called does not change from Game 2. On the other hand, if b = 1, then (since
|T | ≥ 2n(α + φ)) the pi contain independent random variables with entropy at
least α+ φ (where the entropy is conditioned on g(wi)). Using Lemma 2 we see
that in this case v is ε

3 -close to uniform, implying that in Game 3 the advantage
of A′ in predicting b is still γ − ε.

Game 3:
(w1, . . . , wk) ←R {0, 1}nk

b←R {0, 1}
for i ∈ [n] do

if wi ∈ T ∧ b = 1 then
pi ←R {0, 1}

else
pi := P (wi)

fi
od
s←R {0, 1}k, v := Extk(α+7φ/8)

(
pk, s

)
output b = A′(g(k)(w(k))‖v)

From Game 3, we will now apply a standard hybrid argument to get a predictor
for a single position. For this, consider Game 4.

Game 4:
(w1, . . . , wk) ←R {0, 1}nk

j ←R [n]
for i ∈ {1, . . . , j − 1} do

if wi ∈ T then pi ←R {0, 1} else pi := P (wi) fi
od
for i ∈ {j + 1, . . . , n} do pi := P (wi) od
b←R {0, 1}
if wj ∈ T ∧ b = 1 then pj ←R {0, 1} else pj := P (wj) fi
s←R {0, 1}k, v := Extk(α+7φ/8)

(
pk, s

)
output b = A′(g(k)(w(k))‖v)

The distribution A′ is called in Game 4 in case b = 0 and j = 1 is the same as in
Game 3 in case b = 0; the distribution used in Game 4 in case b = 1 and j = n
is the same as in Game 3, in case b = 1. Further, the distribution in Game 4
does not change if b is set from 1 to 0 and j is increased by one. This implies
that the advantage of A′ in predicting b is (γ − ε)/k.

In Game 5, we replace A′ with A′′ which does all the operations common in
case b = 0 and b = 1 (the w chosen in Game 5 corresponds to wj in Game 4,
and A′′ chooses the value of j, and all other wi before calling A′).

Pseudorandom Generators from One-Way Functions 459

Game 5:
w ←R {0, 1}n

b←R {0, 1}
if w ∈ T ∧ b = 1 then

p←R {0, 1}
output A′′(g(w)‖p) = b

else
output A′′(g(w)‖P (w)) = b

fi

An easy calculation now yields that for w ←R T and p←R {0, 1} the probabillity
that

1 ⊕ p⊕A′′(g(w)‖p) = P (w)

is at least 1
2 + γ−ε

k . Since this works for any T with |T | ≥ (α + φ)2n, and thus
for every T with |T | ≥ (H(P (W)|g(W))+φ)2n, we can apply Proposition 3 and
get the lemma. ��

With this lemma, we can now prove Theorem 1.

Proof (of Theorem 1). Given ε and φ, we use the construction of Lemma 4 to
get a predicate which we use in the construction of Lemma 5 for 16n

φ2 differ-
ent values of α and β (note that 0 ≤ H(g(W)) ≤ n), such that for at least
one of those choices the requirements of Lemma 5 hold. Further, in those ap-
plications we use ε′ := Ω(εφ4

n5) in place of ε. Since ε′ = Ω(ε10), this satisfies
O(log(1

ε)) = O(log(1
ε′)).

For every choice of α and β we concatenate hα,β,ε′,φ : {0, 1}� → {0, 1}�+1 with
itself, in order to obtain a function h′α,β,ε′,φ : {0, 1}� → {0, 1}16nφ−2�+1, i.e., the
first part of the output of hα,β,ε′,φ is used to call hα,β,ε′,φ again, and this process
is repeated 16nφ−2� ∈ O(n5 1

φ4) times, and every time we get one more bit of
the final output.

The function hε,φ : {0, 1}16nφ−2� → {0, 1}16nφ−2�+1 divides its input into 16n
φ2

blocks of length �, calls the functions h′α,β,ε′,φ with seperate blocks, and XORs
the outputs.

Assume now that an algorithm A can distinguish the output of hε,φ from
a unifrom random string with advantage γ. For every choice of α and β (and
in particular the choice which satisfies the requirements of Lemma 5) we try
the following to invert f . First, since we can simulate the other instances, we
see that we have advantage γ in distinguishing the output of h′α,β,ε′,φ from a
random string. We can use the hybrid argument to get an algorithm which
has advantage γ′ := Ω(γφ4n−5) in distinguishing the output of hα,β,ε′,φ from a
random string. From Lemma 5 we get an algorithm which predicts P from g with
advantage at least 1−H(P (W)|g(W)) − φ, and the number of calls is bounded
by poly(1

γ′−ε′ , n) = poly(1
γ−ε , n). Finally, Lemma 4 implies that we can get an

inverter with the claimed complexity and success probability. ��

460 T. Holenstein

Acknowledgments

I would like to thank Ueli Maurer, Krzysztof Pietrzak, Dominik Raub, Renato
Renner, Johan Sjödin, and Stefano Tessaro for helpful comments and discussions.
Also, I would like to thank the anonymous referees who provided helpful criticism
about the presentation of this paper. I was supported by the Swiss National
Science Foundation, project no. 200020-103847/1.

References

1. Manuel Blum and Silvio Micali. How to generate cryptographically strong se-
quences of pseudo-random bits. Siam Journal on Computation, 13(4):850–864,
1984.

2. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, 33(4):792–807, 1986.

3. Oded Goldreich, Hugo Krawczyk, and Michael Luby. On the existence of pseudo-
random generators. Siam Journal on Computation, 22(6):1163–1175, 1993.

4. Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way func-
tions. In Proceedings of the Twenty First Annual ACM Symposium on Theory of
Computing, pages 25–32, 1989.

5. Iftach Haitner, Danny Harnik, and Omer Reingold. On the power of the randomized
iterate. Technical Report TR05-135, Electronic Colloquium on Computational
Complexity (ECCC), 2005.

6. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. Siam Journal on Computation,
28(4):1364–1396, 1999.

7. Thomas Holenstein. Key agreement from weak bit agreement. In Proceedings of the
Thirty Seventh Annual ACM Symposium on Theory of Computing, pages 664–673,
2005.

8. Thomas Holenstein and Renato Renner. On the smooth Rényi entropy of indepen-
dently repeated random experiments. In preparation, 2005.

9. Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In
The 36th Annual Symposium on Foundations of Computer Science, pages 538–545,
1995.

10. Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random gener-
ation from one-way functions (extended abstract). In Proceedings of the Twenty
First Annual ACM Symposium on Theory of Computing, pages 12–24, 1989.

11. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. Siam Journal on Computation, 17(2):373–386, 1988.

12. Michael Luby and Avi Wigderson. Pairwise independence and derandomiza-
tion. Technical Report ICSI TR-95-035, International Computer Science Institute,
Berkeley, CA, 1995.

13. Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151–158, 1991.

14. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Technical Report 332, http://eprint.iacr.org/2004/332, 2004.

Pseudorandom Generators from One-Way Functions 461

15. Hoeteck Wee. On obfuscating point functions. In Proceedings of the Thirty Seventh
Annual ACM Symposium on Theory of Computing, pages 523–532, 2005.

16. Andrew C. Yao. Theory and applications of trapdoor functions (extended ab-
stract). In The 23rd Annual Symposium on Foundations of Computer Science,
pages 80–91, 1982.

On the Complexity of Parallel Hardness
Amplification for One-Way Functions

Chi-Jen Lu�

Institute of Information Science, Academia Sinica, Taipei, Taiwan
cjlu@iis.sinica.edu.tw

Abstract. We prove complexity lower bounds for the tasks of hardness
amplification of one-way functions and construction of pseudo-random
generators from one-way functions, which are realized non-adaptively in
black-box ways.

First, we consider the task of converting a one-way function f :
{0, 1}n → {0, 1}m into a harder one-way function f̄ : {0, 1}n̄ → {0, 1}m̄,
with n̄, m̄ ≤ poly(n), in a black-box way. The hardness is measured as
the fraction of inputs any polynomial-size circuit must fail to invert. We
show that to use a constant-depth circuit to amplify hardness beyond
a polynomial factor, its size must exceed 2poly(n), and to amplify hard-
ness beyond a 2o(n) factor, its size must exceed 22o(n)

. Moreover, for a
constant-depth circuit to amplify hardness beyond an n1+o(1) factor in
a security preserving way (with n̄ = O(n)), it size must exceed 2no(1)

.
Next, we show that if a constant-depth polynomial-size circuit can

amplify hardness beyond a polynomial factor in a weakly black-box
way, then it must basically embed a hard function in itself. In fact, one
can derive from such an amplification procedure a highly parallel one-
way function, which is computable by an NC0 circuit (constant-depth
polynomial-size circuit with bounded fan-in gates).

Finally, we consider the task of constructing a pseudo-random genera-
tor G : {0, 1}n̄ → {0, 1}m̄ from a strongly one-way function f : {0, 1}n →
{0, 1}m in a black-box way. We show that any such a construction re-
alized by a constant-depth 2no(1)

-size circuit can only have a sublinear
stretch (with m̄ − n̄ = o(n̄)).

1 Introduction

One of the most fundamental notions in cryptography is that of one-way func-
tions. Informally speaking, a one-way function is a function which is easy to
compute but hard to invert. The adversaries we consider here are polynomial-
size circuits, which are non-uniform versions of polynomial-time algorithms. We
measure the hardness of a one-way function as the fraction of n-bit inputs on
� This work was supported in part by the National Science Council under the Grant

NSC 94-2213-E-001-015, and by the Taiwan Information Security Center(TWISC),
National Science Council under the Grants NSC 94-3114-P-001-001-Y and NSC 94-
3114-P-011-001.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 462–481, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Complexity of Parallel Hardness Amplification 463

which such adversaries must fail to invert. A one-way function with hardness
larger than 1− 1/poly(n) is called a strongly one-way function, which is known
to be sufficient for building a large number of cryptographical primitives. Can we
further weaken the hardness assumption? Can we start from a one-way function
which is only hard to invert in a worst-case sense (with hardness 2−n)? This has
been a long-standing open problem in cryptography.

It is known that one can start from a weakly one-way function, a one-way func-
tion with hardness at least 1/poly(n). The transformation from a weakly one-way
function to a strongly one-way function was first discovered by Yao [21], using the
so-called direct product approach. The direct product approach has the advan-
tage of being extremely simple and highly parallel. However, the drawback is that
it blows up the input length and thus degrades the security (the hardness of the
new function is now measured against much smaller circuits). Ideally, one would
like to have a security preserving hardness amplification, in which the new func-
tion’s input length is only increased by a constant factor. Goldreich et al. [7] gave
the first security preserving hardness amplification which transforms any weakly
one-way permutation to a strongly one-way permutation of the same input length.
Their approach is based on taking random walks on expander graphs and is much
more involved than the direct product approach. Moreover, the transformation re-
quires a higher complexity and seems sequential in nature. Therefore, even if the
initial function can be evaluated efficiently in parallel, it is not clear if the result-
ing function will be so. This raises the following question: can a security preserving
hardness amplification be carried out in parallel or in a low complexity class?

Another fundamental primitive in cryptography is pseudo-random generator,
which stretches a short random seed into a longer random-looking string. A cele-
brated resultdue to H̊astad et al. shows thatapseudo-randomgenerator canbe con-
structed from any strongly one-way function [9]. A crucial parameter of a pseudo-
randomgeneratorG : {0, 1}r → {0, 1}r+s is its stretchs. In several cryptographical
applications, we need the stretch to be at least linear. The pseudo-random gener-
ator construction in [9] only has a sublinear stretch. In particular, the hard-core
function approach can only extract O(log n) pseudo-random bits from a one-way
function. Given a pseudo-random generator of sublinear stretch, one can increase
the stretch to linear, but the known construction appears inherently sequential. In
[20], Viola asked the question: can the construction of pseudo-random generators
with linear stretch from one-way functions be realized efficiently in parallel?

In fact, a more general question is: can cryptographic constructions (or re-
ductions) be realized in a low complexity class? Very little is known for the
questions we raised above. For the task of hardness amplifications and pseudo-
random generator constructions, there has been no success in realizing them in a
low complexity class. Could they be impossible tasks? We would like to say so by
showing that they basically all require a high complexity. However, it is not clear
what this means. For example, suppose there indeed exists a strongly one-way
function computed by a low-complexity procedure, then it gives a trivial hard-
ness amplification procedure of low complexity: just ignore the initial weakly
one-way function and compute the strongly one-way function from scratch.

464 C.-J. Lu

Black-Box Constructions. One important paradigm of cryptographic construc-
tions is the so-called black-box constructions [12], in which one cryptographic
primitive is used as a black box to construct another cryptographic primitive.
Call a hardness amplification for one-way functions a black-box one if the fol-
lowing two conditions hold. First, the initial function f is given as a black-box
to construct the new function f̄ . That is, there is an oracle algorithm Amp such
that f̄ = Ampf , so f̄ only uses f as an oracle and does not depend on the
internal structure of f . Second, the hardness of the new function f̄ is proved
in a black-box way. That is, there is an oracle Turing machine Dec, such that
given any A breaking the hardness of f̄ , Dec using A as an oracle can break
the hardness of f . Again, Dec only uses A as an oracle and does not depend
on the internal structure of A. We assume that the procedure Dec makes only
a polynomial number of queries to the oracle, and we will study the complexity
needed to realize the procedure Amp. In fact, all previous hardness amplification
results (and almost all cryptographic reductions) were done in such a black-box
way, so it is important to understand its limitation.

A hardness amplification is called a weakly black-box one if only the first con-
dition above is required while the second is dropped, namely, without requiring
the hardness of the new one-way function to be guaranteed in a black-box way.
Note that it seems difficult to obtain negative results for weakly black-box con-
structions, because one could always build the function f̄ from scratch if it exists
(without relying on the function f). Therefore, showing that this is indeed the
case is usually the best one could expect.

Similarly, one can also define the notion of black-box construction of pseudo-
random generators from one-way functions.

Previous Lower Bound Results. Lin, Trevisan, and Wee [14] provided complexity
lower bounds for black-box hardness amplification of one-way functions. They
showed that to amplify a δ-hard function to an (1− ε)-hard function in a black-
box way, the procedure Amp must make q = Ω((1/δ) log(1/ε)) queries to the
oracle, and the resulting new function must have an input length longer than that
of the initial function by Ω(log(1/ε)) − O(log q) bits. They also showed that if
there exists a weakly black-box transformation from a δ-hard permutation to an
(1 − ε)-hard permutation beating this lower bound, then one-way permutations
exist unconditionally.

Viola [20] provided a complexity lower bound for black-box construction of
pseudo-random generators from strongly one-way functions. He introduced the
notion of parallel black-box construction, in which the procedure Amp works
in the following way. Given an input x̄ ∈ {0, 1}n̄, Amp first generates non-
adaptive queries x1, . . . , xt ∈ {0, 1}n and an AC0 (constant-depth polynomial-
size) circuit A, then accesses the oracle f at these t places to obtain the values
y1 = f(x1), . . . , yt = f(xt), and finally computes the value A(y1, . . . , yt) as its
output. He then showed that if the procedure Amp is realized in this way, then
the resulting pseudo-random generator can only have a sublinear stretch.

In a different setting, Lu, Tsai, and Wu [15] considered the hardness of com-
puting Boolean functions instead of inverting one-way functions. They provided
complexity lower bounds for procedures which amplify this kind of hardness.

On the Complexity of Parallel Hardness Amplification 465

Our Results. We adopt Viola’s model [20] and consider hardness amplifications
and pseudo-random generator constructions realized in a parallel (non-adaptive)
way. Our first result shows that any black-box hardness amplification realized
by a low-complexity procedure can not increase the hardness substantially. More
precisely, consider any black-box hardness amplification which maps any ε-hard
function f : {0, 1}n → {0, 1}m to an ε̄-hard function f̄ : {0, 1}n̄ → {0, 1}m̄ with
n̄, m̄ ≤ poly(n). We show that a constant-depth circuit of 2poly(n) size cannot
amplify the hardness to any ε̄ > ε · poly(n), and a constant-depth circuit of
22o(n)

size cannot amplify the hardness to any ε̄ > ε · 2o(n). This implies that
a procedure in polynomial hierarchy (PH) cannot amplify hardness beyond a
polynomial factor, and an alternating Turing machine with constant alternations
and 2o(n) time (ATIME(O(1), 2o(n))) cannot amplify hardness beyond a 2o(n)

factor. As a result, a procedure in PH cannot transform a one-way function with
hardness lower than 1/poly(n) into a one-way function with constant hardness
(let alone a strongly one-way function), and a procedure in ATIME(O(1), 2o(n))
cannot transform a one-way function with worst-case hardness into a weakly
one-way function (let alone a strongly one-way function). Note that not only do
we rule out the possibility of using a polynomial-time procedure for doing such
hardness amplifications (as is usually hoped for in cryptography), we show that
even a procedure in a high complexity class, such as PH (or ATIME(O(1), 2o(n))),
can not do the job. This just demonstrates how difficult the task is. Moreover,
we show that to have n̄ = O(n), a constant-depth circuit of 2no(1)

size cannot
amplify the hardness to any ε̄ > ε · n1+o(1). This explains why the security
preserving hardness amplification procedures of [7, 4] are sequential while the
parallel hardness amplification procedure by direct product [21] blows up the
input length: they are all done in a black-box way.

Our second result shows that if a parallel weakly black-box hardness ampli-
fication can increase the hardness substantially, then it must basically embed a
one-way function in itself. More precisely, consider any weakly black-box hard-
ness amplification which maps any ε-hard function f : {0, 1}n → {0, 1}m to an
ε̄-hard function f̄ : {0, 1}n̄ → {0, 1}m̄. We show that if an AC0 circuit can amplify
the hardness to ε̄ >

√
ε ·poly(n), then one can derive from it a one-way function

computable in NC1 with hardness roughly ε̄. From [2], this implies the existence
of a one-way function computable in NC0. This is interesting in the following
sense. Consider one-way functions which are computed in polynomial time or
even in a higher complexity class. It is possible for a low-complexity procedure,
say in AC0, to amplify hardness for such functions, for example using the direct
product approach [21]. However, if it amplifies hardness beyond a polynomial
factor, we can derive from such an amplification procedure a one-way function
which is computable in NC0, an extremely low complexity class.

Our third result extends Viola’s lower bound for black-box constructions
of pseudo-random generators [20]. We show that any black-box construction
of pseudo-random generators from strongly one-way functions realized by a
constant-depth circuit can only have a sublinear stretch unless the circuit size is
exponential. This improves the super-polynomial lower bound of Viola [20].

466 C.-J. Lu

Our Techniques. We follow the approach of Viola [20], which relies on the fact
that applying random restrictions on the input of AC0 circuits are likely to make
their output bits biased since such circuits are insensitive to noise on their input
[13, 3]. A similar idea was also used in [15]. However, since our setting is different,
we have different problems to solve.

Assume that an AC0 circuit can amplify hardness beyond a certain bound (the
idea can be generalized to a larger class of circuits). It is known that a random
function f is likely to be one-way. As shown in [20], it is still likely to be so
even with a random restriction ρ applied to its output bits, as long as ρ gives
each output bit the symbol � (leave the bit free) at a rate above some threshold.
On the other hand, AC0 circuits are likely to become biased after applying a
random restriction on its input. As the rate of � decreases, the effect a random f
on Ampf�ρ(x̄) becomes smaller, for any input x̄. If the rate of � is small enough,
the functions Ampf�ρ ’s for most f become close to each other (agreeing with
each other on most inputs). As a result, they are close to some fixed function
(depending on ρ) which can then be used as an oracle to invert f�ρ. This would
lead to a contradiction, and we could conclude that such hardness amplification
cannot be realized by AC0 circuits.

However, there is an obstacle in front us. In order to guarantee that the
functions Ampf�ρ ’s for most f are close to each other, we need the random
restriction to give � in a very low rate. Had we applied a conventional random
restriction, say from [5, 8] (as was done in [20]), we would end up having too
few free bits left in f(x) for almost every x, and consequently f�ρ would not be
one-way for most f . To overcome this problem, we would like the �’s to appear
in a somewhat clustered fashion: for any x, either f(x) has no � at all, or it has
a sufficient number of �’s. This motivates us to consider a new kind of random
restriction (described in Section 3), and we show that it also makes the output
bits of AC0 circuits highly biased.

This new kind of random restriction also helps us improve the result of Viola. In
[20], a super-polynomial size lower bound was shown for black-box constructions of
pseudo-random generators from one-way functions. What prevents the argument
there from getting a better bound is exactly the same obstacle we just discussed
above. Namely, to guarantee f�ρ being one-way using a conventional random re-
striction, the rate of � cannot be too low, which fails to make the output bits of
larger circuits biased enough. With the help of our new random restriction, we are
able to overcome this problem and obtain an exponential lower bound.

Another technical contribution of ours is in the derivation of one-way functions
from weakly black-box hardness amplification procedures. In the different setting
of Boolean functions, if a function f : {0, 1}n → {0, 1} agrees on most inputs with
a hard-to-compute function f ′ : {0, 1}n → {0, 1} (any adversary fails to compute
f ′ correctly on a large portion of inputs), then f itself must also be hard enough,
which can be proved in a black-box way. However, this does not seem to be the
case for one-way functions. That is, even though a function f : {0, 1}n → {0, 1}m

is close to a hard-to-invert function f ′ : {0, 1}n → {0, 1}m, it is not clear if f
itself must also be hard to invert. In fact, this cannot be proved in a black-

On the Complexity of Parallel Hardness Amplification 467

box way (more in Section 5). The technique in [14] faces the same problem,
and the result there is only on weakly hardness amplification which produces
one-way permutations, since the injective condition makes the problem disap-
pear. As we consider a more restricted type of hardness amplification, that re-
alizable in parallel, we are able overcome this difficulty and obtain results for
weakly hardness amplification which produces general one-way functions.

2 Preliminaries

For any n ∈ N, let [n] denote the set {1, 2, . . . , n} and let Un denote the uniform
distribution over the set {0, 1}n. When sampling from a finite set, the default
distribution we use is the uniform one. For a string x ∈ Σn, let xi, for i ∈ [n],
denote the entry in the i’th dimension of x, and let xI , for I ⊆ [n], denote the
substring of x which is the projection of x onto those dimensions in I.

We will consider functions computed by Boolean circuits of AND/OR/NOT
gates. Let NCi denote the class of functions computed by circuits of depth
O(logi n) and size poly(n) with bounded fan-in gates. Let AC(d, s) denote the
class of functions computed by circuits of depth d and size s with unbounded fan-
in gates. Let AC0(s) denote the class AC(O(1), s), and note that AC0(poly(n))
corresponds to the standard complexity class AC0. Let ATIME(d, t) denote the
class of functions computed by alternating Turing machines in time t with d
alternations. The class ATIME(O(1), poly(n)) corresponds to the polynomial-
time hierarchy PH. More information about complexity classes can be found in
standard textbooks, such as [18].

Next,wewill introduce the notion of one-way functions andpseudo-randomgen-
erators. Informally speaking, a function is called a one-way function if it is easy to
compute but hard to invert. For a many-to-one function f , we say that an algorithm
M inverts f(x) ifM(f(x)) is in the preimage of f(x), namely, f(M(f(x))) = f(x).
When we mention a function f : {0, 1}n → {0, 1}m, we usually mean a sequence
of functions (f : {0, 1}n → {0, 1}m(n))n∈N, and when we make a statement about
f , we usually mean that it holds for any sufficiently large n ∈ N.

Definition 1. A function f : {0, 1}n → {0, 1}m is (n,m, ε)-hard, or ε-hard for
short, if for any polynomial-size circuit M , Prx∈Un

[
Mf fails to invert f(x)

]
≥

ε. A function f : {0, 1}n → {0, 1}m is an (n,m, ε)-OWF, or ε-OWF for short,
if it can be computed in polynomial time but is ε-hard to invert.

A pseudo-random generator is a function which stretches a short random seed
into a longer random-looking string.

Definition 2. A function M : {0, 1}m → {0, 1} ε-distinguishes a function g :
{0, 1}n → {0, 1}m if |Prx∈Un [M(g(x)) = 1]−Pry∈Um [M(y) = 1]|>ε. A function
g :{0, 1}n → {0, 1}m, with n < m, is an (n,m, ε)-PRG, or ε-PRG for short, if it can
be computed in polynomial time, but no polynomial-size circuit can ε-distinguish g.

2.1 Black-Box Constructions

Next, we introduce the notion of black-box hardness amplification.

468 C.-J. Lu

Definition 3. A black-box hardness amplification from (n,m, ε)-hard functions
to (n̄, m̄, ε̄)-hard functions consists of two oracle algorithms Amp and Dec sat-
isfying the following two conditions. First, for any f : {0, 1}n → {0, 1}m, Ampf

is a function from {0, 1}n̄ to {0, 1}m̄. Second, Dec makes at most poly(n) or-
acle queries, and for any f : {0, 1}n → {0, 1}m and M̄ : {0, 1}m̄ → {0, 1}n̄,
if Prx̄∈Un̄ [M̄ inverts Ampf (x̄)] > 1 − ε̄,1 then Prx∈Un [DecM̄,f inverts f(x)] >
1 − ε.

Here the transformation of the initial function f into a harder function is done
in a black-box way, as the harder function Ampf only uses f as an oracle.
Furthermore, the hardness of Ampf is also guaranteed in a black-box way, in
the sense that any algorithm M̄ breaking the hardness condition of Ampf can
be used as an oracle for Dec to break the hardness condition of f . We call Amp
the encoding procedure and Dec the decoding procedure.

A weaker notion is the following weakly black-box hardness amplification, in
which only the encoding is required to be done in a black-box way.

Definition 4. A weakly black-box hardness amplification from (n,m, ε)-hard
functions to (n̄, m̄, ε̄)-hard functions consists of an oracle algorithm Amp such
that Ampf is (n̄, m̄, ε̄)-hard given any (n,m, ε)-hard function f .

Following [20], we consider the notion of parallel black-box hardness amplifica-
tion. In [20], only the case with d = O(1) and s ≤ poly(n) was considered, but
here we allow arbitrary d and s. This makes our impossibility results stronger,
since we rule out a larger class of hardness amplification procedures.

Definition 5. We say that a black-box hardness amplification is realized by
AC(d, s) if the following additional condition holds. Given any x̄ ∈ {0, 1}n̄, Amp
first produces an AC(d, s) circuit A and makes t ≤ poly(s) non-adaptive queries
x1, . . . , xt ∈ {0, 1}n to the oracle to obtain answers y1, . . . , yt ∈ {0, 1}m, and
then computes its output as A(y1, . . . , yt).

Note that x1, . . . , xt and A only depend on x̄ and are independent of the oracle f .
For the black-box case, no complexity constraint is placed on the part of generating
the queries and the circuit, which again makes our impossibility results stronger.
For the weakly black-box case, we need this part to be computed by an AC(d, s) cir-
cuit too, since we want to derive from the procedureAmp an efficiently computable
one-way function. Similarly, one can define the notion of black-box construction
of pseudo-random generators from hard functions, which is omitted here and can
be found in [20].

2.2 Limited Independence

A sequence of random variables is called k-wise independent if any k of them are
independent. It is well known that such a space can be sampled in a randomness-
efficient way.
1 Here we consider the case that M̄ does not query Ampf . This makes such hardness

amplification easier to find and our impossibility results stronger.

On the Complexity of Parallel Hardness Amplification 469

Fact 1. Any k-wise independent random variables X1, . . . , XN ∈ V can be gen-
erated in polynomial time using a seed of length O(k(logN + log |V |)).

A sequence of variables is called (k, δ)-wise independent if any k of them together
has a statistical distance at most δ to the uniform distribution. We need efficient
constructions of such a space from [16, 1]. From this, we can obtain the following,
whose proof is omitted due to the space constraint.

Lemma 1. Suppose b ≥ t2/ε3. Then there exists a family H̄ of hash functions
from {0, 1}n to [b] which can be sampled using a seed of length r0 = O(log n +
log b+ log(1/ε)) and satisfies the following two properties.

1. For any distinct x1, . . . , xt ∈ {0, 1}n, the probability over h ∈ H̄ that h(xi) =
h(xj) for some i �= j is at most o(ε).

2. For any S ⊆ [b] of size 3εb, the probability over h ∈ H̄ that h(x) ∈ S for less
than 2ε fraction of x is at most o(ε).

2.3 Fourier Analysis

As in [20], we will apply Fourier analysis on Boolean functions. For N ∈ N
and I ⊆ [N], define the function χI : {−1, 1}n → {−1, 1} as χI(x) =

∏
i∈I xi

for any x ∈ {−1, 1}N . For any C : {−1, 1}N → {−1, 1} and any I ⊆ [N], let
ˆC(I) = Ex∈{−1,1}N [C(x) · χI(x)]. Here are some useful facts.

Fact 2. For any C : {−1, 1}N → {−1, 1} and for any x ∈ {−1, 1}N , C(x) =∑
I Ĉ(I) · χI(x).

Lemma 2. [19] For any C : {−1, 1}N → {−1, 1} ∈ AC(d, s),
∑

I Ĉ(I)2(1 −
2δ)|I| ≥ 1 −O(δ logd−1 s).

3 Random Restriction

We will need the notion of random restriction [5, 8]. A restriction ρ onm variables
is an element of {0, 1, �}m, or seen as a function ρ : [m] → {0, 1, �}. A variable
is fixed by ρ if it receives a value in {0, 1} while a variable remains free if it
receives the symbol �. For a string y ∈ {0, 1}m and a restriction ρ ∈ {0, 1, �}m,
let y�ρ ∈ {0, 1}m be the restriction of y with respect to ρ: for i ∈ [m], the i’th
bit of y�ρ is yi if ρi = � and is ρi if ρi ∈ {0, 1}. For a string z ∈ {0, 1, �}m, let
#�(z) denote the number of i’s such that zi = �.

As in [20], we will consider applying a random restriction to a function f :
{0, 1}n → {0, 1}m in the following sense. Take a restriction ρ ∈ {0, 1, �}2nm, seen
as a function ρ : {0, 1}n → {0, 1, �}m, let f�ρ be the function from {0, 1}n to
{0, 1}m such that for x ∈ {0, 1}n, f�ρ(x) = f(x)�ρ(x), the result of applying the
restriction ρ(x) ∈ {0, 1, �}m on f(x) ∈ {0, 1}m.

Let Rm
δ denote the random restriction (distribution over restrictions) on m

variables such that each variable independently receives the symbol � with prob-
ability δ, the value 1 with probability (1− δ)/2, and the value 0 with probability
(1− δ)/2. For our purpose later, we will need a new kind of random restriction.

470 C.-J. Lu

Definition 6. Let R1,m
α,β be the random restriction on m variables defined as

R1,m
α,β = α ·Rm

β +(1−α) ·Rm
0 . That is, R1,m

α,β distributes as Rm
β with probability α

and as Rm
0 = Um with probability 1 − α. Let Rt,m

α,β be the random restriction on
tm variables, defined as Rt,m

α,β = (R1,m
α,β)t, namely, t independent copies of R1,m

α,β .

It is known that AC0 circuits are insensitive to noise and (standard kind of)
random restrictions are likely to make their output values highly biased [13, 3,
20]. We show that this is still true with respect to our new kind of random
restrictions.

Lemma 3. For any C : {0, 1}tm → {0, 1} ∈ AC(d, s), the probability over ρ ∈
Rt,m

α,β and y, y′ ∈ Utm that C(y�ρ) �= C(y′�ρ) is at most O(αβ logd−1 s).

Proof. We would like to apply Fourier analysis on C, so for now let us use {−1, 1}
for the binary values {0, 1}. Partition the tm input positions evenly into t parts
B1, . . . , Bt of size m, with Bi = {(i− 1)m+ 1, . . . , im}.

We know that Prρ;y,y′ [C(y�ρ) �= C(y′�ρ)] = 1
2 (1 − Eρ;y,y′ [C(y�ρ) · C(y′�ρ)]).

From Fact 2, Eρ;y,y′ [C(y�ρ) · C(y′�ρ)] is equal to

E
ρ;y,y′

⎡⎣⎛⎝ ∑
I⊆[tm]

Ĉ(I)χI(y�ρ)

⎞⎠ ·

⎛⎝ ∑
J⊆[tm]

Ĉ(J)χJ (y′�ρ)

⎞⎠⎤⎦
=

∑
I,J⊆[tm]

Ĉ(I) · Ĉ(J) · E
ρ;y,y′

[
χI(y�ρ) · χJ(y′�ρ)

]
.

To bound the expectation Eρ;y,y′
[
χI(y�ρ) · χJ(y′�ρ)

]
, consider two cases.

Case 1: I �= J . There must exist some block Bi such that Bi ∩ I �= Bi ∩ J .
Observe that Eρ;y,y′ [χI(y�ρ) · χJ(y′�ρ)] is qual to

E
ρ;y,y′

[
(χI∩Bi(y�ρ) · χJ∩Bi(y′�ρ))(χI\Bi(y�ρ) · χJ\Bi(y′�ρ))

]
= E

ρ;y,y′

[
χI∩Bi(y�ρ) · χJ∩Bi(y′�ρ)

]
E

ρ;y,y′

[
χI\Bi(y�ρ) · χJ\Bi(y′�ρ)

]
,

where the second equality is because χI∩Bi(y�ρ) · χJ∩Bi(y′�ρ) and χI\Bi(y�ρ) ·
χJ\Bi(y′�ρ) are distributed independently. Note that

E
ρ;y,y′

[
χI∩Bi(y�ρ) · χJ∩Bi(y′�ρ)

]
= E

ρi;yi,y′
i

[
χI∩Bi(yi�ρi) · χJ∩Bi(y′i�ρi)

]
,

with ρi ∈ R1,m
α,β = (1 − α) · Rm

0 + α · Rm
β and yi, y

′
i ∈ Um, so the expectation is

(1 − α) · E
ρi∈Rm

0 ;yi,y′
i

[
χI∩Bi(yi�ρi) · χJ∩Bi(y′i�ρi)

]
+ α · E

ρi∈Rm
β ;yi,y′

i

[
χI∩Bi(yi�ρ) · χJ∩Bi(y′i�ρi)

]
,

which is 0 + 0 = 0. This implies that Eρ;y,y′ [χI(y�ρ) · χJ(y′�ρ)] = 0 when I �= J .

On the Complexity of Parallel Hardness Amplification 471

Case 2: I = J . Partition I into t parts I1, . . . , It where Ii = I ∩Bi. Then,

E
ρ;y,y′

[
χI(y�ρ) · χI(y′�ρ)

]
= E

ρ;y,y′

⎡⎣∏
i∈[t]

χIi(yi�ρi) · χIi(y′i�ρi)

⎤⎦
=

∏
i∈[t]

E
ρi;yi,y′

i

[
χIi(yi�ρi) · χIi(y′i�ρi)

]
=

∏
i∈[t]

(
(1 − α) · 1 + α · (1 − β)|Ii|

)
≥

∏
i∈[t]

(1 − αβ)|Ii|

= (1 − αβ)|I|,

where the inequality follows from Jensen’s inequality.2

Combining the two cases, we have Eρ;y,y′ [C(y�ρ) · C(y′�ρ)] equal to∑
I

Ĉ(I)2 · E
ρ;y,y′

[
χI(y�ρ) · χI(y′�ρ)

]
≥

∑
I

Ĉ(I)2 · (1 − αβ)|I|,

which equals to 1 −O(αβ logd−1 s) by Lemma 2. Then,

Pr
ρ;y,y′

[C(y�ρ) �= C(y′�ρ)] =
1
2

(
1 − E

ρ;y,y′
[C(y�ρ) · C(y′�ρ)]

)
= O(αβ logd−1 s). ��

Note that a random restriction from R1,m
α,β can be sampled using a seed of length

�1 + m�2 consisting of m + 1 parts. The first part of the seed has length �1 =
O(log(1/α)) and is used to determine whether the restriction Rm

β or Rm
0 is

applied. The remaining m parts of the seed, each of length �2 = O(log(1/β)), are
used to generate the m symbols in {0, 1, �}. For simplicity, we use a longer seed
of length � = (m+1)�0 and let each part have the same length �0 = max(�1, �2).

Furthermore, there is an AC0(poly(�)) circuit W which given such a random
seed of length � produces the random restriction R1,m

α,β . Thus, a random restric-
tion from Rb,m

α,β can be sampled using a seed of length b� and produced by an
AC0(poly(b�)) circuit W b, the concatenation of b independent copies of W .

4 Black-Box Hardness Amplification

In this section, we study black-box hardness amplification from (n,m, ε)-hard
functions to (n̄, m̄, ε̄)-hard functions. We will show that no such hardness ampli-
fication realized by AC0(2poly(n)) can amplify the hardness to any ε̄ > ε ·poly(n)
while keeping the function’s output or input length to poly(n). Our main tech-
nical result is the following.
2 Consider the function f(x) = (1 − βx)k, which is convex for x in the interval [0, 1].

Then (1−α)·1+α·(1−β)k = (1−α)·f(0)+α·f(1) ≥ f((1−α)·0+α·1) = (1−αβ)k.

472 C.-J. Lu

Theorem 1. No black-box hardness amplification from (n,m, ε)-hard functions
to (n̄, m̄, ε̄)-hard functions can be realized by AC(d, s) with ε ≤ ε̄ · γ, for any
γ ≤ o(m/(m̄ logd+1 s)) and any s ≥ poly(n).

Since any ATIME(d, t) computation with an oracle can be simulated by an
AC(O(d), 2O(dt)) circuit with oracle answers given as part of its input, we have
the following. In particular, with m̄ ≤ poly(m), no such hardness amplifica-
tion can be realized in PH for any ε̄ ≥ ε · nω(1), and nor can it be realized in
ATIME(O(1), 2o(n)) for any ε̄ ≥ ε · 2Ω(n).

Corollary 1. No black-box hardness amplification from (n,m, ε)-hard functions
to (n̄, m̄, ε̄)-hard functions can be realized in ATIME(d, t) with ε ≤ ε̄ ·m/(m̄ · tcd)
for some constant c.

Theorem 1 states that a low-complexity procedure cannot amplify the hardness
substantially without blowing up the output length. Next, we show that one
cannot avoid blowing up the input length either. In particular, no AC0(2no(1)

)
circuit can amplify hardness beyond an n1+o(1) factor in a security preserving
way (with n̄ = O(n)).

Theorem 2. No black-box hardness amplification from (n,m, ε)-hard functions
to (n̄, m̄, ε̄)-hard functions can be realized by AC(d, s) with ε ≤ ε̄ · γ, for any γ ≤
o(n/(n̄ log2d+1 s)) when s ≥ 2Ω(n1/(d−1)), or for any γ ≤ o(n/(n̄n(2d+1)/(d−1)))
when s ≤ 2O(n1/(d−1)).

4.1 Proof of Theorem 1

Assume that such a hardness amplification exists, with Amp realized by AC(d, s)
and ε = o(ε̄ ·m/(m̄ logd+1 s)). We will show that this leads to a contradiction. The
idea is the following. First, we show that for a random function f and a suitable
random restriction ρ, the resulting function f�ρ is likely to be one-way. The key is
to show that for a sufficient number of x, ρ leaves enough bits in f(x) free. Next,
we show that such a random restriction is likely to kill off the effect of a random
function f on Ampf�ρ so that the functions Ampf�ρ ’s for most f ’s are close to each
other. The key is to show that an AC(d, s) circuit is likely to become highly biased
after such a random restriction. This yields a way to invert Ampf�ρ well for most
f ’s, which can then be used as an oracle to invert f�ρ, and we have a contradiction.
To make sure that both conditions above hold, we need the random restriction to
give �’s at a very small rate but in a clustered way: f(x) receives no � at all for most
x, but gets an enough number of �’s for the rest. This motivates us to consider the
new random restriction Rb,m

α,β introduced in Section 3.
As in [20], we would like to make sure that a restriction does not give away

too much information about the input, so that the function f�ρ is one-way even
given ρ. Therefore we will hash the input from the space {0, 1}n down to a
smaller space [b] before applying the restriction from Rb,m

α,β . Here we choose the
following parameters:

α = 2ε, β = (log2 s)/m, and b = t2/ε3.

On the Complexity of Parallel Hardness Amplification 473

Let H denote the set of functions from {0, 1}n to [b]. Then define our random
restriction R as the uniform distribution over the set of restrictions σ ◦ h :
{0, 1}n → {0, 1, �}m, with h ∈ H and σ ∈ Rb,m

α,β . Let F denote the set of
functions from {0, 1}n to {0, 1}m.

Definition 7. We call a restriction ρ : {0, 1}n → {0, 1, �}m good if both of the
following two conditions hold:

1. Prx∈Un [#�(ρ(x)) ≥ βm/2] ≥ (2/3)α.
2. Prx̄∈Un̄;f,f ′∈F [Ampf�ρ(x̄) �= Ampf ′�ρ(x̄)] = o(ε̄).

Note that if we use a traditional random restriction (of [5, 8]) as in [20], it is
unlikely to have both conditions hold at the same time, because the second con-
dition requires a low rate of � (lower than ε̄/(m̄ logd−1 s)) which makes the first
condition unlikely to hold. On the other hand, using our new random restriction,
we can have both conditions hold with high probability.

Lemma 4. Prρ∈R[ρ is not good] = o(1).

Due to the space limitation, we defer the proof to the journal version and
only sketch the idea here. To show that the first condition fails with a small
probability, note that about α fraction of x’s are turned “on” in the sense
that it receives the restriction from Rm

β and should have #�(ρ(x)) about βm,
so large deviation from this has a small probability. To show that the sec-
ond condition fails with a small probability, note that for any x̄ ∈ {0, 1}n̄,
most ρ ∈ R can kill off the effect of a random function f so that the value
Ampf�ρ(x̄) is the same for most f ∈ F , which is guaranteed by Lemma 3, with
αβ = O((ε log2 s)/m) = o(ε̄/(m̄ logd−1 s)).

Next, we show that for a good ρ, the function f�ρ is ε-hard for most f ∈ F .
In fact, as will be needed later, we prove hardness against slightly stronger algo-
rithms: algorithms which can depend on ρ and have arbitrarily high complexity
but make only a polynomial number of queries to f�ρ.

Lemma 5. For any good ρ, for any Mρ making at most poly(n) oracle queries,
Prx∈Un,f∈F [Mf�ρ

ρ inverts f�ρ(x)] ≤ 1 − ε.

Due to space limitation, we defer the proof to the journal version. The argument
is somewhat standard, which can be modified, say, from [20, 6].

This implies that for any good ρ, the function Āρ, defined by Āρ(x̄) =
maxargz Prf∈F [Ampf�ρ(x̄) = z], is close to Ampf�ρ for most f , because

Pr
x̄,f

[
Āρ(x̄) �= Ampf�ρ(x̄)

]
≤ Pr

x̄,f,f ′

[
Ampf�ρ(x̄) �= Ampf ′�ρ(x̄)

]
= o(ε̄).

This then provides us a way to invert the function Ampf�ρ .

Lemma 6. For any good ρ, there exists a function M̄ρ : {0, 1}m̄ → {0, 1}n̄ such
that Prx̄∈Un̄,f∈F [M̄ρ inverts Ampf�ρ(x̄)] ≥ 1 − o(ε̄).

474 C.-J. Lu

Proof. Fix any good ρ, and let M̄ρ be the function which on input ȳ outputs a
random element in the set Ā−1

ρ (ȳ). Then Prx̄,f [M̄ρ fails to invert Ampf�ρ(x̄)] is

Pr
x̄,f

[
Ampf�ρ(M̄ρ(Ampf�ρ(x̄))) �= Ampf�ρ(x̄)

]
≤ Pr

x̄,f

[
Ampf�ρ(M̄ρ(Āρ(x̄))) �= Āρ(x̄)

]
+ Pr

x̄,f

[
Āρ(x̄) �= Ampf�ρ(x̄)

]
<

∑
ȳ

Pr̄
x

[
Āρ(x̄) = ȳ

]
· Pr

x̄,f

[
Ampf�ρ(M̄ρ(ȳ))) �= ȳ | Āρ(x̄) = ȳ

]
+ o(ε̄)

=
∑

ȳ

Pr̄
x

[
Āρ(x̄) = ȳ

]
· Pr

x̄,x̄′,f

[
Ampf�ρ(x̄′) �= ȳ | Āρ(x̄) = Āρ(x̄′) = ȳ

]
+ o(ε̄)

=
∑

ȳ

Pr̄
x

[
Āρ(x̄) = ȳ

]
· Pr

x̄′,f

[
Ampf�ρ(x̄′) �= Āρ(x̄′) | Āρ(x̄′) = ȳ

]
+ o(ε̄)

= Pr
x̄,f

[
Āρ(x̄) �= Ampf�ρ(x̄)

]
+ o(ε̄)

= o(ε̄). ��

From Lemma 6 and Definition 3, for any good ρ, a Markov’s inequality implies
that for most f ∈ F , the function M

f�ρ
ρ = DecM̄ρ,f�ρ can achieve Prx[Mf�ρ

ρ

invertsf�ρ(x)] > 1 − ε. This contradicts Lemma 5 since Dec makes at most a
polynomial number of queries to the oracle. Therefore, no such hardness ampli-
fication is possible, which proves Theorem 1.

4.2 Proof of Theorem 2

Let H̄ denote the family of hash functions from {0, 1}m to {0, 1}3n derived from
a (2, 2−3n)-wise independent space. We will use the construction of [1], based on
finite fields of characteristic two, with each function in the family specified by
O(n) bits. Then using ideas from [11, 10], given the specification of a function
h ∈ H̄ and an input x ∈ {0, 1}n, one can compute h(x) by an AC(d, 2O(n1/(d−1)))
circuit.

The key to the theorem is the following, which says that one can transform a
hard function f : {0, 1}n → {0, 1}m with any m ≤ poly(n) into a hard function
f ′ : {0, 1}n′ → {0, 1}m′

with n′,m′ = O(n).

Lemma 7. A black-box hardness amplification from (n,m, ε)-hard functions to
(n̄, m̄, ε̄)-hard functions can be realized in AC(d, 2O(n1/(d−1))) with ε̄ = ε−2−n+1,
n̄ = O(n), and m̄ = O(n).

Proof. Given any ε-hard function f : {0, 1}n → {0, 1}m, define the function
f ′ = Ampf : {0, 1}n′ → {0, 1}m′

as

f ′(x, h) = (h(f(x)), h),

with x ∈ {0, 1}n and h ∈ H̄. Thus, n′ = n + O(n) = O(n) and m′ = 3n +
O(n) = O(n). From the discussion at the beginning, Amp can be realized in
AC(d, 2O(n1/(d−1))).

On the Complexity of Parallel Hardness Amplification 475

Next, we prove the hardness of f ′ in a black-box way. Suppose M ′ is a function
which inverts f ′ with probability more than 1−(ε−2−n+1). Consider the function
M = DecM ′

, which on input y ∈ {0, 1}m generates a random h ∈ H̄, calls
M ′(h(y), h), and outputs the first component from the answer. We will show
that M inverts f with probability more than 1− ε. Let Mh denote the function
M with the random choice h. Call h ∈ H̄ colliding if there exist x, x′ with
f(x) �= f(x′) and h(f(x)) = h(f(x′)). Then, Prx∈Un [M inverts f(x)] is

Pr
x∈Un,h∈H̄

[f(Mh(f(x))) = f(x)]

≥ Pr
x∈Un,h∈H̄

[h(f(Mh(f(x)))) = h(f(x)) ∧ h is not colliding]

≥ Pr
x∈Un,h∈H̄

[f ′(M(f ′(x, h))) = f ′(x, h)] − Pr
h∈H̄

[h is colliding]

> 1 − (ε− 2−n+1) − 22n(2−3n + 2−3n)
= 1 − ε.

This proves the lemma. ��

Consider any black-box hardness amplification from (n,m, ε)-hard functions to
(n̄, m̄, ε̄)-hard functions realized by AC(d, s), with ε ≤ ε̄ · γ. Assume we have
s ≥ 2Ω(n1/(d−1)) and γ ≤ o(n/(n̄ log2d+1 s)). Then by combining this with
Lemma 7, we get a black-box hardness amplification from (n,m, ε)-hard func-
tions to (n̄′, m̄′, ε̄′)-hard functions realized by AC(2d, s′), with m̄′ = O(n̄), s′ =
O(s), and ε ≤ ε̄′ ·γ′, for γ′ ≤ o(m/(m̄′ log2d+1 s′)), which contradicts Theorem 1.
Therefore, no such hardness amplification can exist. Next, assume we have s ≤
2O(n1/(d−1)) and γ ≤ o(n/(n̄·n(2d+1)/(d−1)). Combining this with Lemma 7, we get
a black-box hardness amplification from (n,m, ε)-hard functions to (n̄′, m̄′, ε̄′)-
hard functions realized by AC(2d, s′), with m̄′ = O(n̄), s′ ≤ 2O(n1/(d−1)), and
ε ≤ ε̄′ · γ′, for γ′ ≤ o(m/(m̄′n(2d+1)/(d−1)) = o(m/(m̄′ log2d+1 s′)), which con-
tradicts Theorem 1. Thus, no such hardness amplification can exist either. This
completes the proof of Theorem 2.

5 Weakly Black-Box Hardness Amplification

In this section, we consider weakly black-box hardness amplifications from
(n,m, ε)-hard functions to (n̄, m̄, ε̄)-hard functions. Suppose such an amplifi-
cation procedure, consisting of both the query-generation part and the answer-
combination part, can be computed in AC0. We will show that if it can amplify
the hardness beyond a polynomial factor, then one can derive from it a highly-
parallel one-way function. To simplify the presentation, we do not attempt to
derive the strongest possible result here.

Theorem 3. Suppose a weakly black-box hardness amplification from (n,m, ε)-
hard functions to (n̄, m̄,

√
ε̄)-hard functions can be computed in AC0 with ε ≤ ε̄·γ,

for γ < m/(m̄ · poly(logn)) and ε̄ ≥ 1/poly(n). Then one can obtain from it a
(1 − o(1))

√
ε̄-OWF computable in NC0.

476 C.-J. Lu

We will give the proof of Theorem 3 in Section 5.2. It will rely on a derandom-
ized version of the random restriction R used in the previous section, which is
discussed next.

5.1 Pseudo-Random Restriction

Set the parameters α = 2ε, β = (log2 s)/m, b = t2/ε3 as in the previous section,
and suppose ε < ε̄ · m/(m̄ · poly(logn)). Now we describe our choice of pseudo-
random restriction ρ̄ : {0, 1}n → {0, 1, �}m. Again, we will first hash {0, 1}n down
to a smaller space [b]. Following [20], we would like to replace the random hash
function by a pseudo-random one, but a more careful choice is needed. Here we
use the family H̄ of hash functions in Lemma 1. Then we would like to replace the
random restriction Rb,m

α,β by a pseudo-random one, such that it is still good with
high probability. For this, we need the following two constructions. (Recall from
Section 3 that a random restriction fromRb,m

α,β can be generated by a circuitW b ∈
AC0 : {0, 1}b� → ({0, 1, �}m)b using a random seed of length b� = b(m+ 1)�0.)

– Let Ind : {0, 1}r1 → {0, 1}b� be the generator defined as follows, with
r1 = poly(log n). First, use the input as the seed for the generator in Fact 1
to produce b random variables over {0, 1}O(�0+log m) that are pairwise inde-
pendent. Next, take each variable as the seed for the generator in Fact 1 to
generate m+ 1 new random variables over {0, 1}�0 that are 3-wise indepen-
dent. The output of Ind is the concatenation of these b(m+ 1) new random
variables over {0, 1}�0.

– Let Nis : {0, 1}r2 → {0, 1}b� be Nisan’s o(ε̄)-PRG for AC0 circuits [17], with
r2 = poly(log n).

Our pseudo-random restriction R̄ is the uniform distribution over the set of
restrictions ρ̄h,z1,z2 , with (h, z1, z2) ∈ {0, 1}r0 × {0, 1}r1 × {0, 1}r2, defined as

ρ̄h,z1,z2(x) = W b (Ind(z1) ⊕ Nis(z2))h(x) .

Recall the definition of a good restriction from the previous section. The
following says that such a pseudo-random restriction is still likely to be good.

Lemma 8. Prρ̄∈R̄[ρ̄ is not good] = o(1).

Due to the space limitation, we defer the proof to the journal version. The
idea is similar to that of Lemma 4. Now we use the generators Ind and Nis,
respectively, to guarantee that the two conditions of being good also fail with a
small probability.

5.2 Proof of Theorem 3

Suppose there exists such a weakly black-box hardness amplification with ε < ε̄ ·
m/(m̄ ·poly(log n)) and ε̄ ≥ 1/poly(n). We will show how to obtain from it a hard
function. The idea is the following. From Section 4, we know that for most ρ and
f the function Ampf�ρ is hard (to invert), but we do not know which ρ and f give

On the Complexity of Parallel Hardness Amplification 477

a hard function. Our first step is to replace the random restriction ρ by a pseudo-
random one ρ̄ so that the function Ampf�ρ̄ is still likely to be hard. Then we show
that by replacing the random function f by a pseudo-random one f̄ , the resulting
function Ampf̄�ρ̄ is likely to be close to Ampf�ρ̄ . However, having Ampf̄�ρ̄ close to
a hard function Ampf�ρ̄ does not seem sufficient to guarantee that Ampf̄�ρ̄ is hard.
The problem is that on input Ampf̄�ρ̄(x̄) = Ampf�ρ̄(x̄), an inverter might output
x̄′ such that Ampf̄�ρ̄(x̄) = Ampf̄�ρ̄(x̄′) �= Ampf�ρ̄(x̄′). Thus, one might succeed
in inverting Ampf̄�ρ̄ but not Ampf�ρ̄ for many such x̄’s. We will come up with a
carefully designed function that avoids this problem.

First, similar to Lemma 5, we have the following. We omit the proof here due
to space limitation.

Lemma 9. For any good ρ̄ ∈ R̄, Prf [Ampf�ρ̄ is not
√
ε̄-hard] = o(ε̄).

Next, we want to replace the random function by the following pseudo-randomone.
Let F̄ be the class of functions f̄h,z3, with h ∈ H̄ and z3 ∈ {0, 1}r3, defined as

f̄h,z3(x) = Nis′(z3)h(x),

where Nis′ : {0, 1}r3 → ({0, 1}m)b is Nisan’s o(ε̄)-PRG for AC0, with r3 =
poly(logn). One can show that it has a similar effect as the random one in the
sense that for any x̄ ∈ {0, 1}n̄, ρ̄ ∈ R̄, and ȳ ∈ {0, 1}m̄,∣∣∣∣ Pr

f∈F

[
Ampf�ρ̄(x̄) = ȳ

]
− Pr

f̄∈F̄

[
Ampf̄�ρ̄(x̄) = ȳ

]∣∣∣∣ = o(ε̄). (1)

This is because Nis′ can fool such a test.
For any good ρ̄ ∈ R̄, we know by definition that there is a large subset

B ⊆ {0, 1}n̄ of inputs such that for each input in B, the output of Amp is the
same for most f ∈ F , and by (1), for most f̄ ∈ F̄ . We would like our function
to output this corresponding value for each input in B, and to output a value
different from all these values for inputs not in B. We use f̄p = (f̄1, . . . , f̄p) ∈ F̄p,
with p = nc for some large enough constant c, to locate one such set of inputs.
Let Majρ̄,f̄p(x̄) be the majority value in {Ampf̄1�ρ̄(x̄), . . . ,Ampf̄p�ρ̄(x̄)}. Let

Bρ̄,f̄p =
{
x̄ ∈ {0, 1}n̄ : Pr

i∈[p]

[
Ampf̄i�ρ̄(x̄) �= Majρ̄,f̄p(x̄)

]
<

√
ε̄

}
.

Now for ρ̄ ∈ R̄, f̄p ∈ F̄p, and ȳ ∈ {0, 1}m̄, define the function Āρ̄,f̄p,ȳ : {0, 1}n̄ →
{0, 1}m̄ as

Āρ̄,f̄p,ȳ(x̄) =
{

Majρ̄,f̄p(x̄) if x̄ ∈ Bρ̄,f̄p ,
ȳ otherwise.

Call (ρ̄, f̄p, ȳ) ∈ R̄ × F̄p × {0, 1}m̄ nice if ρ̄ is good and the following three
conditions all hold:

(a) |Bρ̄,f̄p | ≥ (1 − o(
√
ε̄))2n̄.

(b) For any x̄ ∈ Bρ̄,f̄p , Prf∈F
[
Āρ̄,f̄p,ȳ(x̄) �= Ampf�ρ̄(x̄)

]
= o(ε̄).

(c) For any x̄ /∈ Bρ̄,f̄p and x̄′ ∈ Bρ̄,f̄p , Āρ̄,f̄p,ȳ(x̄) �= Āρ̄,f̄p,ȳ(x̄′).

478 C.-J. Lu

The following lemma says that a randomly chosen (ρ̄, f̄p, ȳ) is likely to be nice.
Due to the space limitation, we omit the proof here.

Lemma 10. Prρ̄∈R̄,f̄p∈F̄p,ȳ∈Um̄
[(ρ̄, f̄p, ȳ) is not nice] = o(1).

The following shows that a nice (ρ̄, f̄p, ȳ) gives a hard function.

Lemma 11. For any nice (ρ̄, f̄p, ȳ), the function Āρ̄,f̄p,y is (1 − o(1))
√
ε̄-hard.

Proof. Fix any nice (ρ̄, f̄p, ȳ). Consider any polynomial-size circuit M̄ which
tries to invert Āρ̄,f̄p,y. For notational convenience, let us write Â for Āρ̄,f̄p,ȳ,
Af for Ampf�ρ̄ , and B for Bρ̄,f̄p . Suppose we sample x̄ uniformly from {0, 1}n̄

and f uniformly from F . Let E be the event that M̄ inverts Â(x̄). Clearly, E
is the union of the two events E1 : (M̄ inverts Â(x̄)) ∧ (Â(x̄′) = Af (x̄′)) and
E2 : (M̄ inverts Â(x̄)) ∧ (Â(x̄′) �= Af (x̄′)), where x̄′ = M̄(Â(x̄))).

First, note that the event E1 is contained in the union of the two events
E1,1 : Â(x̄) �= Af (x̄) and E1,2 : M̄ inverts Af (x̄). From items (a) and (b), we
have Prx̄,f [E1,1] ≤ Prx̄ [x̄ /∈ B] + Prx̄,f [Â(x̄) �= Af (x̄) | x̄ ∈ B] = o(

√
ε̄). Then by

Lemma 9, Prx̄,f [E1,2] is at most

Pr
f

[
Af is not

√
ε̄-hard

]
+Pr

x̄,f

[
M̄ inverts Af (x̄) | Af is

√
ε̄-hard

]
≤ o(ε̄)+1−

√
ε̄.

Next, note that the event E2 is contained in the union of the two events
E2,1 : x̄ /∈ B and E2,2 : (x̄ ∈ B) ∧ (M̄ inverts Â(x̄)) ∧ (Â(x̄′) �= Af (x̄′)). From
item (a), Prx̄[E2,1] = o(

√
ε̄). Observe that the event E2,2 implies that (x̄′ ∈

B) ∧ (Â(x̄′) �= Af (x̄′)), so by item (b), Prx̄,f [E2,2] = o(ε̄).
Combining these bounds together, we get Prx̄,f [E] ≤ 1 −

√
ε̄+ o(

√
ε̄), which

proves the lemma. ��

Finally, define the function Ā : {0, 1}n̄ × R̄ × F̄p × {0, 1}m̄ → {0, 1}m̄ × R̄ ×
F̄p × {0, 1}m̄ as

Ā(x̄, ρ̄, f̄p, ȳ) = (Āρ̄,f̄p,ȳ(x̄), ρ̄, f̄p, ȳ).

Note that the input length of Ā is at most poly(n), since each ρ̄ ∈ R̄ can be
specified by poly(log n) bits and each f̄p ∈ F̄p can be specified by poly(n) bits.

Lemma 12. The function Ā is (1 − o(1))ε̄-hard.

Proof. Consider any polynomial-size circuit M̄ which attempts to invert Ā. Then
Prx̄,ρ̄,f̄p,ȳ[M fails to invert Ā(x̄, ρ̄, f̄p, ȳ)] is at least

Pr
ρ̄,f̄p,ȳ

[
(ρ̄, f̄p, ȳ) nice

]
· Pr

x̄,ρ̄,f̄p,ȳ

[
M fails to invert Ā(x̄, ρ̄, f̄p, ȳ) | (ρ̄, f̄p, ȳ) nice

]
,

which by Lemma 10 & 11 is at least (1 − o(1)) · (1 − o(1))ε̄ = (1 − o(1))ε̄. ��

Since Nisan’s PRG, the generator Ind, and functions in H̄ all can be computed
in NC1, the function Ā can be computed in NC1 too. From [2], this yields a OWF
in NC0, which proves the theorem.

On the Complexity of Parallel Hardness Amplification 479

6 Black-Box Construction of PRG from OWF

In this section, we study the complexity-quality tradeoff for black-box construc-
tions of pseudo-random generators from strongly one-way functions. Our result
is the following.

Theorem 4. No black-box construction of (n̄, m̄, 1/5)-PRGs from (n,m, 1 −
n− log n)-hard functions can be realized by AC(d, s) with m̄ > n̄(1+(logd+5 s)/m)
and s ≤ 2mo(1/d)

. In particular, with d = O(1), such construction of PRG can
only have a sublinear stretch unless s ≥ 2mΩ(1)

.

Proof. Assume for the sake of contradiction that such a black-box construction
realized by AC(d, s) exists with m̄ ≥ n̄(1 + (logd+5 s)/m) and s ≤ 2mo(1/d)

.
We will show that this leads to a contradiction. The idea is similar to that in
Section 4. First, we will show that for a random restriction ρ and a random
function f , the function f�ρ is weakly hard, and the function derived from it
using direct product is strongly hard. On the other hand, suppose we have such
a PRG construction. Then we will show that a random restriction can reduce the
effect of a random function, and consequently there exists a distinguisher which
breaks the PRG. This can then be used to invert the strongly-hard function well,
and we reach a contradiction.

Let Prg be the encoding procedure and Dec the decoding procedure. Let k =
c0 logd+3 s for a large enough constant c0, let n′ = n/k and m′ = m/k. Note that
n′,m′ ≥ poly(n) since s ≤ 2no(1/d)

and k ≤ no(1). Now we replace the parameters
n and m in the previous sections by n′ and m′, and consider sampling function f :
{0, 1}n′ → {0, 1}m′

and restriction ρ : {0, 1}n′ → {0, 1, �}m′
. Set the parameters:

α = 1/ logd+1 s, β = (log2 s)/m′, and b = t2m′.

Similar to Lemma 5, one can show that the function f�ρ is Ω(α)-hard with
high probability (using an almost identical proof). If f�ρ is Ω(α)-hard, the func-
tion fk

ρ : {0, 1}kn′ → {0, 1}km′
defined as fk

ρ (x1, . . . , xk)=(f�ρ(x1), . . . , f�ρ(xk))
is (1 − n− log n)-hard, according to [21]. Thus we have the following.

Lemma 13. For most ρ ∈ R, for any oracle algorithm Mρ making at most

poly(n) oracle queries, for most f ∈ F , Prx∈Un [M
fk

ρ
ρ inverts fk

ρ (x)] ≤ n− log n.

For x, x′ ∈ {0, 1}n, let 2(x, x′) = |{i ∈ [n] : xi �= x′i}|/n, their relative Hamming
distance. Then as in Section 4, one can show that the random restriction can
reduce the effect of the random function on Prg.

Lemma 14. For most ρ ∈ R, there exists a function Ḡρ : {0, 1}n̄ → {0, 1}m̄

such that for most f ∈ F , Ex̄[2(Ḡρ(x̄),Prgfk
ρ (x̄)] = μ for some μ = O(1/m′).

Form such a function Ḡρ, one can construct a distinguisher D̄ρ : {0, 1}m̄ → {0, 1}
for Prgfk

ρ , defined by D̄ρ(ȳ) = 1 if and only if there exists some ȳ′ in the image
of Ḡρ such that 2(ȳ, ȳ′) ≤ 5μ. The we have the following, whose proof is omitted
due to space limitation.

480 C.-J. Lu

Lemma 15. For most ρ ∈ R, there exists a distinguisher D̄ρ : {0, 1}m̄ → {0, 1}
such that for most f ∈ F , D̄ρ can 1/5-distinguish Prgfk

ρ .

According to the lemma, for most ρ ∈ R and f ∈ F , the function Mρ = DecD̄ρ

achieves Prx[M
fk

ρ
ρ inverts fk

ρ (x)] > n− log n. This contradicts Lemma 13, since
Dec makes at most a polynomial number of queries to the oracle. Thus we have
the theorem. ��

References

1. Noga Alon, László Babai, Johan H̊astad, and Rene Peralta. Some constructions of
alomost k-wise independent random variables. Random Structures and Algorithms,
3(3), pages 289–304, 1992.

2. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, pages 166–175, 2004.

3. Ravi B. Boppana. The average sensitivity of bounded-depth circuits. Information
Processing Letters, 63(5), pages 257–261, 1997.

4. Giovanni Di Crescenzo and Russell Impagliazzo. Security-preserving hardness-
amplification for any regular one-way function. In Proceedings of the 31st Annual
ACM Symposium on Theory of Computing, pages 169–178, 1999.

5. Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1), pages 13–27,
1984.

6. Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In Proceedings of the 41st Annual IEEE Symposium
on Foundations of Computer Science, pages 305–313, 2000.

7. Oded Goldreich, Russell Impagliazzo, Leonid A. Levin, Ramarathnam Venkatesan,
and David Zuckerman. Security preserving amplification of hardness. In Proceed-
ings of the 31st Annual IEEE Symposium on Foundations of Computer Science,
pages 318–326, 1990.

8. Johan H̊astad. Computational limitations for small depth circuits. PhD thesis, MIT
Press, 1986.

9. Johan H̊astad, Russel Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM Journal on Computing, 28(4),
pages 1364–1396, 1999.

10. Alexander Healy and Emanuele Viola. Constant-depth circuits for arithmetic in
finite fields of characteristic two. Electronic Colloquium on Computational Com-
plexity, TR05-087, 2005.

11. William Hesse, Eric Allender, and David A. M. Barrington. Uniform constant-
depth threshold circuits for division and iterated multiplication. Journal of Com-
puter and System Sciences, 65(4), pages 695–716, 2002.

12. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In Proceedings of the 21st Annual ACM Symposium on
Theory of Computing, pages 44–61, 1989.

13. Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier
transform, and learnability. Journal of the ACM, 40(3), pages 607–620, 1993.

On the Complexity of Parallel Hardness Amplification 481

14. Henry Lin, Luca Trevisan, and Hoeteck Wee. On hardness amplification of one-
way functions. In Proceedings of the 2nd Theory of Cryptography Conference, pages
34–49, 2005.

15. Chi-Jen Lu, Shi-Chun Tsai, and Hsin-Lung Wu. On the complexity of hardness am-
plification. In Proceedings of the 20th Annual IEEE Conference on Computational
Complexity, pages 170–182, 2005.

16. Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions
and applications. SIAM Journal on Computing, 22(4), pages 838–856, 1993.

17. Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1),
pages 63–70, 1991.

18. Christos Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
19. Emanuele Viola. The complexity of constructing pseudorandom generators from

hard functions. Computational Complexity, 13(3-4), pages 147–188, 2005.
20. Emanuele Viola. On constructing parallel pseudorandom generators from one-way

functions. In Proceedings of the 20th Annual IEEE Conference on Computational
Complexity, pages 183–197, 2005

21. Andrew Chi-Chih Yao. Theory and applications of trapdoor functions. In Proceed-
ings of the 23rd Annual IEEE Symposium on Foundations of Computer Science,
pages 80–91, 1982.

On Matroids and Non-ideal Secret Sharing

Amos Beimel� and Noam Livne

Dept. of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel

Abstract. Secret-sharing schemes are a tool used in many cryptogra-
phic protocols. In these schemes, a dealer holding a secret string
distributes shares to the parties such that only authorized subsets of
participants can reconstruct the secret from their shares. The collection
of authorized sets is called an access structure. An access structure is
ideal if there is a secret-sharing scheme realizing it such that the shares
are taken from the same domain as the secrets. Brickell and Daven-
port (J. of Cryptology, 1991) have shown that ideal access structures
are closely related to matroids. They give a necessary condition for an
access structure to be ideal – the access structure must be induced by
a matroid. Seymour (J. of Combinatorial Theory B, 1992) showed that
the necessary condition is not sufficient: There exists an access structure
induced by a matroid that does not have an ideal scheme.

In this work we continue the research on access structures induced
by matroids. Our main result in this paper is strengthening the result of
Seymour. We show that in any secret sharing scheme realizing the access
structure induced by the Vamos matroid with domain of the secrets of
size k, the size of the domain of the shares is at least k + Ω(

√
k). Our

second result considers non-ideal secret sharing schemes realizing access
structures induced by matroids. We prove that the fact that an access
structure is induced by a matroid implies lower and upper bounds on
the size of the domain of shares of subsets of participants even in non-
ideal schemes (this generalized results of Brickell and Davenport for ideal
schemes).

1 Introduction

Secret sharing schemes are a tool used in many cryptographic protocols. A secret
sharing scheme involves a dealer who has a secret, a finite set of n participants,
and a collection A of subsets of the set of participants called the access structure.
A secret-sharing scheme for A is a method by which the dealer distributes shares
to the parties such that: (1) any subset in A can reconstruct the secret from its
shares, and (2) any subset not in A cannot reveal any partial information about
the secret in the information theoretic sense. A secret sharing scheme can only
exist for monotone access structures, i.e. if a subset A can reconstruct the secret,
then every superset of A can also reconstruct the secret. Given any monotone

� Partially supported by the David and Lucile Packard Foundation grant of Matthew
Franklin, and by the Frankel Center for Computer Science.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 482–501, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Matroids and Non-ideal Secret Sharing 483

access structure, Ito, Saito, and Nishizeki [22] show how to build a secret shar-
ing scheme that realizes the access structure. Even with more efficient schemes
presented since, e.g. in [5, 41, 10, 25, 44, 21], most access structures require shares
of exponential size: if the domain of the secrets is binary, the shares are strings
of length 2Θ(n), where n is the number of participants

Certain access structures give rise to very economical secret sharing schemes.
A secret sharing scheme is called ideal if the shares are taken from the same do-
main as the secrets. For example, Shamir’s threshold secret sharing scheme [40]
is ideal. An access structure is called ideal if there is an ideal secret sharing
scheme which realizes the access structure over some finite domain of secrets.
Ideal access structures are interesting for a few reasons: (1) they are the most
efficient secret sharing schemes as proved by [26], (2) they are most suitable for
composition of secret sharing schemes, and (3) they have interesting combinato-
rial structure, namely, they have a matroidial structure, as proved by [11] and
discussed in the next paragraph.

Brickell and Davenport [11] have shown that ideal access structures are closely
related to matroids over a set containing the participants and the dealer. They
give a necessary condition for an access structure to be ideal – the access struc-
ture must be induced by a matroid – and a somewhat stronger sufficient condition
– the matroid should be representable over some finite field. The question of an
exact characterization of ideal access structures is still open. Seymour [39] has
shown that the necessary condition is not sufficient: there exists an access struc-
ture induced by a matroid that does not have an ideal scheme. The following
natural open question arises: How far from ideal can access structures induced
by matroids be? Is there an upper-bound on the shares’ size implied by being an
access structure induced by a matroid? There is no better known upper bound
on the share size than the 2O(n) bound for general access structures. Most known
secret sharing schemes are linear (see discussion in [2]). On one hand, the number
of linear schemes with n participants, binary domain of secrets, and shares of
size poly(n) is 2poly(n). On the other hand, the number of matroids with n points
is exp(2Θ(n)) (see [47]) and every matroid induces at least one access structure.
Thus, for most access structures induced by matroids, the size of the shares
in linear secret-sharing schemes is super-polynomial. This gives some evidence
that access structures induced by matroids do not have efficient secret sharing
schemes for a reasonable size of domain of secrets.

Our Results. In this work we continue the research on access structures induced
by matroids. Seymour [39] showed that any access structure induced by the
Vamos matroid [46] is not ideal. Our main result is strengthening this result. We
consider an access structure induced by the Vamos matroid and show that in any
secret sharing scheme realizing this access structure with domain of the secret
of size k, the size of the domain of the shares is at least k + Ω(

√
k) (compared

to the lower bound of k+ 1 implied by [39]). Towards proving this lower bound,
we needed to strengthen some results of [11] to non-ideal secret sharing schemes
realizing access structures induced by matroids. We then needed to generalize
Seymour’s ideas to obtain our lower bound. We note that the upper-bound on

484 A. Beimel and N. Livne

the size of the domain of shares in a secret sharing scheme realizing the access
structure induced by the Vamos matroid is poly(k), thus our work still leaves
open the question of the minimal-size share domain for this access structure.

Brickell and Davenport [11] proved that the size of the domain of shares of
a subset of participants in an ideal scheme is exactly determined by the size
of the domain of secrets and the rank of the subset in the matroid inducing the
access structure. We consider non-ideal secret sharing schemes realizing access
structures induced by matroids. We prove that the fact that an access structure
is induced by a matroid implies lower and upper bounds on the size of the domain
of shares of subsets of participants even in non-ideal schemes. These lower and
upper bounds, beside being interesting for their own, are used to prove our main
result. We need both the lower bounds and the upper bounds to prove our main
result – the lower bound on the size of the domain of shares in the Vamos matroid.

We prove two incomparable versions of such bounds. The first version, in
Section 3, contains somewhat weaker bounds; however, this is the version we can
use in the proof of our main result. The second version, in Section 5, contains
bounds on the entropy of shares of subsets of participants. Entropy arguments
have been used to give bounds on the size of shares in secret sharing schemes
starting with [26, 12]. Specifically, entropy arguments have been used for ideal
secret sharing schemes in [27]. We were not able to use the bounds we proved
via entropy in the proof of our main result for technical reasons. We include
them in this paper since we believe that they are interesting for their own sake.
Furthermore, they might be useful in proving stronger bounds than the lower
bound proved here, either for the matroid induced by the Vamos matroid, or for
access structures induced by other matroids. See discussion in Example 4 at the
end of this paper.

Historical Background. Secret sharing schemes were introduced by Blakley [6]
and Shamir [40] for the threshold case, that is, for the case where the subsets that
can reconstruct the secret are all the sets whose cardinality is at least a certain
threshold. Secret sharing schemes for general access structures were introduced
by Ito, Saito, and Nishizeki in [22]. More efficient schemes were presented in,
e.g., [5, 41, 10, 25, 44, 21]. Originally motivated by the problem of secure infor-
mation storage, secret-sharing schemes have found numerous other applications
in cryptography and distributed computing, e.g., Byzantine agreement [38], se-
cure multiparty computations [4, 13, 15], threshold cryptography [19], and access
control [33].

Several lower bounds on the share size of secret-sharing schemes were ob-
tained [5, 12, 7, 20, 18, 17]. The strongest current bound is Ω(n2/ logn) [17] for
the total size of the shares of all the participants, where n is the number of
participants in the system. However, there is a huge gap between these lower
bounds and the best known upper bounds of 2O(n) for general access structures.
The question of super-polynomial lower bounds on the size of shares for some
(explicit or random) access structures is still open.

Ideal secret sharing schemes and ideal access structures have been first
considered in [10] and have been studied extensively thereafter, e.g. in

On Matroids and Non-ideal Secret Sharing 485

[1, 3, 8, 11, 23, 24, 27, 29, 30, 31, 32, 34, 35, 37, 42, 43, 45, 16]. There are two common
definitions for ideal access structures in the secret sharing literature. The first, that
will also be used here, can be found implicitly in [11] and explicitly in
[31, 1, 34, 35, 3]. The second can be found in [29, 30, 32]. Livne [28] pointed that
these definitions are not necessarily equivalent. Furthermore, he proposed a can-
didate access structure that is ideal according to one definition but possibly is not
ideal according to the stronger definition.

Organization. In Section 2 we present basic definitions of secret sharing schemes
and matroids, and discuss the relation between them. In Section 3 we prove
some technical lemmas concerning weak secret sharing schemes; these lemmas
are used to prove our main result. In Section 4 we prove a lower bound on the
size of shares in any secret sharing realizing the access structure induced by the
Vamos matroid. Finally, in Section 5 we prove upper and lower bounds on the
entropy of shares of subsets of participants in secret sharing schemes realizing
matroid induced access structures. In Appendix A we supply some background
results on the entropy function.

2 Preliminaries

In this section we define weak secret sharing schemes, review some background
on matroids, and discuss the connection between secret sharing schemes and
matroids.

Definition 1 (Access Structure). Let P be a finite set of participants. A
collection A ⊆ 2P is monotone if B ∈ A and B ⊆ C ⊆ P imply that C ∈ A. An
access structure is a monotone collection A ⊆ 2P of non-empty subsets of P . Sets
in A are called authorized, and sets not in A are called unauthorized. A set B is
called a minterm of A if B ∈ A and for every C � B, the set C is unauthorized.
A participant is called redundant if there is no minterm that contains it. An
access structure is called connected if it has no redundant participants.

In this section we only give a relaxed definition of secret sharing scheme, which
we call a weak secret sharing scheme. The formal definition of (strong) secret
sharing scheme appears in Section 5. While in the definition of secret sharing
schemes it is required that the uncertainty of the secret given the shares of an
unauthorized subset of participants is the same as the a-priory uncertainty of the
secret (in the information theoretic sense), here we require merely that no value
of the secret could be ruled out, i.e. that each value of the secret has probability
greater than zero. In particular, every secret sharing scheme is a weak secret
sharing scheme. Thus, in the proof of our main result we prove lower bounds on
the size of shares in weak secret sharing schemes.

Definition 2 (Weak Secret-Sharing Scheme and Weakly Ideal Access
Structure). Let P be a set of participants, and let K be a finite set of secrets.
A weak secret sharing scheme with domain of secrets K is a matrix M whose
columns are indexed by P ∪ {p0}, where p0 /∈ P , and with all entries in column

486 A. Beimel and N. Livne

p0 from K. When the dealer wants to distribute a secret s ∈ K, it chooses a
row r ∈M such that Mr,p0 = s, and privately communicates to each participant
p ∈ P the value Mr,p. We refer to Mr,p as the share of participant p. Given a
vector of shares KA, denote by K(p0|KA) the possible values of the secret given
that the participants in A receive the vector of shares KA.

We say that M realizes a weak secret sharing scheme for the access structure
A ⊆ 2P if the following two requirements hold:

Correctness. The secret can be reconstructed by any authorized set of par-
ticipants: |K(p0|KA)| = 1 for any A ∈ A and every possible vector of shares
KA for the set A.

Weak Privacy. Given a vector of shares of an unauthorized set of partici-
pants, none of the values of the secret can be ruled out: K(p0|KA) = K for
any A /∈ A and every possible vector of shares KA for the set A.

If an access structure has a weak secret sharing scheme with shares’ domain of
every participant equal to the domain of the secret for some finite domain of
secrets, we say that the access structure is weakly ideal.

Example 1. As an example, consider Shamir’s threshold scheme [40]. Denote
P = {1, . . . , n}, let t ≤ n, and define the threshold access structure At =
{A ⊆ P : |A| ≥ t}. We choose some prime number q ≥ n, and define a secret
sharing scheme with domain of secrets of size q as follows. In order to distribute
a secret s ∈ {0, . . . , q − 1}, the dealer randomly chooses, with uniform distribu-
tion, a polynomial p of degree t − 1 over GF(q) such that p(0) = s. The dealer
then distributes to each participant pi ∈ P the share p(i). When an authorized
subset of participants (of size at least t) wants to reconstruct the secret, it has
at least t distinct points of the polynomial p, therefore it can determine p, and
it can calculate p(0). An unauthorized subset cannot eliminate any value of the
secret. In this scheme, the matrix M contains qt rows; a row 〈p(0), p(1), . . . , p(n)〉
for every polynomial p of degree t− 1 over GF(q).

We next give some notations concerning weak secret sharing schemes. Given
A,B ⊆ P ∪ {p0} and KB ∈ K(B), denote by K(A|KB) the set of combinations
of shares the participants in A can receive given that the participants in B
received the vector of shares KB. That is, if M ′ is the restriction of M to
the rows such that the values in the columns in B are KB, then K(A|KB)
is the set of the distinct rows in the restriction of M ′ to the columns in A.
Given KA ∈ K(A|KB), we say that KA coincides with KB (that is, there is
a row in M that gives to the participants in A the shares in KA and to the
participants in B the shares in KB). Of course, this relation is symmetric. We
denote K({vi1 , vi2 , . . . , vi�

}) by K(vi1 , vi2 , . . . , vi�
). Given sets of participants

A,B1, . . . , B� ⊆ V , and vectors of shares KBi ∈ K(Bi) for 1 ≤ i ≤ �, we
also denote K(A|KB1 , . . . ,KB�

) as the set of vectors of shares the (ordered)
set of participants A can receive given that the participants of Bi received the
shares KBi for 1 ≤ i ≤ �. Given two sets of participants A,B ⊆ V , and a set
XB ⊆ K(B) we denote K(A|XB) def=

⋃
KB∈XB

K(A|KB).

On Matroids and Non-ideal Secret Sharing 487

2.1 Matroids

A matroid is an axiomatic abstraction of linear independence. There are sev-
eral equivalent axiomatic systems to describe matroids: by independent sets, by
bases, by the rank function, or, as done here, by circuits. For more background
on matroid theory the reader is referred to [47, 36].

Definition 3 (Matroid). A matroid M = 〈V, C〉 is a finite set V and a collec-
tion C of subsets of V that satisfy the following three axioms: (C0) ∅ /∈ C. (C1)
If X �= Y and X,Y ∈ C, then X � Y . (C2) If C1, C2 are distinct members of C
and x ∈ C1 ∩ C2, then there exists C3 ∈ C such that C3 ⊆ (C1 ∪ C2) \ {x}. The
elements of V are called points, or simply elements, and the subsets in C are
called circuits.

For example, let G = (V,E) be an undirected graph and C be the collection of
simple cycles in G. Then, (E, C) is a matroid.

Definition 4. A subset of V is dependent in a matroid M if it contains a
circuit. If a subset is not dependent, it is independent. The rank of a subset
A ⊆ V , denoted rank(A), is the size of a maximal independent subset of A. A
matroid is connected if for every pair of elements x, y there is a circuit containing
x and y.

The following lemma shows that a stronger statement than (C2) can be made
about the circuits of a matroid. Its proof can be found, e.g., in [47, 36].

Lemma 1. If C1, C2 are distinct members of C and x ∈ C1 ∩ C2, then for
any element y ∈ C1 � C2 there exists C3 ∈ C such that y ∈ C3 and C3 ⊆
(C1 ∪ C2) \ {x}.

The following lemma, whose proof can be found in [47, 36], states that if a
matroid is connected then the set of circuits through a fixed point uniquely
determines the matroid.

Lemma 2. Let e be an element of a connected matroid M and let Ce be the set
of circuits of M that contain e. For C1, C2 ∈ Ce define:

Ie(C1, C2)
def=

⋂
{C3 : C3 ∈ Ce, C3 ⊆ C1 ∪C2}

and
De(C1, C2)

def= (C1 ∪ C2) \ Ie(C1, C2).

Then, all of the circuits of M that do not contain e are the minimal sets of the
form De(C1, C2) where C1 and C2 are distinct circuits in Ce.

2.2 Matroids and Secret Sharing

We next define the access structures induced by matroids. This definition is used
to give a necessary condition for ideal access structures.

488 A. Beimel and N. Livne

Definition 5. Let M = 〈V, C〉 be a matroid and p0 ∈ V . The induced access
structure of M with respect to p0 is the access structure A on P = V \ {p0},
where

A def= {A : there exists C0 ∈ C such that p0 ∈ C0 and C0 \ {p0} ⊆ A} .

That is, a set is a minterm of A if by adding p0 to it, it becomes a circuit of M.
We think of p0 as the dealer. We say that an access structure is induced from
M, if it is obtained by setting some arbitrary element of M as the dealer. In
this case, we say that M is the appropriate matroid of A.

If a connected access structure has an appropriate matroid, then this matroid
is also connected. Thus, by Lemma 2, if a connected access structure has an
appropriate matroid, then this matroid is unique. Of course, not every access
structure has an appropriate matroid.

We now quote some results concerning weak secret sharing schemes. Since
every secret sharing scheme is, in particular, a weak secret sharing scheme, these
results hold for the regular case as well. The following fundamental result, which
is proved in [11], connects matroids and secret sharing schemes.

Theorem 1 ([11]). If an access structure is weakly ideal, then it has an appro-
priate matroid.

The following result, which is implicit in [11], shows the connection between the
rank function of the appropriate matroid and the size of the domain of shares of
sets of participants.

Lemma 3 ([11]). Assume that the access structure A ⊆ 2P is weakly ideal, and
let 〈P ∪ {p0} , C〉 be its appropriate matroid where p0 /∈ P . Let M be an ideal
weak secret sharing scheme realizing A with domain of secrets (and shares) K.
Then |K(X)| = |K|rank(X) for any X ⊆ P ∪ {p0}, where rank(X) is the rank of
X in the matroid.

Remark 1. A corollary of Lemma 3 is that M can realize a secret sharing scheme
for any access structure induced from M (i.e., with every element set as the
dealer).

Example 2. Consider the threshold access structure At and Shamir’s scheme [40]
realizing it (see Example 1). The appropriate matroid of At is the matroid with
n+1 points, whose circuits are the sets of size t+1 and rank(X) = min {|X |, t}.
Since every t points determine a unique polynomial of degree t− 1, in Shamir’s
scheme |K(X)| = |K|min{|X|,t}, as implied by Lemma 3.

3 Secret Sharing Schemes Realizing Matroid-Induced
Access Structures

We now prove some lemmas concerning weak secret sharing schemes and matroid-
induced access structures with arbitrary size of shares domain. The next lemma
gives a lower bound on the size of the shares of certain subsets of participants.
This lemma holds for every access structure.

On Matroids and Non-ideal Secret Sharing 489

Lemma 4. Let A ⊆ 2P be an access structure, A,B ⊆ P , and b ∈ B \ A
such that A ∪ B ∈ A and A ∪ B \ {b} /∈ A. Denote the dealer p0 and define
K

def= K(p0) (that is, K is the domain of secrets). Then, |K(b|KA)| ≥ |K| for
any KA ∈ K(A).

Proof. Since A ∪B \ {b} /∈ A, by the privacy requirement, for any KA∪B\{b} ∈
K(A ∪B \ {b}),

K(p0|KA∪B\{b}) = K. (1)

Since A ∪ B is authorized, by the correctness requirement, for any KA∪B ∈
K(A ∪B),

|K(p0|KA∪B)| = 1. (2)

Furthermore, K(p0|KA∪B\{b}) =
⋃

Kb∈K(b|KA∪B\{b})K(p0|KA∪B\{b},Kb) for
any KA∪B\{b} ∈ K(A∪B \ {b}). Since, by (2), every set in this union is of size
one, and since, by (1), the size of the union is |K|, there are at least |K| sets in
the union. Hence |K(b|KA∪B\{b})| ≥ |K|. Define KA as the restrictions of the
vector KA∪B\{b} to the set A. Since K(b|KA∪B\{b}) ⊆ K(b|KA), the lemma
follows. ��

Lemma 5. Let M = 〈P ∪ {p0} , C〉 be the appropriate matroid of an access
structure A ⊆ 2P , and let C ∈ C such that p0 ∈ C. Let A ⊆ P ∪ {p0} and
D ⊆ P such that A ∩D = ∅. If A ∪D � C, then |K(A|KD)| ≥ |K||A| for every
KD ∈ K(D).

Proof. We will prove the lemma by induction on |A|. If |A| = 0, the claim is
trivial. For the induction step, let a ∈ A. Since A∪D � C, we have A∪D\{a} �
C. By the induction hypothesis, |K(A \ {a} |KD)| ≥ |K||A|−1. Therefore, it is
sufficient to prove that |K(A|KD)| ≥ |K||K(A \ {a} |KD)| for some a ∈ A. If
p0 ∈ A, then we choose a = p0. Note that A ∪D \ {p0} is unauthorized. If this
is not the case, then A ∪D contains a circuit C0 which contains p0. But since
A ∪ D is properly contained in C, it follows that C0 is properly contained in
C, a contradiction to Axiom (C1) of the matroids. Now since A ∪ D \ {p0} is
unauthorized, by the privacy requirement, |K(p0|KA\{p0},KD)| = |K| for any
KA\{p0} ∈ K(A \ {p0}). Therefore, |K(A|KD)| = |K||K(A \ {a} |KD)|, which
concludes this case.

If p0 /∈ A, then we choose an arbitrary a ∈ A. Now A∪D\{a} is unauthorized.
Otherwise (A∪D\{a})∪{p0} contains a circuit C0 which contains p0. But since
A∪D is properly contained in C, it follows that C0 is properly contained in C, a
contradiction. Moreover, A∪D ⊆ C \{p0}, and C \{p0} is authorized. Therefore,
by Lemma 4, |K(a|KA\{a},KD)| ≥ |K| for any KA\{a} ∈ K(A\ {a}). It follows
that |K(A)| ≥ |K||K(A \ {a} |KD)|, which concludes the proof. ��

In the ideal case, by Lemma 3 we have an upper bound on the share domain of
every subset of participants that form a circuit in the appropriate matroid. In
the non-ideal case we cannot apply Lemma 3. Lemma 6 will be used to overcome
this difficulty. To prove Lemma 6, we need the following claim.

490 A. Beimel and N. Livne

Claim. Let N and K be 2 finite sets, where |N | = m, |K| = k, and m ≥ k. Let
f1, f2 be functions from a subset of N onto K. Then

| {〈x1, x2〉 : x1, x2 ∈ N, f1(x1) = f2(x2)} | ≤ k − 1 + (m− k + 1)2.

Proof. Without loss of generality, assume K = {1, 2, . . . , k}. For 1 ≤ i ≤ k define
ai

def= |f−1
1 (i)| and bi

def= |f−1
2 (i)|. Then

∑
1≤i≤k ai ≤ m and

∑
1≤i≤k bi ≤ m, since

both these sums are the size of the domains of the functions. Moreover, since
both these functions are onto K, we have ai ≥ 1 and bi ≥ 1 for all 1 ≤ i ≤ k.
Thus, 1 ≤ ai ≤ m − k + 1 and 1 ≤ bi ≤ m − k + 1 for every 1 ≤ i ≤ k. From
the definitions | {〈x1, x2〉 : x1, x2 ∈ N, f1(x1) = f2(x2)} | =

∑
1≤i≤k aibi. Assume

without loss of generality that a1 is maximal in a1, a2, . . . , ak. Then

k∑
i=1

aibi ≤
k∑

i=1

(ai + a1(bi − 1)) ≤ a1(m− k) +m ≤ k − 1 + (m− k + 1)2.

��
We note that this claim is tight as shown in the following simple example: f1(i) =
f2(i) = i for 1 ≤ i ≤ k and f1(i) = f2(i) = 1 for k + 1 ≤ i ≤ m.

Lemma 6. Let A be an access structure, and denote the dealer by p0. Let A ⊆ P
and b1, b2 ∈ P such that A /∈ A, A ∪ {b1} ∈ A, and A ∪ {b2} ∈ A. Consider a
weak secret sharing scheme realizing A in which the size of the domain of the
secret is k, and the size of the domain of the shares of each participant is bounded
by m. Then |K(b1, b2|KA)| ≤ k − 1 + (m− k + 1)2 for any KA ∈ K(A).

Proof. Fix some KA ∈ K(A). Since A ∪ {b1} ∈ A, given KA, any Kb1 ∈
K(b1|KA) determines the secret. Moreover, since A /∈ A, given KA any value
of the secret is possible. Therefore, KA induces a function from K(b1|KA) onto
K(p0). Formally, the set of 2-vectors K(b1, p0|KA) viewed as a set of ordered
pairs form a function with K(b1|KA) as its domain and K(p0) as its image.
Denote this function by f1. Similarly KA also induces a function from K(b2|KA)
onto K(p0). Denote this function by f2.

Given KA, consider any 〈x1, x2〉 ∈ K(b1, b2|KA). There is a row r in M that
gives to the participants in A the values in KA, and to b1, b2 the values x1, x2
respectively. However,Mr,p0 = f1(x1) = f2(x2). Informally, given KA, the shares
x1 and x2 must “agree” on the secret. Thus, f1(x1) = f2(x2) for every 〈x1, x2〉 ∈
K(b1, b2|KA). Since both f1 and f2 are onto K(p0), and since the domain of
both functions is bounded by m, Claim 3 implies that |K(b1, b2|KA)| ≤ k− 1 +
(m− k + 1)2. ��

4 Secret Sharing and the Vamos Matroid

In this section we prove lower bounds on the size of shares in secret sharing
schemes realizing an access structure induced by the Vamos matroid. The Vamos
matroid [46] is the smallest known matroid that is non-representable over any
field, and is also non-algebraic (for more details on these notions see [47, 36]).

On Matroids and Non-ideal Secret Sharing 491

Definition 6 (The Vamos Matroid). The Vamos matroid V is defined on
the set V = {v1, v2, . . . , v8}, and its independent sets are all the sets of cardi-
nality ≤ 4 except for five, namely {v1, v2, v3, v4}, {v1, v2, v5, v6}, {v3, v4, v5, v6},
{v3, v4, v7, v8}, and {v5, v6, v7, v8}.

Note that these 5 sets are all the unions of two pairs from {v1, v2}, {v3, v4},
{v5, v6}, and {v7, v8}, excluding {v1, v2, v7, v8}. The five sets listed in Defini-
tion 6 are circuits, a fact that will be used later. Seymour [39] proved that any
access structure induced by the Vamos matroid is non-ideal. In this section we
strengthen this result.

Definition 7 (The Access Structure V8). The access structure V8 is the
access structure induced by the Vamos matroid with respect to v8.1 That is, in
this access structure, a set of participants is a minterm, if this set together with
v8 is a circuit in V.

Example 3. We next give examples of authorized and non-authorized sets in V8.
The set {v3, v4, v7} is authorized, since {v3, v4, v7, v8} is a circuit. The circuit
{v1, v2, v3, v4} is unauthorized, since the set {v1, v2, v3, v4, v8} does not contain
a circuit that contains v8. To check this, we first note that this 5-set itself cannot
be a circuit, since it contains the circuit {v1, v2, v3, v4}. Second, the only circuit
it contains is {v1, v2, v3, v4}, which does not contain v8. The set {v1, v2, v3, v4, v5}
is authorized, since {v1, v2, v3, v5, v8} is a circuit (as well as {v1, v2, v4, v5, v8},
{v1, v3, v4, v5, v8}, and {v2, v3, v4, v5, v8}).

For a given secret sharing scheme realizing V8, assume |K(v8)| = k, and |K(vi)| ≤
m for 1 ≤ i ≤ 7, i.e., the size of the domain of the secrets is k and the
size of the domain of the shares of each participant is upper bounded by m.
By [26], for every secret sharing scheme, the size of the domain of shares of
each non-redundant participant is at least the size of the domain of secrets,
that is, m ≥ k. Seymour [39] proved that the Vamos access structure is not
ideal, that is, m ≥ k + 1. We next strengthen this result. To achieve the
lower bound on m here, we fix an arbitrary 〈x1, x2〉 ∈ K(v1, v2) and calcu-
late an upper bound on the size of K(v7, v8|x1, x2) as a function of m and k. By
Lemma 5 the size of this set is at least k2, and thus, we achieve a lower bound
on m.

Fix some arbitrary 〈x1, x2〉 ∈ K(v1, v2), and define A def= K(v5, v6|x1, x2) (see
Fig. 1). Our goal is to count the possible shares {v7, v8} can receive given 〈x1, x2〉.
We upper bound this value by considering all the possible shares {v5, v6} can
receive given 〈x1, x2〉 (namely, the set A), and considering the union of all the
sets K(v7, v8|y5, y6) for all the vectors 〈y5, y6〉 in A. We first bound the size
of A.

1 There are two non-isomorphic access structures induced by the Vamos matroid. The
access structure V8 is isomorphic to the access structure obtained by setting v1, v2,
or v7 as the dealer. The other access structure is obtained by setting v3, v4, v5, or v6

as the dealer.

492 A. Beimel and N. Livne

(x3, x4)

K(v1, v2)

(x1, x2)

K(v3, v4)

B

A

K(v7, v8)

E

D

C

K(v5, v6)

Fig. 1. Sets in the proof of Theorem 2. Circles denote sets, and points denote elements
in the sets. Two elements are connected if they coincide. A line connects an element
and a subset, if the subset is the set of all elements that coincide with the element. For
example, 〈x1, x2〉 and A are connected with lines because A is the set of elements in
K(v5, v6) that can coincide with 〈x1, x2〉.

Lemma 7. |A| ≤ mk−1+(m−k+1)2

k .

Proof. Fix an arbitrary x3 ∈ K(v3|x1, x2). The set {v1, v2, v3} is unautho-
rized (since {v1, v2, v3, v8} is independent). Since {v1, v2, v3, v5, v8} is a circuit,
{v1, v2, v3, v5} is authorized. Similarly, the set {v1, v2, v3, v6} is authorized too.
Since |K(v5)| ≤ m, and |K(v6)| ≤ m, by Lemma 6,

|K(v5, v6|x1, x2, x3)| ≤ k − 1 + (m− k + 1)2. (3)

We now bound the size of K(v3, v5, v6|x1, x2). Notice that

K(v3, v5, v6|x1, x2) =
⋃

y3∈K(v3|x1,x2)

{〈y3, y5, y6〉 : 〈y5, y6〉 ∈ K(v5, v6|x1, x2, y3)} .

That is, we count all the y3’s that coincide with 〈x1, x2〉, and for each such y3
we count all the 〈y5, y6〉’s that coincide with 〈x1, x2, y3〉. Since (3) is true for any
y3 ∈ K(v3|x1, x2), the size of each set in the union is at most k−1+(m−k+1)2,
and since |K(v3|x1, x2)| ≤ |K(v3)| ≤ m, there are at most m sets in the union.
Therefore,

|K(v3, v5, v6|x1, x2)| ≤ m
(
k − 1 + (m− k + 1)2

)
. (4)

On the other hand,

K(v3, v5, v6|x1, x2) =
⋃

〈y5,y6〉∈A

{〈y3, y5, y6〉 : 〈y3〉 ∈ K(v3|x1, x2, y5, y6)} .

On Matroids and Non-ideal Secret Sharing 493

Since {v1, v2, v5, v6} is unauthorized, but {v1, v2, v3, v5, v6} is authorized, by
Lemma 4 each set in this union is of size at least k. Since all these sets are
disjoint, and by (4), there are at most m

k (k−1+(m−k+1)2) sets in this union.
We conclude that |A| ≤ m(k − 1 + (m− k + 1)2)/k. ��

In addition to x1, x2, fix an arbitrary vector 〈x3, x4〉 ∈ K(v3, v4|x1, x2). We
define, in addition to A, a set of vectors B def= K(v5, v6|x1, x2, x3, x4). That is,
the set A is the shares {v5, v6} can receive given 〈x1, x2〉, and B is the shares
{v5, v6} can receive given 〈x1, x2, x3, x4〉. Clearly B ⊆ A.

To count the vectors in K(v7, v8|A), we define two sets C def= K(v7, v8|B) =⋃
〈y5,y6〉∈B K(v7, v8|y5, y6), and D

def= K(v7, v8|A \B).

Lemma 8. |C| + |D| ≤ m− k2 +
(

k−1+(m−k+1)2

k

)
m2.

Proof. First we show that |C| ≤ |B|(m − k) + m. Define E def= K(v7, v8|x3, x4).
Informally, we will show that E is small and for any 〈y5, y6〉 ∈ B the set E
contains a large portion of K(v7, v8|y5, y6).

Since {v3, v4, v7} is authorized and by the correctness requirement, given
〈x3, x4〉 any y7 ∈ K(v7|x3, x4) determines the secret, therefore

|E| = |K(v7, v8|x3, x4)| = |K(v7|x3, x4)| ≤ |K(v7)| ≤ m. (5)

Since {v3, v4, v5, v6} is unauthorized, for any 〈y5, y6〉 ∈ K(v5, v6|x3, x4), and in
particular for any 〈y5, y6〉 ∈ B, we have |K(v8|x3, x4, y5, y6)| = k. Therefore,

|K(v7, v8|x3, x4, y5, y6)| ≥ k

for any 〈y5, y6〉∈B. Clearly,K(v7, v8|x3, x4, y5, y6) ⊆ E for any 〈y5, y6〉∈B. Since
K(v7, v8|x3, x4, y5, y6)⊆K(v7, v8|y5, y6) we conclude that for any 〈y5, y6〉∈B,

|K(v7, v8|y5, y6) ∩E| ≥ k. (6)

That is, given any 〈y5, y6〉 ∈ B, at least k elements from K(v7, v8|y5, y6) are in
E. We now upper bound the number of elements of K(v7, v8|y5, y6) not in E.
To do this, we bound the total number of elements in K(v7, v8|y5, y6) for any
〈y5, y6〉. Since {v5, v6, v7} is authorized, by the correctness requirement, given
〈y5, y6〉 any y7 ∈ K(v7|y5, y6) determines the secret, therefore for any 〈y5, y6〉 ∈
K(v5, v6|x1, x2),

|K(v7, v8|y5, y6)| = |K(v7|y5, y6)| ≤ |K(v7)| ≤ m. (7)

With (6), we conclude that for any 〈y5, y6〉 ∈ B,

|K(v7, v8|y5, y6) \ E| ≤ m− k. (8)

That is, given any 〈y5, y6〉 ∈ B, at most m − k elements from K(v7, v8|y5, y6)
are not in E. Thus, by (5),

|C| ≤ |E| + |B|(m− k) ≤ m+ |B|(m− k). (9)

494 A. Beimel and N. Livne

Furthermore, by (7), given any element in A \B, the number of possible shares
for {v7, v8} is at most m. Therefore,

|D| ≤ |A \B|m. (10)

Finally, since {v1, v2, v3, v4} is unauthorized, but {v1, v2, v3, v4, v5} is authorized,
by Lemma 4 we have |K(v5|x1, x2, x3, x4)| ≥ k, and therefore

|B| = |K(v5, v6|x1, x2, x3, x4)| ≥ |K(v5|x1, x2, x3, x4)| ≥ k. (11)

We now complete the proof of the lemma:

|C| + |D| ≤ m+ |B|(m− k) + |A \B|m = m− k|B| + |A|m

≤ m− k2 +
(
k − 1 + (m− k + 1)2

k

)
m2.

The first inequality follows (9) and (10). The equality is implied by the fact that
B ⊆ A. The last inequality follows (11) and Lemma 7. ��

Lemma 9. For every 〈x1, x2〉 ∈ K(v1, v2)

K(v7, v8|x1, x2) ≤ m− k2 +m2 k + (m− k + 1)2

k
.

Proof. We first show that K(v7, v8|x1, x2) ⊆ K(v7, v8|A). Take any 〈y7, y8〉 ∈
K(v7, v8|x1, x2). The vector 〈x1, x2, y7, y8〉 can be extended to a vector

〈x1, x2, y5, y6, y7, y8〉 ∈ K(v1, v2, v5, v6, v7, v8).

Thus, 〈y5, y6, y7, y8〉 ∈ K(v5, v6, v7, v8) and 〈y5, y6〉 ∈ K(v5, v6|x1, x2) = A, and
so 〈y7, y8〉 ∈ K(v7, v8|A). Consequently,

|K(v7, v8|x1, x2)| ≤ |K(v7, v8|A)| ≤ |C| + |D|

= m− k2 +m2 k − 1 + (m− k + 1)2

k

< m− k2 +m2 k + (m− k + 1)2

k
. ��

Theorem 2. For any 0 < λ < 1 there exists k0 ∈ N, such that for any secret
sharing scheme realizing V8, with the domain of the secret of size k > k0, the
size of at least one share domain is larger then k + λ

√
k.

Proof. Let 0 < λ < 1, and assume m ≤ k+λ
√
k. Since {v1, v2, v3, v7, v8} is a cir-

cuit in the Vamos matroid and {v1, v2, v7, v8} ⊆ {v1, v2, v3, v7, v8}, by Lemma 5,
|K(v7, v8|x1, x2)| ≥ k2 for every 〈x1, x2〉 ∈ K(v1, v2) in any secret sharing scheme
realizing V8. Combining this with Lemma 9, we have that if m is an upper bound
on the size of the domain of the shares, then the following inequality must hold:(

m− k2 +m2 k + (m− k + 1)2

k

)
≥ k2. (12)

On Matroids and Non-ideal Secret Sharing 495

Since the left side of Inequality (12) increases as m increases, and since m ≤
k + λ

√
k, we can substitute m with k + λ

√
k. After rearranging we have:

k2 ≤ k + λ
√
k − k2 + (k2 + λ2k + 2λk

√
k)
k + (λ

√
k + 1)2

k
= λ2k2 + pλ(k),

where pλ(k) is a polynomial of degree 1.5 in k. Thus, 1 − λ2 ≤ pλ(k)
k2 . Since

1 − λ2 > 0 and since limk→∞
pλ(k)

k2 = 0, we conclude that there exists some
k0 ∈ N, such that for any k ≥ k0, Inequality (12) does not hold. We conclude
that for any k ≥ k0, at least one participant must have domain of shares larger
than k + λ

√
k. ��

5 Upper and Lower Bounds for Matroid Induced Access
Structures

In this section we define secret sharing schemes using the entropy function,
as done in [26, 12], and then use some tools from information theory to prove
lower and upper bounds on sizes of shares’ domains of subsets of participants in
matroid induced access structures. The purpose of these lemmas is to generalize
Lemma 3 of [11] to non-ideal secret sharing schemes for matroid induced access
structures. These lemmas were not used in the proof of Theorem 2, but they
might be used to prove a stronger bound than the lower bound proved here. For
a review on the notions from information theory, see Appendix A. We start by
defining (strong) secret sharing schemes using the entropy function.

Definition 8 (Distribution Scheme). Let P be a set of participants, and
p0 /∈ P be a special participant called the dealer. Furthermore, let K be a fi-
nite set of secrets. A distribution scheme Σ with domain of secrets K is a pair
〈{M s}s∈K , {Πs}s∈K〉, where {M s}s∈K is a family of matrices whose columns
are indexed by P , and Πs is a probability distribution on the rows of M s for
each s ∈ K. When the dealer wants to distribute a secret s ∈ K, it chooses
according to the probability distribution Πs on M s, a row r ∈M s, and privately
communicates to each participant p ∈ P the value M s

r,p. We refer to M s
r,p as the

share of participant p.

Let A be an access structure whose set of participants is P , and denote the
dealer by p0. Assume that Σ is a distribution scheme for A. Any probability
distribution on the domain of secrets, together with the scheme Σ, induces a
probability distribution on K(A), for any subset A ⊆ P . We denote the random
variable taking values in K(A) according to this probability distribution by SA,
and denote the random variable taking values in K according to the probability
distribution on the secrets by S. Note that the random variable taking values in
K(A ∪B) can be written either as SA∪B or as SASB.

Definition 9 (Secret Sharing Scheme). A distribution scheme is a secret
sharing scheme realizing an access structure A if the following two requirements
hold:

496 A. Beimel and N. Livne

Correctness. The secret can be reconstructed by any authorized set.

A ∈ A =⇒ H(S|SA) = 0. (13)

Privacy. Every unauthorized set can learn nothing about the secret (in the
information theoretic sense) from its shares. Formally,

A /∈ A =⇒ H(S|SA) = H(S). (14)

5.1 Lower Bounds on the Entropy of Shares of Subsets

Let p0 ∈ V and let 〈V, C〉 be the appropriate matroid of an access structure
A ⊆ 2V \{p0}. In Theorem 3 we prove a lower bound on the entropy of the shares
of any subset of V . To prove Theorem 3 we prove two lemmas. The first lemma,
which generalizes Lemma 4, makes no use of the fact that A has an appropriate
matroid; it is proven for any access structure.

Lemma 10. Let A,B ⊆ V \ {p0} and b ∈ B \ A such that A ∪ B ∈ A and
A ∪B \ {b} /∈ A. Then, H(Sb|SA) ≥ H(S).

Proof.

H(Sb|SA) ≥ H(Sb|SASB\{b}) (from (21))
= H(S|SA∪B) +H(Sb|SA∪B\{b}) (since H(S|SA∪B) = 0 by (13))
= H(SbS|SA∪B\{b}) (from (22))
= H(Sb|SA∪B\{b}S) +H(S|SA∪B\{b}) (from (22))
≥ H(S) (from (19) and (14), and because A ∪B \ {b} /∈ A) ��

A consequence of Lemma 10 is that if I ⊆ A for a minterm A and i ∈ I,
then H(Si|SI\{i}) ≥ H(S). Combining this with (20), we get by induction that
H(SI) ≥ |I|H(S). We now generalize this claim for every independent set. We
next prove a lemma on matroids that will be used to prove this generalization.
The next lemma, intuitively, states that in every independent set of participants
there is a participant that is needed in order to reveal the secret. That is, there
is a minterm (minimal authorized set) such that omitting this participant from
the union of the independent set and the minterm results in an unauthorized
set. Define C0

def= {C ∈ C : p0 ∈ C}.

Lemma 11. For every independent set I ⊆ V \ {p0}, there exists i ∈ I and
C ∈ C0 such that i ∈ C and there is no C1 ∈ C0 such that C1 ⊆ C ∪ I \ {i}.

Proof. For every i ∈ I there exists a circuit C ∈ C0 such that i ∈ C (since M is
connected). Choose an i ∈ I and C ∈ C0 such that i ∈ C and for every C′ ∈ C0

I ∩ C′ �= ∅ =⇒ C′ \ I is not properly contained in C \ I. (15)

(Note that not necessarily every i can be chosen.) We claim that such i and
C satisfy the conditions of the lemma, namely, there is no C1 ∈ C0 such that

On Matroids and Non-ideal Secret Sharing 497

C1 ⊆ C ∪ I \ {i}. Assume towards contradiction that this is not the case, and
choose C1 ∈ C0 such that

C1 ⊆ C ∪ I \ {i} . (16)

We have C1 ∩ I �= ∅, otherwise C1 � C in a contradiction to Axiom (C1) of the
matroids. Therefore, by (15) and (16), C \I = C1 \I. Let c ∈ C \I = C1 \I. Such
c exists, otherwise we have C1 ⊆ I and so I is not independent. Since c ∈ C∩C1,
by Axiom (C2) there exists a circuit C2 ⊆ C ∪ C1 \ {c}. We have C2 ∩ I �= ∅
(otherwise C2 � C), and so p0 /∈ C2 (otherwise we have a contradiction to (15)),
and so p0 ∈ C \ C2. Moreover, C2 \ I �= ∅, otherwise C2 ⊆ I contradicting the
independence of I. So there exists c′ ∈ C2 \ I, where c′ �= c. Since C2 \ I ⊆ C \ I
we have that c′ ∈ C \ I, so c′ ∈ C2 ∩ C, and therefore there is a circuit C3 ∈ C0
such that C3 ⊆ C2 ∪ C \ {c′} (from Lemma 1). Since c′ ∈ C \ C3, we have
C3 \ I � C \ I. Moreover C3 ∩ I �= ∅ (otherwise C3 � C), and therefore C3 is a
contradiction to the minimality of C \ I (defined in (15)), so C and i satisfy the
conditions of the lemma. ��

Theorem 3. For every A ⊆ V,H(SA) ≥ rank(A)H(S).

Proof. From the definition of the rank function and (20), it is sufficient to show
that the statement holds for any independent set I ⊆ V . Since every subset of
an independent set in a matroid is independent, by induction, it is sufficient to
show that for every independent set I there exists i ∈ I such that H(SI) ≥
H(S) + H(SI\{i}). If p0 ∈ I then since I is independent it contains no circuit,
and particularly no circuit which contains p0. Therefore, I \ {p0} contains no
minterm, and we have I \ {p0} /∈ A. Now by (14) H(S|SI\{p0}) = H(S), and we
have H(SI) = H(S|SI\{p0}) +H(SI\{p0}) = H(S) +H(SI\{p0}). Otherwise, by
Lemma 11 for every independent set I ⊆ V \ {p0}, there exists i ∈ I and C ∈ C0
such that i ∈ C and there is no C1 ∈ C0 such that C1 ⊆ C∪I \{i}. Therefore, we
have I∪C\{i, p0} /∈ A, but I∪C\{p0} ∈ A, and so, by Lemma 10,H(Si|SI\{i}) ≥
H(S) and we have H(SI) = H(Si|SI\{i}) +H(SI\{i}) ≥ H(S) +H(SI\{i}). ��

5.2 Upper Bounds on the Entropy of Shares of Subsets

In Lemma 15 we prove an upper bound on the entropy of “the last element
of a circuit,” that is, we prove an upper bound on the entropy of an element
in a circuit, given the rest of the elements, and assuming an upper bound on
the entropy of the participants. This enables us to prove, in Theorem 4, upper
bounds on the entropy of shares of subsets. Let M and Σ be as above, and
assume that, for every v ∈ V \ {p0}, H(Sv) ≤ (1 + λ)H(S) for some λ ≥ 0.
Define C0

def= {C ∈ C : p0 ∈ C} as above. For lack of space, some proofs in this
section are omitted.

Lemma 12. For every C ∈ C0 and c ∈ C, H(Sc|SC\{c}) ≤ λH(S).

Lemma 13. For every C ∈ C \ C0 and c ∈ C, there exists C1, C2 ∈ C0 such that
C = Dp0(C1, C2), and c ∈ C1 \ C2 (where Dp0(C1, C2) is defined in Lemma 2).

498 A. Beimel and N. Livne

Proof. From Lemma 2 there are C1, C2 ∈ C0 such that C = Dp0(C1, C2). If
c ∈ C1 � C2 we are done. Otherwise, c ∈ C1 ∩ C2. By the definition of
Dp0(C1, C2), there must be some C3 ∈ C0 such that C3 ⊆ C1∪C2\{c} (otherwise
c ∈ Ip0 (C1, C2)), and so we have c ∈ C1\C3. We now prove that C = Dp0(C1, C3)
and this completes the proof. Notice that C1 ∪ C3 ⊆ C1 ∪ C2, from which
we get Ip0(C1, C2) ⊆ Ip0(C1, C3). Therefore, Dp0(C1, C3) ⊆ Dp0(C1, C2). By
Lemma 2, the circuits which do not contain p0 are the minimal sets of the
form Dp0(C1, C2) for all C1, C2 ∈ C0. Thus, since Dp0(C1, C2) is a circuit,
Dp0(C1, C3) = Dp0(C1, C2), and therefore C = Dp0(C1, C3) as desired. ��

Lemma 14. Let C = Dp0(C1, C2), and I = Ip0 (C1, C2) \ {p0}. Then,

H(SI |SC) ≥ |I|H(S).

Lemma 15. For every C ∈ C \ C0 such that C = Dp0(C1, C2), and c ∈ C such
that c ∈ C1 \ C2, H(Sc|SC\{c}) ≤ |Ip0(C1, C2)|λH(S). In particular, for every
C ∈ C \ C0 and c ∈ C, H(Sc|SC\{c}) ≤ nλH(S).

Theorem 4. Let M = 〈V, C〉 be a connected matroid where |V | = n+1, p0 ∈ V
and let A be the induced access structure of M with respect to p0. Furthermore,
let Σ be a secret sharing scheme realizing A, and let λ ≥ 0 be such that H(Sv) ≤
(1 + λ)H(S) for every v ∈ V \ {p0}. Then, for every A ⊆ V

H(SA) ≤ rank(A)(1 + λ)H(S) + (|A| − rank(A))λnH(S).

The previous theorem is useful only when λ ≤ 1/(n−1) (otherwise the bound
H(SA) ≤ |A|(1 + λ)H(S) is better). We next show how to apply these results
to the Vamos matroid, considered in Section 4. We then compare this bound to
the bound we achieve in Section 4.

Example 4. Consider a secret sharing scheme realizing the Vamos access struc-
ture V8. Recall that the set {v1, v2, v5, v6} is a circuit of the Vamos matroid.
By Theorem 4, H(S{v1,v2,v5,v6}) ≤ (3 + 10λ)H(S) (by using Lemma 15 we can
get a better dependence of λ). Since {v1, v2} is independent, by Theorem 3,
H(S{v1,v2}) ≥ 2H(S). Thus, by (20), H(S{v5,v6}|S{v1,v2}) = H(S{v1,v2,v5,v6}) −
H(S{v1,v2}) ≤ (1+10λ)H(S). Thus, there is a vector of shares 〈x1, x2〉 such that

H
(
S{v5,v6}|S{v1,v2} = 〈x1, x2〉

)
≤ (1 + 10λ)H(S).

Now, we consider a specific setting of the parameters. Let us assume that
there are k possible secrets distributed uniformly, and the size of the domain
of shares of each participant is at most 2k. Thus, H(S) = log k and, by (18),
H(Svi) ≤ log(2k) = H(S) + 1 = (1 + 1/ log k)H(S). Thus, there is a vector of
shares 〈x1, x2〉 such that H(S{v5,v6}|S{v1,v2} = 〈x1, x2〉) ≤ (1 + 10/ log k)H(S).
This should be compared to the bound of approximately 2H(S) we can achieve
by Lemma 7 and (18). Notice that in the proof of our main result we prove in
Lemma 7 an upper bound on the number of possible shares of {v5, v6} given a
vector of shares 〈x1, x2〉 of {v1, v2}. Here we give a better upper-bound on the
entropy of the shares of {v5, v6} given a vector of shares 〈x1, x2〉 of {v1, v2}.

On Matroids and Non-ideal Secret Sharing 499

We do not know how to use this better bound on the entropy in the proof of the
lower bound for the Vamos access structure.

Acknowledgment. We thank Enav Weinreb for very helpful discussions.

References

1. A. Beimel and B. Chor. Universally ideal secret sharing schemes. IEEE Trans. on
Information Theory, 40(3):786–794, 1994.

2. A. Beimel and Y. Ishai. On the power of nonlinear secret-sharing. SIAM Journal
on Discrete Mathematics, 19(1):258-280, 2005.

3. A. Beimel, T. Tassa, and E. Weinreb. Characterizing ideal weighted threshold
secret sharing. In TCC 2005, vol. 3378 of LNCS, pages 600–619. 2005.

4. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computations. In Proc. of the 20th STOC,
pages 1–10, 1988.

5. J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In
CRYPTO ’88, vol. 403 of LNCS, pages 27–35. 1990.

6. G. R. Blakley. Safeguarding cryptographic keys. In Proc. of the 1979 AFIPS
National Computer Conference, pages 313–317. 1979.

7. C. Blundo, A. De Santis, L. Gargano, and U. Vaccaro. On the information rate of
secret sharing schemes. Theoretical Computer Science, 154(2):283–306, 1996.

8. C. Blundo, A. De Santis, D. R. Stinson, and U. Vaccaro. Graph decomposition
and secret sharing schemes. J. of Cryptology, 8(1):39–64, 1995.

9. C. Blundo, A. De Santis, and A. Giorgio Gaggia. Probability of shares in secret
sharing schemes. Inform. Process. Lett., 72:169–175, 1999.

10. E. F. Brickell. Some ideal secret sharing schemes. Journal of Combin. Math. and
Combin. Comput., 6:105–113, 1989.

11. E. F. Brickell and D. M. Davenport. On the classification of ideal secret sharing
schemes. J. of Cryptology, 4(73):123–134, 1991.

12. R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro. On the size of shares
for secret sharing schemes. J. of Cryptology, 6(3):157–168, 1993.

13. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure pro-
tocols. In Proc. of the 20th STOC, pages 11–19, 1988.

14. T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley &
Sons, 1991.

15. R. Cramer, I. Damg̊ard, and U. Maurer. General secure multi-party computation
from any linear secret-sharing scheme. In EUROCRYPT 2000, vol. 1807 of LNCS,
pages 316–334. 2000.

16. R. Cramer, V. Daza, I. Gracia, J. Jimenez Urroz, G. Leander, J. Marti-Farre, and
C. Padro. On codes, matroids and secure multi-party computation from linear
secret sharing schemes. In CRYPTO 2005, vol. 3621 of LNCS, pages 327–343.
2005.

17. L. Csirmaz. The dealer’s random bits in perfect secret sharing schemes. Studia
Sci. Math. Hungar., 32(3–4):429–437, 1996.

18. L. Csirmaz. The size of a share must be large. J. of Cryptology, 10(4):223–231,
1997.

19. Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures.
In CRYPTO ’91, vol. 576 of LNCS, pages 457–469. 1992.

500 A. Beimel and N. Livne

20. M. van Dijk. On the information rate of perfect secret sharing schemes. Designs,
Codes and Cryptography, 6:143–169, 1995.

21. M. van Dijk. A linear construction of secret sharing schemes. Designs, Codes and
Cryptography, 12(2):161–201, 1997.

22. M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access
structure. In Proc. of Globecom 87, pages 99–102, 1987. Journal version: Multiple
assignment scheme for sharing secret. J. of Cryptology, 6(1):15-20, 1993.

23. W. Jackson and K. M. Martin. Perfect secret sharing schemes on five participants.
Designs, Codes and Cryptography, 9:267–286, 1996.

24. W. Jackson, K. M. Martin, and C. M. O’Keefe. Ideal secret sharing schemes with
multiple secrets. J. of Cryptology, 9(4):233–250, 1996.

25. M. Karchmer and A. Wigderson. On span programs. In Proc. of the 8th Structure
in Complexity Theory, pages 102–111, 1993.

26. E. D. Karnin, J. W. Greene, and M. E. Hellman. On secret sharing systems. IEEE
Trans. on Information Theory, 29(1):35–41, 1983.

27. K. Kurosawa, K. Okada, K. Sakano, W. Ogata, and S. Tsujii. Nonperfect secret
sharing schemes and matroids. In EUROCRYPT ’93, vol. 765 of LNCS, pages
126–141. 1994.

28. N. Livne. On matroids and non-ideal secret sharing. Master’s thesis, Ben-Gurion
University, Beer-Sheva, 2005.

29. J. Mart́ı-Farré and C. Padró. Secret sharing schemes on access structures with
intersection number equal to one. In SCN ’02, vol. 2576 of LNCS, pages 354–363.
2002.

30. J. Mart́ı-Farré and C. Padró. Secret sharing schemes with three or four minimal
qualified subsets. Designs, Codes and Cryptography, 34(1):17–34, 2005.

31. K. M. Martin. Discrete Structures in the Theory of Secret Sharing. PhD thesis,
University of London, 1991.

32. P. Morillo, C. Padró, G. Sáez, and J. L. Villar. Weighted threshold secret sharing
schemes. Inform. Process. Lett., 70(5):211–216, 1999.

33. M. Naor and A. Wool. Access control and signatures via quorum secret sharing.
IEEE Transactions on Parallel and Distributed Systems, 9(1):909–922, 1998.

34. S.-L. Ng. A representation of a family of secret sharing matroids. Designs, Codes
and Cryptography, 30(1):5–19, 2003.

35. S.-L. Ng and M. Walker. On the composition of matroids and ideal secret sharing
schemes. Designs, Codes and Cryptography, 24(1):49 – 67, 2001.

36. J. G. Oxley. Matroid Theory. Oxford University Press, 1992.
37. C. Padró and G. Sáez. Secret sharing schemes with bipartite access structure.

IEEE Trans. on Information Theory, 46:2596–2605, 2000.
38. M. O. Rabin. Randomized Byzantine generals. In Proc. of the 24th FOCS, pages

403–409, 1983.
39. P. D. Seymour. On secret-sharing matroids. J. of Combinatorial Theory, Series

B, 56:69–73, 1992.
40. A. Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.
41. G. J. Simmons, W. Jackson, and K. M. Martin. The geometry of shared secret

schemes. Bulletin of the ICA, 1:71–88, 1991.
42. J. Simonis and A. Ashikhmin. Almost affine codes. Designs, Codes and Cryptog-

raphy, 14(2):179–197, 1998.
43. D. R. Stinson. An explication of secret sharing schemes. Designs, Codes and

Cryptography, 2:357–390, 1992.
44. D. R. Stinson. Decomposition construction for secret sharing schemes. IEEE Trans.

on Information Theory, 40(1):118–125, 1994.

On Matroids and Non-ideal Secret Sharing 501

45. T. Tassa. Hierarchical threshold secret sharing. In TCC 2004, vol. 2951 of LNCS,
pages 473–490. 2004.

46. P. Vamos. On the representation of independence structures. Unpublished
manuscript, 1968.

47. D. J. A. Welsh. Matroid Theory. Academic press, London, 1976.

A Basic Definitions from Information Theory

We review here the basic concepts of Information Theory used in this paper.
For a complete treatment of this subject, see [14]. All the logarithms here are of
base 2.

Given a probability distribution {p(x)}x∈X on a finite set X , we define the
entropy of X , denoted H(X), as

H(X) def= −
∑

x∈X,p(x)>0

p(x) log p(x).

Given two sets X and Y and a joint probability distribution {p(x, y)}x∈X,y∈Y

on X × Y , we define the conditioned entropy of X given Y as

H(X |Y) def= −
∑

y∈Y,p(y)>0

∑
x∈X,p(x|y)>0

p(y)p(x|y) log p(x|y).

We also define the conditioned mutual information I(X ;Y |Z) between X and Y
given Z as

I(X ;Y |Z) def= H(X |Z) −H(X |Y Z). (17)

For convenience, in the following text, when dealing with the entropy function
XY will denote X ∪ Y . We will use the following properties of the entropy
function. Let X , Y , and Z be random variables, and |X | be the size of the
support of X (the number of values with probability greater than zero).

0 ≤ H(X) ≤ log |X | (18)

0 ≤ H(X |Y) ≤ H(X) (19)

H(Y) ≤ H(XY) = H(X |Y) +H(Y) ≤ H(X) +H(Y) (20)

H(X |Y) ≥ H(X |Y Z) (21)

H(XY |Z) = H(X |Y Z) +H(Y |Z) (22)

I(X ;Y |Z) = H(X |Z) −H(X |Y Z) = H(Y |Z) −H(Y |XZ) = I(Y ;X |Z) (23)

Secure Computation with Partial Message Loss�

Chiu-Yuen Koo

Dept. of Computer Science, University of Maryland, College Park, USA
cykoo@cs.umd.edu

Abstract. Existing communication models for multiparty computation
(MPC) either assume that all messages are delivered eventually or any
message can be lost. Under the former assumption, MPC protocols guar-
anteeing output delivery are known. However, this assumption may not
hold in some network settings like the Internet where messages can be lost
due to denial of service attack or heavy network congestion. On the other
hand, the latter assumption may be too conservative. Known MPC proto-
cols developed under this assumption have an undesirable feature: output
delivery is not guaranteed even only one party suffers message loss.

In this work, we propose a communication model which makes an
intermediate assumption on message delivery. In our model, there is a
common global clock and three types of parties: (i) Corrupted parties
(ii) Honest parties with connection problems (where message delivery is
never guaranteed) (iii) Honest parties that can normally communicate
but may lose a small fraction of messages at each round due to transient
network problems. We define secure MPC under this model. Output de-
livery is guaranteed to type (ii) parties that do not abort and type (iii)
parties.

Let n be the total number of parties, ef and ec be upper bounds
on the number of corrupted parties and type (ii) parties respectively.
We construct a secure MPC protocol for n > 4ef + 3ec. Protocols for
broadcast and verifiable secret sharing are constructed along the way.

1 Introduction

The study of secure multiparty computation (MPC) was initiated by Yao[26] in
the 2-party setting and extended to the multiparty setting by Goldreich, Micali
and Wigderson[16]. Roughly speaking, a set of n parties wants to jointly compute
a function g of their (private) inputs. However, up to t of them are corrupted by an
adversary. The requirements are that (i) non-corrupted parties obtain their out-
puts and (ii) the adversary learns nothing but the outputs of the corrupted parties.

Several communication models are considered in the current body of work,
giving rise to different feasibility results, as follows.

1. Common global clock and message delivery within bounded time: This is the
synchronous model. Protocol execution consists of rounds. It is assumed that
the duration of one round is sufficient for a message to be sent and delivered
from one party to another.

� Supported by NSF Trusted Computing grant #0310751.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 502–521, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Secure Computation with Partial Message Loss 503

If t < n/3, then information-theoretically secure MPC protocols exist[3, 11]
in a point-to-point network. If we assume the existence of a broadcast chan-
nel, then information-theoretically secure MPC protocols exist for t <
n/2[22, 12, 1].

If the definition of secure MPC is relaxed such that non-corrupted parties
are not guaranteed to receive their outputs (i.e., without guarantee on output
delivery), then computationally secure MPC protocols exist[16, 17] for any
t < n.

2. Eventual message delivery without bound on delivery time: This is the asyn-
chronous model with eventual message delivery assumption. There is no
assumed bound on the network latency. Under this communication model,
information-theoretically secure MPC protocols exist for t < n/3[2, 4, 7].1

3. No eventual message delivery: This is known as the ”message blocking”
model and is the communication model considered in [8, 10]. There is no as-
sumed bound on the network latency and any message can be lost. Assuming
a common reference string, an Universally Composable[8] secure multiparty
computation protocol (without guarantee on output delivery) exists for any
t < n in the computational setting[10].

4. Local clock with bounded drift and message delivery within bounded time:
This is the timing model considered in [18]. It is assumed that the local
clocks of the parties proceed at the same rate and an upper bound is known
on the network latency. Under this model, an universally composable secure
multiparty computation protocol (without guarantee on output delivery)
exists for any t < n in the computational setting[18]. It is worth mentioning
that the security of the protocol holds as long as the assumption about local
clocks holds. The network latency assumption is used to ensure non-triviality
of the protocol.

We note that the results mentioned in models 1-3 hold for an adaptive adver-
sary while the result mentioned in model 4 holds for a static adversary.

1.1 Applicability of Existing Models to General Network Setting

We discuss whether the assumptions made in the existing models are applicable
to general network settings like the internet.

– Message delivery within bounded time: In a real network setting, an upper
bound on the network latency can be very large. Even worse, as noted in [18],
any reasonable bound is unlikely to hold, and hence the security of a proto-
col can be compromised. Consider the following scenario: n parties execute
the protocol by Ben-Or, Goldwasser and Wigderson[3] and the adversary
corrupts n/6+1 parties. In the first round, parties share their private inputs
using a (n/3+1)-out-n secret sharing scheme. Suppose an uncorrupted party

1 We note that this result cannot be translated to the synchronous model since the
definition of secure asynchronous computation is different from the synchronous
counterpart.

504 C.-Y. Koo

pi suffers network congestion: n/6 uncorrupted parties fail to receive their
shares of pi’s input in time. These n/6 uncorrupted parties will broadcast
complaints in the next round and pi will reveal the corresponding shares in
the round after the next round.2 The adversary will then have enough shares
to reconstruct the private input of pi.

– Eventual message delivery: This is a weaker assumption than the previous
one. Under this assumption, we can have secure MPC protocols that guar-
antee output delivery. However, given the current form of the internet, this
assumption may still be too strong. Messages sent to a party can be lost due
to denial of service(DoS) attack[19] or heavy network congestion.

– Messages can be blocked: Under the message blocking model, known MPC
protocols have an undesirable feature: output delivery cannot be guaranteed
when one party suffers message loss (even if all parties are honest). An
adversary can then have a simple strategy to prevent parties from receiving
the outputs: carrying out a denial of service attack on a chosen party.

The assumption that every message can be lost may be conservative.
Depending on the scenarios, it may be reasonable to assume a few, but not
many, parties suffer from from DoS attack or network congestion at the same
time.

In this work, we propose a communication model that is an intermediate be-
tween eventual message delivery model and message blocking model. Under this
model, we construct a secure multiparty computation protocol that guarantees
output delivery to all parties except those experience severe message loss.

1.2 Our Model

Three assumptions are made in our model:

1. A common global clock: Given the current state of art for modern network, we
believe it is reasonable to assume the existence of a common global clock3.
Protocol execution consists of rounds. Every party knows when a round
starts and ends.

2. Three type of parties: We assume that there are three types of parties in the
network:
– Corrupted parties who are controlled by an adversary.
– Honest parties with connection problems (where message delivery is

never guaranteed). An honest party that fails to contact the common
global clock belongs to this category.

– Honest parties that can normally communicate but at each round they
may fail to send/receive a small fraction of messages due to transient
network problems.

2 We remark that this is a simplification of what actually happens.
3 For instance, NIST has provided such a service: http://tf.nist.gov/timefreq/

service/its.htm?

Secure Computation with Partial Message Loss 505

From now on, we will address the second type of parties as constrained parties
and the third type of parties as fault-free parties. A constrained party does
not necessarily realize that it suffers from connection problem.

3. A time bound related to network latency: We assume that there is a time
bound Δ such that
– Duration of a round is equal to Δ.
– Any fault-free party p can successfully communicate with all but δ frac-

tion of fault-free parties in any round (i.e., message transmission from
it to another party takes time less than Δ and vice versa). The set of
fault-free parties p can communicate with may vary each round.

1.3 Discussions of Our Model and Related Works

The first assumption is also made in the synchronous model.
The second assumption is inspired by the previous work in distributed com-

puting. Thambidurai and Park[24], and independently Garay and Perry[14], in-
troduced the concept of hybrid failure model which allows a mix of different
degrees of failures. Our second assumption can be viewed as assuming a mix
of omission[21, 20] and Byzantine failures, which is a more general assumption
than the previous ones considered in the literature.

In [23, 25, 6], protocols for broadcast and consensus are considered in a com-
munication model where the edges can be faulty (in addition to faulty nodes).
In [9], Canetti, Halevi and Herzberg considered the problem of maintaining au-
thenticated communication over untrusted communication channels, where an
adversary can corrupt links for transient periods of time. In both lines of work,
there is a bound on the number of faulty links connected to an honest party. On
the other hand, our model captures the scenario when an honest party suffers
from arbitrary message loss.

We believe the third assumption is more realizable than assuming a time
bound on the maximum latency, and yet it is sufficient to guarantee output
delivery of fault-free parties.

If constrained parties are absent, then our model is reduced to the standard
synchronous model. On the other hand, if fault-free parties are absent, then our
model can be viewed as a message blocking model with time-out.

1.4 Our Results

We define secure multiparty computation under our communication model. We
defer the formal definition to the next section, but roughly speaking, we require
the followings: (i) the fault-free parties always receive their outputs; (ii) if a
constrained party does not realize that it suffers from connection problems, then
it will receive its output, otherwise, it aborts; (iii) the adversary learns nothing
but the outputs of the corrupted parties.

We consider an adaptive, rushing adversary. The adversary is adaptive in the
sense that in any round, it can turn a fault-free party into a constrained party
or into a corrupted party. In each round, the adversary has the power to decide

506 C.-Y. Koo

the set of messages a constrained party can receive/send and the set of parties a
fault-free party can communicate with (subject to the δ constraint). We assume
each pair of parties is connected by a secure channel.

Let ef be an upper bound on the number of corrupted parties; ec be an upper
bound on the number of constrained parties; n be the total number of parties.
For δ < 1

6 , we construct an information-theoretically secure MPC protocol for
n > 4ef +3ec. We define broadcast and verifiable secret sharing (VSS) under the
new communication model along the way. The results are as follows (all results
hold for δ < 1

6):

– A broadcast protocol for n > 3ef + 2ec; we also have a different broadcast
protocol for n ≥ 3ef + 2ec if it is known that ef , ec ≥ 1.

– A VSS protocol for n > 4ef + 3ec.

2 Notations, Definitions and Overview

2.1 Notations

We use two special symbols φ and ⊥ in the paper. φ is a special symbol denoting
the failure of receiving a valid message. During a protocol execution, if a party
pr fails to receive a valid message from another party ps, then we say pr receives
φ. If pr is not a corrupted parties and pr receives φ from ps, assuming δ = 0,
then one of the followings must hold:

1. ps is a corrupted party while pr is a fault-free party or a constrained party.
2. ps is a constrained party while pr is a fault-free party or a constrained party.
3. ps is a fault-free party while pr is a constrained party.

If δ > 0, then it is possible that both ps and pr are fault-free parties and yet
pr receives φ from ps.

⊥ is a special symbol denoting abortion. In any (sub-)protocol execution, if
a party outputs ⊥, then the party aborts the entire execution at that point. We
also assume that a constrained party outputs ⊥ if it fails to contact the common
global clock. Our protocols are designed in such a way that only a constrained
party will output ⊥. For clarity, when we refer to an uncorrupted party pi in
our proofs, unless otherwise specified, we implicitly assume that pi is a fault-free
party or a constrained party who has not aborted at that point (i.e., we do not
consider a constrained party that has already aborted).

2.2 Definition of Secure Computation

We define the secure multiparty computation using the ideal/real world paradigm.
We assume the function g is defined in a way such that if the input of an party
is φ, then the evaluation of g does not depend on the input of that party and
the corresponding output for that party is ⊥. We also assume that if the output
of a party is not equal to ⊥, then its output contains the set of parties which
input φ. As a warm-up, we will start with the case of a non-adaptive adversary.

Secure Computation with Partial Message Loss 507

The Non-adaptive Case

Ideal world: In the ideal world, there is a trusted party (TP) which carries out
the evaluation of the function g. The evaluation consists of the following steps:

1. The adversary chooses a set of corrupted parties Pf , modifies their inputs
(which can become φ) and sends them to the trusted party; the adversary
chooses three sets of constrained parties Pc1 , Pc2 and Pc3;4 the trusted party
receives the private inputs from parties that are not in Pf ∪Pc1 ; the trusted
party receives φ as the input from the constrained parties in Pc1.

2. The trusted party evaluates g. Let Pφ be the set of parties which send φ to
the trusted party.

3. The adversary receives the outputs of the parties in Pf ; parties in Pc1 ∪Pc2

receive ⊥; other parties receive their outputs (note that the outputs contain
the set Pφ).

Real world: In the real world, the parties execute a protocol Π to evaluate g.
Corrupted parties may deviate from the protocol in an arbitrary manner. Mes-
sages delivery are controlled by the adversary, subject to the constraints in our
communication model.

At the end of the protocol execution, the fault-free parties and the constrained
parties output their outputs from Π ; the real-world adversary generates an
output (which can depend on the information it gathers during the execution
of Π).

We say a protocol Π is a secure multiparty computation protocol if the follow-
ing holds: for every real world adversary A, there exists an ideal world adversary
I with the same set of corrupted parties and same set of constrained parties such
that (1) and (2) are indistinguishable:

1. The output of I and the outputs of fault-free parties and constrained parties
in the ideal world.

2. The output of A and the outputs of fault-free parties and constrained parties
in the real world.

The Adaptive Case. The only difference between this case and the non-
adaptive case is the definition of the ideal world. In the ideal world,

1. The adversary chooses a set of corrupted parties Pf1 (in an adaptive man-
ner), modifies their inputs (which can become φ) and sends them to the
trusted party; the adversary chooses a set of constrained parties Pc1 ; the
trusted party receives the private inputs from parties that are not in Pf1 ∪
Pc1 ; the trusted party receives φ as the input from the constrained parties
in Pc1 .

2. The trusted party evaluates g. Let Pφ be the set of parties who send φ to
the trusted party.

4 A constrained party in Pc3 is not distinguishable from a fault-free party in the ideal
world, the set Pc3 is defined due to a subtle technical point.

508 C.-Y. Koo

3. The adversary receives the outputs of the parties in Pf1 ; depending on the
outputs it received, the adversary can (adaptively) choose to corrupt a new
set of parties Pf2 and obtain their outputs; the adversary then chooses two
sets of constrained parties Pc2 and Pc3 ; parties in Pc1 and Pc2 receive ⊥;
other uncorrupted parties receive their outputs.

At the end, the fault-free parties and the constrained parties output what
they receive from the trusted party; the ideal-world adversary generates an
output.

2.3 Overview

In section 5, we construct a MPC protocol for n > 4ef + 3ec which uses broad-
cast(section 3) and VSS(section 4) as sub-protocols. We note that we assume
δ = 0(i.e. a fault-free party can always successfully receive messages from other
fault-free parties) in sections 3, 4 and 5. In section 6, we discuss how to extend
our results to the case of δ < 1

6 . In section 7, we conclude and state some open
problems.

3 Broadcast

3.1 Definitions

In broadcast, there is a distinguished sender ps with input v. We can define
broadcast using the ideal/real world paradigm by specifying the ideal world as
follows:

1. The adversary chooses a set of corrupted parties Pf and a set of constrained
parties Pc.
– If ps ∈ Pf , then the adversary obtains the value v and ps sends a possibly

modified value v′ (v′ can be equal to φ) to the trusted party.
– If ps ∈ Pc, then the adversary sends a flag b to ps; if b is equal to true,

then ps sends v to the trusted party else ps sends φ.
– If ps /∈ Pf ∩ Pc, then ps sends v to the trusted party.

2. The trusted party sends the value it received from ps to all parties not in
Pc; it sends φ to all parties in Pc.

However, the above definition is an overkill for our application (as a building
block for VSS and MPC). If ps is a constrained party and it fails to broadcast
the message (i.e., ps receives b = false from the adversary and the honest parties
receive φ), then the adversary should obtain no knowledge about the message.
We need some kind of secret sharing to achieve this in the real world. However,
our intention is to construct a VSS protocol using broadcast, not the other way
round! To solve this dilemma, we observe that in our applications of broadcast,
privacy is not an issue. In more details, what we need are as follows:

– If the sender is corrupted, then all fault-free parties receive the same value
v′ (v′ can be equal to φ). A constrained party should receive v′ or φ.

Secure Computation with Partial Message Loss 509

– If the sender is constrained, then all fault-free parties receive the same value
v′ (v′ has to be equal to v or φ). A constrained party should receive v′ or φ.

– If the sender is fault-free, then all fault-free parties receive the same value
v′ = v. A constrained party should receive v′ or φ.

It will ease the designing of the VSS protocol if we place a more stringent
requirement: if a constrained party does not receive v′, then it aborts (i.e. out-
putting ⊥).

More formally, we say broadcast is achieved if the followings hold:

– Agreement: If an uncorrupted party outputs v′(�=⊥)5, then all fault-free
parties output v′.

– Correctness: If the sender is uncorrupted and an uncorrupted party outputs
v′(�=⊥), then v′ = v or v′ = φ. If the sender is fault-free, then all fault-free
parties output v.

If the sender is constrained, it is possible that all fault-free parties output φ.
We assume a constrained sender will abort if it outputs φ in the broadcast pro-
tocol. We reduce the broadcast problem to the consensus problem. In consensus,
every party pi has an input vi. Consensus is achieved if the followings hold:

– Agreement: All fault-free parties output a common value v. A constrained
party either outputs v or ⊥(abort).

– Persistence: If all fault-free parties have the same input v′, then v = v′.

For the rest of the section, we focus on the case where the domain of values
is restricted to {0,1}. It is easy to see that if we have a broadcast protocol for a
single bit, then we can have broadcast protocol for a �-bit string by running the
bit-protocol �-times sequentially. For a bit b, we denote its complement by b̄.

3.2 Reducing Broadcast to Consensus

Under our communication model, broadcast cannot be achieved by simply hav-
ing the sender sending its value to all parties and then running the consensus
protocol. The problem is that the sender could be constrained and fault-free
parties may not receive the value from the sender. Nevertheless, we show the
following:

Lemma 1. Consensus implies broadcast.

Proof. We construct a broadcast protocol from any consensus protocol:

1. Sender ps sends the bit v to all parties. Let bi be the bit pi received from ps.
If pi does not receive anything from the sender, then sets bi = 0.

2. Parties execute the consensus protocol. Each party pi enters the protocol
with input bi and let b∗i be the output. If b∗i =⊥, then pi outputs ⊥ and
aborts.

5 v′ can be equal to φ.

510 C.-Y. Koo

3. If v = b∗s, then ps sends 1 to all parties; otherwise, ps does not send anything.
4. If pi receives 1 from the sender, then sets di = 1 else sets di = 0. Parties

execute the consensus protocol again. This time, pi enters the protocol with
input di and lets d∗i be the corresponding output. If d∗i = 1, then pi outputs
b∗i else if d∗i = 0, then pi outputs φ else pi outputs ⊥ (d∗i = φ for the last
case) .

The consensus protocol is run twice in the construction. Roughly speaking,
the first execution establishes a common value among the parties. However, if the
sender is constrained, then the established value may be different from v. The
second execution is to determine if the sender is ”happy” with the established
value. If the sender is not happy, then all parties output φ. The formal proof
proceeds as follows:

Agreement: (i) If an uncorrupted party outputs b /∈ {φ,⊥}, then by the agree-
ment property of consensus, d∗i = 1 and b∗i = b for all fault-free parties pi. Hence
all fault-free parties output b. (ii) If an uncorrupted party outputs φ, then d∗i = 0
for all fault-free parties pi. Hence all fault-free parties output φ.

Correctness: Consider two cases: (i) a fault-free sender and (ii) a constrained
sender. (i) If the sender is fault-free, then all fault-free parties receive v from the
sender in step 1. By the persistence property of consensus, all fault-free parties
have b∗i = v. Hence all fault-free parties pi receive 1 from the sender in step 3
and sets di = 1 in step 4. By the persistence property of consensus again, d∗i = 1.
Hence a fault-free party outputs v. (ii) If the sender ps is constrained, consider
two sub-cases: (a) b∗s = v (b) b∗s �= v. For case (a), a fault-free party pi may
or may not receive 1 from ps in step 3 and d∗i may equal to 0 or 1. However,
note that b∗i = b∗s = v. Therefore, pi either outputs v or φ. For case (b), ps does
not send anything in step 3. Hence all fault-free parties pi enter the consensus
protocol in step 4 with input di = 0. By the persistence property of consensus,
d∗i = 0. Therefore all uncorrupted parties output φ.

3.3 Consensus for n > 3ef + 2ec

Following the principle of Berman et al.[5], the construction of the consensus
protocol is done through constructing protocols for weaker consensus variants:
weak consensus, graded consensus, king consensus and then consensus. In all
these (sub-)protocols, we only need to know the number of fault-free parties
eff

def= n − ef − ec, but not ef and ec; moreover, we only require authenticate
(but not secure) point-to-point channels. For all these (sub-)protocols, pi has an
input bit and we denote it as bi.

Weak Consensus. We say weak consensus is achieved if the following two
conditions hold:

– Persistence: If all fault-free parties have the same input bit b, then all fault-
free parties output b.

– Agreement: If an uncorrupted party outputs b ∈ {0, 1}, then all uncorrupted
parties output b or 2.

Secure Computation with Partial Message Loss 511

Protocol WConsensus(pi,bi,eff)

1. pi sends bi to all parties.
2. Let X0

i and X1
i be the number of 0 and 1 received by pi respectively.

If X0
i ≥ eff , pi outputs 0, else if X1

i ≥ eff , pi outputs 1 else pi outputs 2.

Lemma 2. Protocol WConsensus achieves weak consensus for n > 3ef + 2ec.

Proof. Persistence: Note that eff >
n
2 . If all fault-free parties pi have the same

input bit b, then Xb
i ≥ eff and X b̄

i < eff . Hence pi will output b. Agreement:
Suppose there exists two uncorrupted parties pi and pj outputting 0 and 1
respectively. Then |X0

i ∩X1
j | ≥ eff − (ef + ec) = n − ef − ec − (ef + ec) > ef .

Therefore, there exists more than ef parties sending different bits to pi and pj

in round 1. This is a contradiction since there are at most ef corrupted parties.

Graded consensus. In graded consensus, every party pi outputs a bit along
with a grade gi. Graded consensus is achieved if the following three conditions
are satisfied:

– Persistence: If all fault-free parties have the same input bit b, then all fault-
free parties output b with g = 1.

– Agreement: If an uncorrupted party outputs b with g = 1, then all fault-free
parties output b, all constrained parties output b or ⊥.

– Completeness: No fault-free party outputs ⊥.

Protocol GConsensus(pi,bi, eff)

1. pi sends the output of WConsensus(pi, bi, eff) to all parties.
2. Let X0

i , X1
i and X2

i be the number of 0, 1 and 2 received by pi respectively.
If max {X0

i , X
1
i } +X2

i < eff , then pi outputs ⊥ and abort.
If X0

i ≥ eff , pi outputs 0 with gi = 1,
else if X1

i ≥ eff , pi outputs 1 with gi = 1,
else if X0

i > X1
i , pi outputs 1 with gi = 0,

else pi outputs 0 with gi = 0.

Lemma 3. Protocol GConsensus achieves graded consensus for n > 3ef + 2ec.

Proof. Persistence: If all fault-free parties have the same input bit b, then fol-
lowing the persistence property of weak consensus, they output the same bit b
in WConsensus. For a fault-free party pi, Xb

i ≥ eff and X b̄
i < eff . Therefore

pi outputs b with gi = 1. Agreement: If an uncorrupted party pi outputs b with
gi = 1, then Xb

i ≥ eff . Hence at least eff −ef uncorrupted parties have b as the
output of WConsensus. Following the agreement property of weak consensus, the
number of uncorrupted parties that output b̄ in WConsensus is equal to 0. By
counting, the number of uncorrupted parties that output 2 in WConsensus is at
most eff +ec−(eff −ef) = ec +ef . Assume on contrary that there exists an un-
corrupted party pj outputs b̄ in GConsensus. Then X b̄

j ≥ Xb
j . Note that all b̄ pj

received in step 1 are from corrupted parties. Therefore,X2
j ≤ ef +ec+(ef −X b̄

j).

512 C.-Y. Koo

(ef + ec corresponds to the number of 2 received due to uncorrupted parties;
ef −X b̄

j corresponds to the number of 2 received due to corrupted parties.) But
X b̄

j + X2
j ≤ X b̄

j + ef + ec + (ef −X b̄
j) = 2ef + ec < eff as n > 3ef + 2ec and

eff = n − ef − ec. Therefore, max {X0
j , X

1
j } + X2

j < eff , pj should output ⊥
instead. Contradiction. Completeness: By the agreement property of weak con-
sensus, for some bit b, each fault-free party has either b or 2 as the output of
WConsensus. Therefore, for a fault-free party pi, max{X0

i , X
1
i } + X2

i ≥ eff .
Hence no fault-free party outputs ⊥.

King Consensus. In king consensus, there is a designated party pk known as
the king. King consensus is achieved if the followings hold:

– Persistence: If all fault-free parties have the same input bit b, then all un-
corrupted parties that do not abort output b.

– Correctness: If the king pk is fault-free, then all uncorrupted parties that do
not abort output the same bit.

– Completeness: No fault-free party outputs ⊥.

Protocol KConsensuspk
(pi, bi, eff)

1. Let (vi, gi) be the output of GConsensus(pi, bi, eff). If (vi, gi) =⊥, then pi

outputs ⊥.
2. pk sends vk to all parties.
3. If (gi �= 1) and pi receives vk from pk and vk �= φ, then pi sets vi = vk.
4. Let (v′i, g

′
i) be the output of GConsensus(pi, vi, eff). pi outputs v′i.

Lemma 4. Protocol KConsensus achieves king consensus for n > 3ef + 2ec.

Proof. Persistence: If all fault-free parties have the same input bit b, then by
the persistence property of graded consensus, all fault-free parties pi have (b, 1)
as the output of the first execution of GConsensus, i.e., vi = b and gi = 1. Since
gi = 1, vi will not be modified in step 3. All fault-free parties enter the second
execution of GConsensus with the same input b. By the persistence and the
agreement properties of graded consensus, all uncorrupted parties output the
bit b in KConsensus. Correctness: Suppose pk is a fault-free party. Consider two
cases: (i) there exists a fault-free party pi with gi = 1 by the end of step 1. (ii)
all fault-free parties pi have gi = 0 by the end of step 1. For case (i), following
the agreement property of graded consensus, all fault-free parties pj (including
pk) have the same value for vj (i.e., vj = vi = vk) by the end of step 1. It
does not matter whether pj resets its value in step 3. For case (ii), all fault-free
parties pj receive vk from pk in step 3 and set vj = vk. Combining two cases, all
fault-free parties enter the second execution of GConsensus with the same input
vk. Following the persistence and agreement properties of graded consensus, all
uncorrupted parties output vk in KConsensus. Completeness: Completeness of
KConsensus follows the completeness of graded consensus since no fault-free
party will output ⊥ in the executions of GConsensus.

Secure Computation with Partial Message Loss 513

Consensus. We show how to construct a consensus protocol from a king con-
sensus protocol:

Procotol Consensus(pi, bi, eff)

1. Set b′i = bi.
2. for k = 1 to n− eff + 1 do:

(a) Set b′i to the output of KConsensuspk
(pi, b

′
i, eff).

(b) If b′i =⊥, then pi outputs ⊥ and abort.
3. pi outputs b′i.

Theorem 1. Protocol Consensus achieves consensus for n > 3ef + 2ec.

Proof. Persistence: If all fault-free parties enter the protocol Consenus with the
same input bit b, then by the persistence property of king consensus, all uncor-
rupted parties that do not abort output the same bit b. Agreement: Note that
n− eff +1 = ef + ec +1. There exists a fault-free party pi ∈ {p1, . . . , pef+ec+1}.
By the correctness property of king consensus, all fault-free parties will have the
same value for b′ after KConsensuspi is run. Agreement then follows from the
persistence property of king consensus.

3.4 Consensus for n ≥ 3ef + 2ec, ef , ec ≥ 1

If the values of ef and ec are known a priori, then we can improve the bound
in Theorem 1. On a high level, the construction takes two steps. First, based on
the consensus protocol we have for n > 3ef +2ec, we construct a weak broadcast
(to be defined) protocol for n ≥ 3ef + 2ec. Second, we convert a weak broadcast
protocol into a consensus protocol.

Weak Broadcast. In weak broadcast, there is a sender ps with an input bit b.
Weak broadcast is achieved if the following two conditions hold:

– Agreement: All fault-free parties output a common bit b′.
– Correctness: If the sender is fault-free, then b = b′.

Note that in weak broadcast, we do not concern the outputs of constrained
parties. Due to lack of the space, we omit the description of the protocol. The
details will appear in the full version 6.

From weak broadcast to consensus. Once we have a protocol for weak
broadcast, it is easy to construct a consensus protocol:

1. Each party pi weak-broadcasts the input bit bi using the protocol WBroad-
cast.

2. If the majority of the broadcasted bits is 1, then pi sets b′i = 1 else pi sets
b′i = 0. pi sends b′i to all parties.

6 A preliminary full version is available at the author’s homepage: http://www.
cs.umd.edu/∼cykoo

514 C.-Y. Koo

3. Let X0
i and X1

i be the number of 0 and 1 received by pi in last round
respectively. If X0

i >
1
2n, then pi outputs 0 else if X1

i >
1
2n, then pi outputs

1 else pi outputs ⊥.

Since all fault-free parties pi have the same output in weak broadcasts, they
will have the same value for b′i. In particular, if all of them have the same input
bit b, then b′i = b. As the majority of parties are fault-free, if an uncorrupted
party pj receives > 1

2 copies of b′j ∈ {0, 1} in round 2, then b′j = b′i for any
fault-free party pi. Therefore both persistence and agreement properties hold.
Hence we have the following:

Theorem 2. There is a consensus protocol for n ≥ 3ef + 2ec, ef ≥ 1, ec ≥ 1,
assuming the values of ef and ec are known a priori.

4 Verifiable Secret Sharing (VSS)

In verifiable secret sharing (VSS), there is a special party pd known as the
dealer. The dealer holds a secret s. A VSS protocol consists of two phases: a
sharing phase and a reconstruction phase. In the sharing phase, the dealer shares
the secret with other parties. Parties may disqualify a non fault-free dealer.
If the dealer is not disqualified, then in the reconstruction phase, the parties
reconstruct a value based on their views in the sharing phase.

In our case, VSS protocol is used as a tool for multiparty computation. Our
definition requires a VSS protocol to have the verifiable secret and polynomial
sharing property[15]. In this section, we assume the values of ef and ec are known
a priori. We say a protocol achieves verifiable secret sharing if the followings hold:

– Privacy: If the dealer is uncorrupted, then the view of the adversary during
the sharing phase reveals no information on s.

– Agreement: If an uncorrupted party disqualifies the dealer, then all uncor-
rupted parties that do not abort disqualify the dealer.

– Commitment: If the dealer is not disqualified, then there exists a polynomial
h′(x) of degree ef such that at the end of the sharing phase, all fault-free
parties pi (locally) output h′(i); a constrained party pj which does not abort
outputs h′(j). All uncorrupted parties that do not abort output h′(0) in the
reconstruction phase.

– Correctness: No fault-free party will abort the protocol. A fault-free dealer
will not be disqualified while a constrained dealer may be disqualified. But
if an uncorrupted dealer is not disqualified, then h′(0) = s.

Theorem 3. Assuming the values ef and ec are known a priori, there exists a
VSS protocol for n ≥ 4ef + 3ec + 1.

Proof. We construct a VSS protocol with the above resilience. The protocol is
based on the bivariate solution of Feldman-Micali[13]. We start by giving a high
level description of the protocol. In round 1, the dealer shares the secret via a
random bivariate polynomial of degree ef + 1. If the dealer is constrained, then

Secure Computation with Partial Message Loss 515

a fault-free party may not receive its entitled share. However, unlike [13], the
fault-free party cannot take a default value since it will not be on the polynomial
and correctness will be violated. Instead, a party broadcasts ”receive” in round
2 if it has received its entitled share. Let G be the group of parties who broad-
cast ”receive”. If |G| is too small, then the dealer is disqualified. Otherwise, the
parties within G proceed to verify if the dealer has shared a valid secret, using a
similar approach as in [13](with suitable modifications to tolerate the presence
of constrained parties). The parties that are not in G will not take part in the
verification. After the verification, if the dealer is not disqualified, then all par-
ties in G have shares correspond to a valid secret. The parties outside G then
compute their shares by interpolating the shares from the parties in G (here we
exploit the fact that the secret is shared using a bivariate polynomial).

We assume the secret s is taken from some finite field F . In the following, if
the dealer broadcasts a value and the parties receive φ as the output, then we
implicitly assume that all parties disqualify the dealer.

VSS-share(pd)

1. The dealer chooses a random bivariate polynomial f of degree at most ef

in each variable such that f(0, 0) = s. The dealer sends to party pi the
polynomials gi(x)

def= f(x, i) and hi(x)
def= f(i, x).

2. pi broadcasts ”0” if it does not receive gi(x) and hi(x) from the dealer (or
gi(x) and hi(x) are not polynomials of degree ef), otherwise pi broadcasts
”1”. Let G be the group of parties which broadcast ”1”. If |G| < 3ef + 2ec +
1, then the dealer is disqualified. Otherwise, each party pi ∈ G does the
following:
(a) For every party pj ∈ G, pi sends gi(j) and hi(j) to pj . Let g′j,i and h′j,i be

the two values received by pi from pj ∈ G. pi aborts if it receives values
from less than 2ef + ec + 1 parties.

(b) For every party pj ∈ G, if (g′j,i �= hi(j) and g′j,i �= φ) or (h′j,i �= gi(j)
and h′j,i �= φ), then pi broadcasts ”complaint : i,j” else pi broadcasts ”no
complaint: i,j”. Note that if an uncorrupted pi broadcasts ”complaint:
i,j”, then pj or the dealer is corrupted.

(c) The dealer broadcasts fj,k
def= f(j, k) and fk,j

def= f(k, j) if ”complaint:
j,k” is broadcasted by a party pj ∈ G.

(d) If there exists a j such that (i) fj,i and fi,j are revealed in last step and
(ii) fj,i �= gi(j) or fi,j �= hi(j), then pi broadcasts ”complaint”, other-
wise pi broadcasts ”okay”. (If an uncorrupted pi broadcasts ”complaint”,
then the dealer must be corrupted. On the other hand, if the dealer is
uncorrupted and pi broadcasts ”complaint”, then pi must be corrupted.)

(e) If pi broadcasts ”complaint” in last step, then the dealer broadcasts gi(x)
and hi(x).

(f) pi broadcasts ”reject” if one of the followings hold:
– pi broadcasts ”complaint” in step 2(d)
– There exists a public polynomial gk(x) and hk(x) such that gk(i) �=
hi(k) or hk(i) �= gi(k)

516 C.-Y. Koo

– The dealer does not respond to the complaints broadcasted in step
2(b) or step 2(d);

otherwise, pi broadcasts ”accept”.
3. If less than 3ef + 2ec + 1 parties in G broadcast ”accept”, then the dealer

is disqualified. Otherwise, note that two polynomials gi(x) and hi(x) are
associated with each uncorrupted party pi in G (If the polynomials are not
made public in step 2(e), then the polynomials associated with pi are the
two polynomials pi received in step (1)). Each party pi ∈ G sends hi(j) to
all parties pj /∈ G.

4. For each party pi /∈ G, pi constructs a degree ef polynomial gi(x) by using
the Reed-Solomon error-correction interpolation procedure on the values it
received in last step (If pi cannot construct such polynomial or pi receives
less than 2ef + ec + 1 shares, then pi aborts).

5. Each party pi outputs gi(0).

VSS-reconstruct(gi(0))

1. Party pi sends gi(0) to all parties.
2. Let SSi be the set of secret shares pi receives in last round. If |SSi| < 3ef +1,

then pi aborts else pi reconstructs a polynomial h0(x) of degree ef by using
the Reed-Solomon error-correction interpolation on the set SSi and outputs
h0(0).

We now proceed to prove that the above protocol achieves VSS.

– Privacy: Consider an uncorrupted dealer. If an uncorrupted party pi broad-
casts ”complaint: i,j” in step 2(b), then pj must be a corrupted party. It is
easy to see that if a party pi broadcasts a complaint in step 2(d), then pi

is a corrupted party. Therefore, all the information broadcasted by an un-
corrupted dealer on f , if any, is a subset of the shares the corrupted parties
entitled to receive in step 1. Since the secret is shared by a random bivari-
ate polynomial of degree ef , we conclude that the view of the adversary is
independent of s during the sharing phase.

– Agreement: Note that the decision of disqualifying a dealer is completely
dependent on the messages broadcasted by the parties. If an uncorrupted
party does not abort by the end of the sharing phase, then by the agreement
property of broadcast, the values it received from the broadcasts are same
as those received by fault-free parties. Hence agreement follows.

– Correctness: We first consider a fault-free dealer. All fault-free parties will be
in G. Since n ≥ 4ef +3ec +1, it follows that |G| ≥ 3ef +2ec +1. In addition,
all fault-free parties broadcast ”accept” in step 2(f). For a constrained party
pi that is not in G, it is easy to see that gi(x) reconstructed in step 3 (if pi

does not abort) is equal to f(x, i).
Next we consider a constrained dealer that is not disqualified. For an

uncorrupted party pi ∈ G that does not abort by step 2(f), it is easy to see
that gi(x) = f(x, i) and hi(x) = f(x, i). If the dealer is not disqualified, then
≥ 3ef + 2ec + 1 parties broadcasts ”accept” in step 2(f). Let G′ be the set

Secure Computation with Partial Message Loss 517

of fault-free parties among these ≥ 3ef + 2ec + 1 parties. |G′| ≥ 2ef + ec +1.
It then follows that every fault-free party (or constrained party that does
not abort in step 3) pi that is not in G can reconstruct gi(x) = f(x, i). An
uncorrupted party pi (if it does not abort) will then output f(0, i) in step 4.

– Commitment: We consider the case of a non-disqualified corrupted dealer.
If a corrupted dealer is not disqualified, then at least 2ef + ec + 1 fault-free
parties broadcast ”accept” in step 2(f). Let G′ be the set of such fault-free
parties. Following [13, Lemma 2], there exists a bivariate polynomial f ′ of
degree ef in each variable such that for all pi ∈ G′, gi(x) = f ′(x, i) and
hi(x) = f ′(i, x). Now consider an uncorrupted party pj ∈ G but not in G′.
There are 2 possible scenarios:

• pj broadcasts a complaint in step 2(d). gj(x) and hj(x) are made public
in step 2(e). For all pi ∈ G′, gj(i) = hi(j) and hj(i) = gi(j). Hence it
follows that gj(x) = f ′(x, j) and hi(x) = f ′(x, i).

• pj does not broadcast a complaint in step 2(d). If pj does not abort in
step 2(b), then hj(i) = fi(j) and fj(i) = hi(j) for at least 2ef + ec +1−
(ef + ec) = ef + 1 parties pi ∈ G′. Since f ′ is a bivariate polynomial of
degree ef , it follows that hj(x) = f ′(j, x) and gj(x) = f ′(x, j). Therefore
if pj does not broadcast a complaint in step 2(d), it will not broadcast
“reject” in step 2(f).

We conclude that for all uncorrupted parties pi ∈ G that do not abort by
step 2, hi(x) = f ′(i, x) and gi(x) = f ′(x, i). It is easy to see that if an
uncorrupted party pj /∈ G does not abort by step 3, pj can reconstruct
gj(x) = f ′(x, j).
Hence it follows that an uncorrupted party pi (if it does not abort) outputs
f ′(0, i) in step 4.

It also follows that all uncorrupted parties that do not abort output h′(0)
by the end of VSS-reconstruct.

5 MPC

We now construct a MPC protocol following the paradigm in [3]. On a high level,
each party shares its private input, evaluates the circuit gate by gate, and then
reconstructs the outputs.

Input Phase: Every party shares its private input using VSS-share. If a party is
disqualified (when it plays the role of the dealer), then the party is added to the
set D. Note that by the end of the input phase, all uncorrupted parties that do
not abort have the same view on D.

Circuit Evaluation: All parties that do not abort evaluate the circuit gD gate
by gate. A party who was disqualified in the input phase does not take part in
this phase and all other parties will ignore the messages sent from that party.
It suffices to consider the addition and multiplication gates. The evaluation pro-
cedures are very similar to the one in [7, section 4.52] and we omit the details
here.

518 C.-Y. Koo

Output phase: Reconstructing output is easy. For each output wire, each party
sends its share to the party who is entitled to receive the output. The corre-
sponding party then reconstructs the output from the shares it received using
error correction. A party aborts if it receives less than 3ef + 1 entitled shares.

6 Extending to the Case of δ < 1
6

We describe how to extend the results from the previous sections (which assume
δ = 0) to the case of δ < 1

6 , at the expense of increasing the round complexity
by a factor of 2. More precisely, we show how to compile a protocol Π for δ = 0
into a protocol Π ′ for δ < 1

6 .
Our broadcast protocol Π for δ = 0 assumes n ≥ 3ef + 2ec but does not

assume secure channels. If pi is supposed to send pj a message m in Π , then the
followings are carried out in Π ′:

– pi sends m to all parties who then forward the message to pj .
– If there exists m′ such that pj receives ≥ 4

3ef copies of them, then pj sets
m = m′ else m = φ.

Consider the following two cases:

1. Both pi and pj are fault-free parties: since n ≥ 3ef + 2ec, at least (2ef +
ec)(1 − δ) fault-free parties receive m from pi. The number of copies of m
pj received is at least (2ef + ec)(1 − 2δ) which is greater than 4

3ef if δ < 1
6 .

Hence pj can receive m from pi.
2. At least one of the pi and pj is a constrained party: suppose pj receives m′

from pi in Π ′ and m′ �= φ. Since pj receives at least 4
3ef copies of m′, at least

1
3ef copies are from uncorrupted parties. Hence m′ = m (assuming ef ≥ 3).

For VSS and MPC protocols, we assume n ≥ 4ef +3ec+1 but we also assume
secure channels. If pi is supposed to send pj a messagem in Π , then the following
steps are carried out in Π ′:

– pi picks a random polynomial h(x) of degree ef such that h(0) = m. pi sends
h(k) to pk who then forwards the share to pj.

– Based on the shares pj received, using the Reed-Solomon error-correction
interpolation procedure, pj constructs a polynomial h′(x) of degree ef such
that at least 2ef + 1 shares are on h′(x). If pj cannot construct such poly-
nomial, then pj sets m = φ else m = h′(0).

First we note that if pi is uncorrupted, then the view of the adversary is
independent of m since h is a random polynomial of degree ef . Second, if both
pi and pj are uncorrupted and pj does not set m = φ, then pj receives 2ef + 1
shares that are on h′(x). ef + 1 of these shares are from uncorrupted parties.
Hence h′(x) = h(x) since both h′(x) and h(x) are of degree ef +1. Finally, if both
pi and pj are fault-free parties, then pj will receive at least (3ef+2ec+1)(1−2δ) ≥
2ef + 1 (assuming δ < 1

6 and ec ≥ 1) correct shares. On the other hand, pj will
receive at most ef corrupted shares. Hence pj can always reconstruct h(x) using
error-correction.

Secure Computation with Partial Message Loss 519

7 Conclusion and Open Problems

In this paper, we consider a communication model where message delivery is
neither always guaranteed nor always in the hands of the adversary. We has
developed broadcast and VSS protocols under this model. However, we do not
know if the bounds are tight. Another interesting direction is to consider what
is achievable if the global clock is removed from the model.

Acknowledgments

The author thanks Omer Horvitz, Jonathan Katz, Ruggero Morselli, Tsuen-
Wan ”Johnny” Ngan and Ji Sun Shin for helpful comments and encouragement.
In particular, discussions on the communication model with Ruggero Morselli
and Tsuen-Wan ”Johnny” Ngan are very helpful. The author also thanks the
anonymous referees for providing useful references and thoughtful comments.

References

1. D. Beaver. Multiparty protocols tolerating half faulty processors. In G. Brassard,
editor, Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptol-
ogy Conference, volume 435 of Lecture Notes in Computer Science, pages 560–572.
Springer, 1989.

2. M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computation. In
STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing, pages 52–61, New York, NY, USA, 1993. ACM Press.

3. M. Ben-Or, S. Goldwasser, and A.Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computations. In Proceedings of the 20th
annual ACM symposium on Theory of computing, pages 1–10, 1988.

4. M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure computations with
optimal resilience (extended abstract). In PODC ’94: Proceedings of the thirteenth
annual ACM symposium on Principles of distributed computing, pages 183–192,
New York, NY, USA, 1994. ACM Press.

5. P. Berman, J. A. Garay, and K. J. Perry. Towards optimal distributed consensus
(extended abstract). In Proceedings of the 30th Annual Symposium on Foundations
of Computer Science, pages 410–415. IEEE, 1989.

6. M. Biely. Optimal agreement protocol in malicious faulty processors and faulty
links. IEEE Transactions on Knowledge and Data Engineering, 4(3):266–280, 1992.

7. R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD
thesis, Weizmann Institute of Science, Rehovot 76100, Israel, June 1995.

8. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS ’01: Proceedings of the 42nd IEEE symposium on Foundations
of Computer Science, page 136, Washington, DC, USA, 2001. IEEE Computer
Society.

9. R. Canetti, S. Halevi, and A. Herzberg. Maintaining authenticated communication
in the presence of break-ins. In PODC ’97: Proceedings of the sixteenth annual
ACM symposium on Principles of distributed computing, pages 15–24, New York,
NY, USA, 1997. ACM Press.

520 C.-Y. Koo

10. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party and multi-party secure computation. In STOC ’02: Proceedings of the thiry-
fourth annual ACM symposium on Theory of computing, pages 494–503, New York,
NY, USA, 2002. ACM Press.

11. D. Chaum, C. Crepeau, and I. Damgard. Multiparty unconditionally secure pro-
tocols. In STOC ’88: Proceedings of the twentieth annual ACM symposium on
Theory of computing, pages 11–19, New York, NY, USA, 1988. ACM Press.

12. R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient mul-
tiparty computations secure against an adaptive adversary. In J. Stern, editor,
Advances in Cryptology — EUROCRYPT ’99, volume 1592 of Lecture Notes in
Computer Science, pages 311–326. Springer-Verlag, May 1999.

13. P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous byzan-
tine agreement. SIAM J. Comput., 26(4):873–933, 1997.

14. J. A. Garay and K. J. Perry. A continuum of failure models for distributed comput-
ing. In Proceedings of the 6th International Workshop on Distributed Algorithms,
pages 153–165. Springer-Verlag, 1992. Full version availabe at http://cm.bell-
labs.com/who/garay/continuum.ps.

15. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified vss and fast-track multiparty
computations with applications to threshold cryptography. In PODC ’98: Pro-
ceedings of the seventeenth annual ACM symposium on Principles of distributed
computing, pages 101–111, New York, NY, USA, 1998. ACM Press.

16. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the nineteenth annual ACM conference on Theory of computing,
pages 218–229. ACM Press, 1987.

17. S. Goldwasser and Y. Lindell. Secure computation without agreement. In DISC
’02: Proceedings of the 16th International Conference on Distributed Computing,
pages 17–32, London, UK, 2002. Springer-Verlag.

18. Y. T. Kalai, Y. Lindell, and M. Prabhakaran. Concurrent general composition
of secure protocols in the timing model. In STOC ’05: Proceedings of the thirty-
seventh annual ACM symposium on Theory of computing, pages 644–653, New
York, NY, USA, 2005. ACM Press.

19. A. D. Keromytis, V. Misra, and D. Rubenstein. Sos: secure overlay services. SIG-
COMM Comput. Commun. Rev., 32(4):61–72, 2002.

20. P. R. Parvédy and M. Raynal. Optimal early stopping uniform consensus in syn-
chronous systems with process omission failures. In Proceedings of the sixteenth
annual ACM symposium on Parallelism in algorithms and architectures, pages 302–
310. ACM Press, 2004.

21. K. J. Perry and S. Toueg. Distributed agreement in the presence of processor and
communication faults. IEEE Trans. Softw. Eng., 12(3):477–482, 1986.

22. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In STOC ’89: Proceedings of the twenty-first annual ACM sym-
posium on Theory of computing, pages 73–85, New York, NY, USA, 1989. ACM
Press.

23. U. Schmid, B. Weiss, and J. Rushby. Formally verified byzantine agreement in
presence of link faults. In ICDCS ’02: Proceedings of the 22 nd International
Conference on Distributed Computing Systems (ICDCS’02), page 608, Washington,
DC, USA, 2002. IEEE Computer Society.

24. P. Thambidurai and Y.-K. Park. Interactive consistency with multiple failure
modes. In Proceedings of the 7th Reliable Distributed Systems Symposium, pages
93–100, 1988.

Secure Computation with Partial Message Loss 521

25. K. Q. Yan, Y. H. Chin, and S. C. Wang. Optimal agreement protocol in malicious
faulty processors and faulty links. IEEE Transactions on Knowledge and Data
Engineering, 4(3):266–280, 1992.

26. A. C.-C. Yao. Protocols for secure computations. In FOCS ’82: Proceedings of
the 23rd Symposium on Foundations of Computer Science, pages 160–164, Los
Alamitos, CA, USA, 1982. IEEE Computer Society Press.

Communication Efficient Secure Linear Algebra

Kobbi Nissim� and Enav Weinreb��

Ben Gurion University, Beer-Sheva 84105, Israel
{kobbi, weinrebe}@cs.bgu.ac.il

Abstract. We present communication efficient secure protocols for a
variety of linear algebra problems. Our main building block is a protocol
for computing Gaussian Elimination on encrypted data. As input for this
protocol, Bob holds a k×k matrix M , encrypted with Alice’s key. At the
end of the protocol run, Bob holds an encryption of an upper-triangular
matrix M ′ such that the number of nonzero elements on the diagonal
equals the rank of M . The communication complexity of our protocol is
roughly O(k2).

Building on Oblivious Gaussian elimination, we present secure pro-
tocols for several problems: deciding the intersection of linear and affine
subspaces, picking a random vector from the intersection, and obliviously
solving a set of linear equations. Our protocols match known (insecure)
communication complexity lower bounds, and improve the communica-
tion complexity of both Yao’s garbled circuits and that of specific previ-
ously published protocols.

1 Introduction

Linear algebra plays a central role in computer science in general and in cryp-
tography in particular. Numerous cryptographic applications such as private
information retrieval, secret sharing schemes, multi party secure computation,
and many more make use of linear algebra. In particular, the ability to efficiently
solve a set of linear equations constitutes an important algorithmic and crypto-
graphic tool. In this work we design communication efficient secure protocols for
various linear algebraic problems.

The basic linear algebraic problem we focus on is linear subspace intersec-
tion. Alice and Bob hold subspaces of F k for some finite field F , each subspace
representing a set of linear equations held by the players. They wish to study
different properties of the intersection of their input subspaces, without leaking
any information not revealed by the result of the computation. The first variant
is a search problem where Alice and Bob wish to compute the intersection, while
in the second variant they only wish to decide whether the intersection is the
trivial zero subspace. We also consider the problems of picking a random vector
from the intersection, and of affine subspaces intersection.
� Research partially Supported by the Frankel Center for Computer Science.

�� Partially supported by a Kreitman Foundation Fellowship and by the Frankel Center
for Computer Science.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 522–541, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Communication Efficient Secure Linear Algebra 523

Cramer and Damg̊ard introduced secure protocols for solving various linear
algebraic problems [5]. Their work was done in the information theoretical setup,
with the main goal of reducing the round complexity to a constant. The com-
munication complexity of their protocols is Ω(k3) while the size of the inputs
is merely O(k2). Another approach for designing secure protocols for these lin-
ear algebraic problems is to apply the garbled circuit method of Yao [18]. The
communication complexity of such protocols is related to the Boolean circuit
complexity of the underlying problems. However, as these problems are strongly
related to the problem of matrix multiplication, the communication complexity
of the resulting protocol is essentially the circuit complexity of the latter. The
best known upper bound for this problem is O(kω) [6] for ω ∼= 2.38, which is
still larger than the input size.

We introduce a protocol for the subspace intersection problem1 with com-
munication complexity of roughly O(k2). Even for insecure computation, it is
shown in [3] that the deterministic communication complexity of the problem
is Ω(k2). This result agrees with ours up to a polylogarithmic factor. Although
determining the randomized communication complexity of subspace intersection
is an open problem, it serves as an evidence that our upper bound may be tight.
Our protocol gives rise to communication efficient secure protocols for problems
reducible to linear algebra, e.g., perfect matching, and functions with low span
program complexity [11]. Unlike the protocol of [5] and [18], our protocols are not
constant round. However, using a combination of our techniques and the general
techniques of [18], we achieve a round complexity of O(k1− 1

ω−1) ≈ O(k0.275).

Techniques. We use public key homomorphic encryption to put the players in
the following situation: Alice holds a private key of a public key homomorphic
encryption scheme, while Bob holds an encrypted matrix. Bob wants to perform
computations on his matrix, such as checking if it has full rank, without leaking
any information on it. Specifically, we show how Bob can use Alice’s help to
securely perform the Gaussian Elimination procedure on the matrix. As the
current state of art in homomorphic encryption does not allow an encryption
scheme with both homomorphic addition and multiplication, we use standard
techniques to make Alice multiply encrypted elements for Bob.

The Gaussian Elimination procedure requires Bob to find a row with a non-
zero element in its leftmost coordinate for the elimination of the leftmost column.
As the matrix is encrypted, Bob cannot find such a row on his own. We use
Alice’s help and randomness to overcome this problem. Alice’s help in this case
may be interpreted as performing an ‘if’ statement in Bob’s code, although
the computation is oblivious. To save communication, we use the paradigm of
lazy evaluation, in which Bob uses Alice as a storage device as well. Instead of
instantly sending Bob the results of the computations, Alice keeps an image of
Bob’s memory, and sends him only the information he needs for the next round
of computation. To conclude, Bob uses Alice for calculations, for flow control,
and as a storage device, without enclosing any of his data to her.
1 All the bounds mentioned in the introduction are for the case where Alice and Bob

hold subspaces of dimension k/2. Exact bounds are presented later in the text.

524 K. Nissim and E. Weinreb

The round complexity of our basic protocol is O(k). We use a combination
of the garbled circuit method of Yao, and the techniques described above, to
reduce the number of rounds to O(k0.275). We use randomness to ensure both
correctness and security for our protocols. In the context of finding a random
vector in the intersection of the input subspaces, we use a technique of adding
random constraints to reduce the solution set into only one solution. This is
inspired by the “hashing paradigm” [17] that was employed, e.g., by Bellare
et al. [2] for uniformly picking an NP witness. Another use of randomness is
achieved via the next basic linear algebraic claim. Take a rank r matrix and
multiply it from the left and from the right by random full rank matrices. Then,
with constant probability, the top-left r × r sub-matrix of the resulting matrix
is of rank r. This fact enables us to reduce problems on non-square matrices to
problems on their square counterparts.

Organization. We start in Section 2 with preliminaries and notation. In Sec-
tion 3 we present secure protocols for computing subspaces intersection and for
deciding if the intersection is trivial. Later, in Section 4, we design our main
building block, the Oblivious Gaussian Elimination protocol. In Section 5
we show how to securely pick a random vector from the intersection, and fi-
nally, in Section 6, we design secure protocols for analogous problems on affine
subspaces.

2 Preliminaries

Notation. Let F be a finite field. We denote by v a row vector in the vector
space F k where k > 0 and 0 denotes the row vector whose entries are all zero.
For a matrix M with entries from F , we denote by Mi the ith row of M . For
an encryption scheme, we let λ be its security parameter. W.l.o.g, we assume
that the result of encrypting a field element is of length O(λ). We use neg(k) to
denote a function that is negligible in k, i.e. neg(k) = k−ω(1).

Homomorphic encryption schemes. Our constructions use semantically-secure
public-key encryption schemes that allow for simple computations on encrypted
data. In particular, we use encryption schemes where the following operations can
be performed without knowledge of the private key: (i) Given two encryptions
Enc(m1) and Enc(m2), we can efficiently compute Enc(m1 +m2); and (ii) Given
an encryption Enc(m) and c ∈ F , we can efficiently compute Enc(cm).

Several constructions of homomorphic encryption schemes are known, each
with its particular properties (see e.g. [15,10,8,14,16,13,7,1]). These have been
in use in a variety of cryptographic protocols. Over F = GF (2), the encryption
scheme of Goldwasser and Micali [10], based on quadratic residuosity, is sufficient
for our constructions.

For a vector v ∈ Fn, we denote by Enc(v) the coordinate-wise encryption of
v. That is, if v = 〈a1, . . . , an〉 where a1, . . . , an ∈ F , then Enc(v) = 〈Enc(a1), . . . ,
Enc(an)〉. Similarly, for a matrix M ∈ Fm×n, we denote by Enc(M) the m × n
matrix such that Enc(M)[i, j] = Enc(M [i, j]). An immediate consequence of the

Communication Efficient Secure Linear Algebra 525

above properties of homomorphic encryption schemes is the ability to perform the
following operations without knowledge of the secret key: (i) Given encryptions
of two vectors Enc(v1) and Enc(v2), we can efficiently compute Enc(v1 +v2), and
similarly with matrices. (ii) Given an encryption of a vector Enc(v) and a con-
stant c ∈ F , we can efficiently compute Enc(cv). (iii) Given an encryption of a
matrix Enc(M) and a matrixM ′ of the appropriate dimensions, we can efficiently
compute Enc(MM ′) and Enc(M ′M).

Adversary model. Our protocols are constructed for the two-party semi-honest
adversary model. Roughly speaking, both parties are assumed to act in accor-
dance with their prescribed actions in the protocol. Each party may, however,
collect any information he/she encounters during the protocol run, and try to
gain some information about the other party’s input.

Remark 1. Our protocols achieve information theoretic security for Bob while
Alice’s security relies on that of the underlying encryption scheme.

Basic Building Blocks. In our protocols Bob holds data encrypted by a public
key homomorphic encryption scheme, while Alice holds the private decryption
key. Bob uses Alice’s help to perform different calculations, without enclosing his
data to her. As a simple example of a protocol where Bob uses Alice’s help, as-
sume Bob holds Enc(a) and Enc(b) and needs to compute Enc(ab). Let Multiply
be the following (folklore) solution: (i) Bob chooses random masks ra, rb ∈R F
and sends Enc(a+ra) and Enc(b+rb) to Alice; (ii) Alice deciphers these messages
and returns Enc((a+ra)(b+rb)); (iii) Given Enc((a+ra)(b+rb)), Bob computes
Enc(ab) = Enc((a+ ra)(b+ rb) − rba− rab− rarb). It is easy to see that neither
Alice nor Bob gain any information about a and b (and ab). The communication
complexity of this protocol is O(λ). This protocol is easily generalized to vec-
tors of length k, the resulting protocol Vector Multiply is of communication
complexity O(λk).

Linear Algebra. We need the following simple linear algebraic claim.

Claim 1 ([4]). Let ka < kb be positive integers, F be a finite field, and M be
a ka × kb matrix over F . Suppose r ≤ rank(M) and let TA and TB be ka × ka

and kb × kb randomly chosen full rank matrices over F . Let M ′ = TAMTB, and
denote the top-left r× r sub-matrix of M ′ by N ′. Then with constant probability
rank(N ′) = r.

3 Linear Subspace Intersection

Let F be a finite field and k be a positive integer. Alice holds a subspace VA ⊆ F k

of dimension ka ≤ k. The subspace VA is represented by a ka×k matrix A, where
the rows of A span VA. Similarly, Bob’s input is a subspace VB⊆F k of dimension
kb, represented by a kb ×k matrix B. Letting VI = VA ∩VB, Alice and Bob wish
to securely study different properties of VI .

526 K. Nissim and E. Weinreb

The first variant of the problem is of computing the subspace VI itself. The
second is of deciding whether VI is the trivial zero subspace. Ignoring security
issues, computing the intersection of the input subspaces is at least as hard as
deciding whether they have a non trivial intersection. However, constructing a
secure protocol for the latter turns to be somewhat easier as the players gain
less information from its output.

A common step in solving both variants is the following reduction of comput-
ing VI into solving a homogeneous linear system. Let V ⊥

B be the perpendicular
subspace2 of VB . Define k′b = k−kb and let B⊥ be a k×k′b matrix whose columns
span exactly the subspace V ⊥

B . Finally define the ka × k′b matrix M = AB⊥.

Claim 2. Let v ∈ F ka . Then vA ∈ VI if and only if vM = 0.

Proof. If vA ∈ VI then vA ∈ VB, and thus vM = (vA)B⊥ = 0. For the other
direction, if vM = 0, then (vA)B⊥ = 0, and thus vA ∈ VB . As vA is a linear
combination of the rows of A, we get that vA ∈ VA, hence vA ∈ VA ∩ VB = VI .

3.1 Computing the Intersection

Protocol Intersection Computation securely computes VI in one round of
communication. The communication complexity of the protocol is O(λkak). The
protocol uses homomorphic encryption to enable a multiplication of an encrypted
matrix by an open matrix without the knowledge of the private decryption key.

Protocol Intersection Computation

Input: Alice (resp. Bob) holds a ka ×k (resp. kb ×k) matrix A (resp. B) over a finite
field F representing a subspace VA⊆F k (resp. VB⊆F k).
Output: Alice holds a matrix representing VI = VA ∩ VB .

1. Bob locally computes a k × k′
b matrix B⊥ that represents the subspace V ⊥

B .
2. Alice generates keys for a homomorphic public key encryption system, and sends

Bob Enc(A) and the public key.
3. Bob randomly chooses a k′

b × k′
b full rank matrix TB , locally computes Enc(M),

where M
def= AB⊥TB , and sends Enc(M) to Alice.

4. Alice decrypts M and computes the subspace K = ker(MT), that is, K =
{v : vM = 0} .

5. Alice computes the subspace VI = {vA : v ∈ K}.

Correctness and Security. The correctness of the Intersection Computation
protocol derives3 from Claim 2. Alice’s security immediately follows from the
fact she only sends information encrypted in a semantically-secure encryption
scheme. To prove Bob’s security, we show a simulator for Alice’s view. The
simulator and its related security proof appear in Appendix A.

2 Recall that V ⊥
B

def= {u : 〈u, v〉 = 0 for all v ∈ VB}, and is of dimension k′
b

def= k − kb.
3 Note that although in the protocol M = AB⊥TB , Claim 2 still applies, as the

columns of B⊥ and the columns of B⊥TB both span the subspace V ⊥
B .

Communication Efficient Secure Linear Algebra 527

3.2 Deciding Whether the Intersection Is Trivial

Let VA, VB be as above and VI their intersection4. By Claim 2, there is a non
trivial intersection between VA and VB if and only if there exist a non-zero vector
v ∈ F ka such that vAB⊥ = 0. This happens only if rank(AB⊥) < ka, that is,
if AB⊥ is not a full rank matrix. Hence, computing AB⊥ seems useful also in
deciding whether VI = {0}. However, unlike in the Intersection Computation
protocol ,we cannot have Bob sending AB⊥ nor any information regarding its
dimension to Alice. Such information would compromise the protocol privacy.

As in the Intersection Computation protocol, Alice sends an encryption of
her input and a public key to Bob, who computes an encryption of AB⊥. Here,
we are only interested in whether AB⊥ is of full rank. Our main building block
is a private protocol that transforms the encryption of AB⊥ into an encryption
of an upper triangular matrix5. In particular, there is a 0 on the main diagonal
of the resulting matrix if and only if AB⊥ is of full rank.

Definition 1 (Oblivious Gaussian Elimination Problem). Input: Alice
holds a private key of a public key homomorphic encryption scheme over a finite
field F . Bob holds a ka × kb matrix M encrypted by Alice’s public key, where
ka ≤ kb.

Output: Suppose rank(M) = r. In the end of the protocol Bob holds an encryp-
tion of a ka×kb matrix M ′. With probability 1−neg(k), the matrix M ′ is upper
triangular and: (i) There are at most r non-zero elements on the main diagonal
of M ′. (ii) With constant probability there are exactly r non-zero elements on
the main diagonal of M ′.

The following theorem summarizes the properties of our protocol for solving the
Oblivious Gaussian Elimination Problem. The protocol is described in Section 4.

Theorem 3. There is a secure protocol with communication complexity Õ(λkakb)
and round complexity k0.275

a , that solves the Oblivious Gaussian Elimination
Problem.

Having a secure protocol for solving the problem above, deciding the intersection of
the input subspaces is done in two steps. A procedure for deciding the intersection
with one sided constant error probability is depicted in Protocol Intersection
Decision below. To get a protocol with negligible error probability, Alice and
Bob run protocol Intersection Decision form = ω(log k) times. Alice and Bob
then obliviously compute the logical OR of all the executions. The correctness of
the protocol is straight forward assuming the correctness of Oblivious Gaussian
Elimination.

Theorem 4. Protocol Intersection Decision is a secure protocol for the sub-
space intersection decision problem. The communication complexity of the pro-
tocol is Õ(λkak) and the round complexity is Õ(k0.275

a).
4 W.l.o.g., we assume that ka + kb ≤ k, as otherwise VA and VB always have a non-

trivial intersection.
5 For non-square matrices upper triangular means i > j ⇒ M [i, j] = 0.

528 K. Nissim and E. Weinreb

Protocol Intersection Decision

Input: Alice (resp. Bob) holds a ka ×k (resp. kb ×k) matrix A (resp. B) over a finite
field F representing a subspace VA⊆F k (resp. VB⊆F k). Let B⊥ be a k × k′

b matrix
that represents the subspace V ⊥

B .
Output: If VI is not the trivial zero subspace, Bob outputs Enc(0) with probability
1. Else, with constant probability, Bob outputs Enc(r) for some non-zero r ∈ F .

1. Alice generates keys for a homomorphic public key encryption system, and sends
Bob Enc(A) and the public key.

2. Bob locally computes Enc(M), where M
def= AB⊥. Note that M is a ka × k′

b

matrix.
3. Alice and Bob run protocol Oblivious Gaussian Elimination on Enc(M). De-

note by M ′ the resulting ka ×k′
b matrix that Bob holds at the end of the protocol

execution.
4. Bob and Alice use the Multiply protocol such that Bob eventually locally out-

puts Enc(r) where r
def=

∏ka
i=1 M ′[i, i].

4 Oblivious Gaussian Elimination

In this section we introduce a protocol for the Oblivious Gaussian Elimination
problem (See Definition 1), with parameters matching Theorem 3. We first define
the Oblivious Gaussian Elimination problem for square matrices. Then we design
a protocol for this special case, and finally we reduce the problem on general
matrices to the problem on their square counterparts.

Definition 2 (Oblivious Gaussian Elimination Problem for Square Ma-
trices). Input: Alice holds a private key of a public key homomorphic encryption
scheme over a finite field F . Bob holds a k × k matrix M encrypted by Alice’s
public key.

Output: In the end of the protocol Bob holds an encryption of a k × k matrix
M ′. With probability 1 − neg(k), the matrix M ′ is upper triangular and: (i) If
M is full rank then with probability 1 − neg(k) all the diagonal entries of M ′

are non-zero. (ii) If M is not full rank then there is a 0 entry on the diagonal
of M ′.

There are two differences between this definition and Definition 1. Here, the
diagonal of the resulting matrix M ′ does not reflect the exact rank of M , but
rather only whether M is full rank or not. On the other hand, here we require
very high success probability, while in Definition 1, the success probability is
constant.

4.1 Gaussian Elimination

The Gaussian Elimination algorithm is a well known method for transforming
a matrix into a triangular form, while keeping its rank. Consider the following

Communication Efficient Secure Linear Algebra 529

‘textbook’ Gaussian Elimination procedure. To simplify the presentation, we as-
sume the underlying field is the unique finite field with two elements, that is,
F = GF(2). The generalization of all our protocols to other finite fields of fixed
size is straight forward6.

Input: A k × k matrix M over F = GF(2):
(1) Find a row Mj , such that the leftmost coordinate in Mj is 1, that is,
M [j, 1] = 1.
(2) For every i �= j, if M [i, 1] = 1, add Mj to Mi, so that the result is 0 in the
leftmost coordinate.
(3) Swap the first and the jth rows of M .
(4) If k > 1, perform steps (1) – (4) on the lower-right (k−1)×(k−1) sub-matrix
of M .

Consider obliviously running Gaussian Elimination on an encrypted k×k matrix
M over GF(2) held by Bob. In step (1) Bob faces the problem of choosing the
row Mj as he cannot distinguish a 0 entry from a 1 entry, and letting Bob (or
Alice) learn j may compromise privacy. To go around this problem, we let Alice
and Bob eliminate the leftmost column using several rows. For each of the rows
they use, if the leftmost entry is 1 then we get the desired elimination. On the
other hand, if the leftmost entry is 0, the matrix is not changed at all. We use
randomization to guarantee that with high probability, the leftmost entry in at
least one of the rows used is 1.

4.2 Column Elimination

Protocol Basic Column Elimination securely eliminates the leftmost column
of a matrix using its jth row.

In the second step of the protocol Bob uses Alice’s assistance in computing
Enc(M [i, 1] ·M [j, 1] · Mj). Note that if M [j, 1] = 0 then the result of step 2 is
an encryption of 0. Therefore, if M [j, 1] = 0, Bob adds encryptions of 0 to every
row, and thus M ′ = M . If M [j, 1] = 1, then Bob adds Mj exactly to the rows
Mi with M [i, 1] = 1, as in the Gaussian Elimination procedure.

The communication complexity of the protocol is O(λk2), as we run the
Vector Multiply protocol for O(k) times. However, in all iterations Bob mul-
tiplies an encryption of Mj . Hence, it is enough for Bob to randomly choose
rMj

and send Alice Enc(Mj + rMj
) only once. We get that the communication

complexity from Bob to Alice is reduced to O(λk) while the communication from
Alice to Bob remains O(λk2). The communication from Alice to Bob will later
be reduced as well.

Oblivious Column Elimination. As we noted above, if the leftmost coordinate
of the eliminating row Mj is 0, running Basic Column Elimination does not
6 To generalize our protocols to a field F , use the a sub-protocol for the following

problem: Bob holds Enc(a) for a ∈ F , and Alice holds the private decryption key. In
the end of the protocol Bob should hold Enc(a−1) if a 	= 0 and Enc(0) if a = 0. If |F |
is large, this can be done using the garbled circuit method of Yao, without affecting
the asymptotic complexity of the protocol.

530 K. Nissim and E. Weinreb

Protocol Basic Column Elimination

Input: As in Definition 2
Output: At the end of the protocol Bob holds an encryption of a matrix M ′ with
the following properties: If M [j, 1] = 0 then M ′ = M . Otherwise, M ′

i = Mi for
every i ≤ j, and for i > j (i) if M [i, 1] = 0 then M ′

i = Mi , and (ii) if M [i, 1] = 1
then M ′

i = Mi + Mj .

For every j < i ≤ k do the following:

1. Alice and Bob run protocol Multiply, with Bob’s inputs being Enc(M [j, 1]) and
Enc(M [i, 1]). As a result, Bob holds Enc(M [i, 1] · M [j, 1]).

2. Alice and Bob run protocol Vector Multiply, with Bob’s inputs being
Enc(M [i, 1]M [j, 1]) and Enc(Mj). As a result, Bob holds Enc(M [i, 1] · M [j, 1] ·
Mj).

3. Bob locally computes Enc(M ′
i) = Enc(Mi + M [i, 1] · M [j, 1] · Mj).

advance the elimination process. Protocol Oblivious Column Elimination be-
low uses the upper m rows of M to eliminate the leftmost column. The process
is successful if any of these m rows contains 1 in the leftmost coordinate, and
the parameter m is chosen such that this happens with high probability. Let
i ∈ {1, . . . ,m} be the minimal row index such that M [i, 1] is non-zero. Note that
(i) the column elimination process using any of the i − 1 upper rows does not
change the matrix; (ii) the ith row Mi eliminates the leftmost column of M ;
(iii) the column elimination process using rows i + 1 to m does not effect M
anymore. Denote by M ′ the resulting matrix.

Next, Alice and Bob swap the ith and first rows of M ′. However, as the
process is run obliviously, Bob does not know what i is. For that, we slightly
modify Gaussian Elimination. Note that if the elimination was successful, the
ith row in M ′ is the only row that does not have 0 in the leftmost coordinate.
Bob adds the top m rows in M ′ into the top row of the matrix: M ′

1 =
∑m

j=1 M ′
j .

The result is a leftmost 1 entry in at most two rows of M ′: the first and ith.
To eliminate the non-zero entry in M ′ we run Basic Column Elimination

once more using the top row. If M is a full-rank matrix, and there is a 1 entry in
the leftmost column of at least one of the top m rows of M , then in the resulting
M ′ satisfies: (i) M ′[1, 1] = 1 and (ii) M ′[j, 1] = 0 for 2 ≤ j ≤ k.

We note that Alice and Bob may agree on T by choosing a seed to a pseu-
dorandom generator. Hence, the communication complexity of this protocol
is m times that of protocol Basic Column Elimination. It is simple to ver-
ify that neither Alice nor Bob gain any information about M . Furthermore,
rank(M ′) = rank(M) as M is transformed into M ′ via a sequence of elemen-
tary matrix operations. Finally, the following claim shows that the elimination
is successful with high probability.

Claim 5. Let M be a k×k matrix and T be a random k×k matrix of full rank,
both over GF(2) and let m = ω(log k). If the leftmost column of M is non-zero,
then with probability 1−neg(k), at least one entry in the leftmost column of the
top m rows of the matrix TM is non-zero.

Communication Efficient Secure Linear Algebra 531

Protocol Oblivious Column Elimination

Input: As In Definition 2
Output: At the end of the execution Bob holds an encryption Enc(M ′) of a k × k
matrix such that rank(M ′) = rank(M). Furthermore, if the leftmost column of M is
non-zero then with high probability M ′[1, 1] = 1 and M ′[i, 1] = 0 for 2 ≤ i ≤ k.

1. Alice and Bob agree on a random non-singular matrix T ∈R GF(2)k×k. Bob
uses the homomorphic properties of the encryption scheme to compute Enc(M ′)
where M ′ = TM .

2. For every 1 ≤ i ≤ m(k), Alice and Bob run protocol Basic Column Elimination
with Bob’s inputs being Enc(M ′) and i.

3. Bob locally assigns M ′
1 =

∑m
j=1 M ′

j by adding the m upper encrypted rows of
M ′.

4. Alice and Bob run protocol Basic Column Elimination protocol with Bob’s
inputs being Enc(M ′)and 1.

Proof. Denote the leftmost non-zero column of M by c, the m top rows of T
by T1, . . . , Tm, and note that TM [i, 1] = Tic. If T was a random matrix, that is
T1, . . . , Tm were independently randomly chosen vectors, then for every i ∈ [m]
the probability that TM [i, 1] = 0 would be exactly 1/2. Hence the probability
that TM [i, 1] �= 0 for at least one value of i would be 1 − neg(k). As a random
matrix has full rank with constant probability [4], it follows that for a random
non-singular matrix the probability that such an event occurs is also negligible.

4.3 Oblivious Gaussian Elimination

We now have the ingredients to present our Oblivious Gaussian Elimination
protocol. On a matrix M ∈ GF(2)k×k, the protocol first applies Oblivious
Column Elimination, to eliminate the leftmost column, and then recurses on
the lower-right (k− 1)× (k− 1) sub-matrix. For clarity of presentation, we first
construct a ‘naive’ protocol, of communication complexity Õ(λk3) and round
complexity Õ(k), and then discuss how to reduce the communication complexity
to Õ(λk2) and the round complexity to Õ(k0.275).

As before, it is easy to verify that the parties gain no information about the
matrix M . The following claim asserts the correctness of the protocol.

Claim 6. At the end of the execution of the Oblivious Gaussian Elimination
Protocol, Bob holds an encryption of an upper triangular matrix M ′ as required
by Definition 2.

4.4 Reducing Communication Complexity Via Lazy Evaluation

Informally, in the above protocol, Bob uses Alice as a ‘calculator’ for performing
multiplications of encrypted field elements. The communication complexity of
protocol Oblivious Gaussian Elimination is O(λmk3) = Õ(λk3), by picking
m = polylog(k). We now show that Bob can also use Alice as a storage device,

532 K. Nissim and E. Weinreb

Protocol Oblivious Gaussian Elimination (for Square matrices)

Input and Output: As in Definition 2.

1. Alice and Bob run protocol Oblivious Column Elimination on M . Let Bob’s
output be Enc(M ′).

2. Alice and Bob recursively run Oblivious Gaussian Elimination, on the lower-
right (k − 1) × (k − 1) submatrix of M ′. Let Bob’s output be Enc(M ′′).

3. Bob locally outputs

⎛⎜⎜⎜⎝
Enc(M ′[1, 1]), Enc(M ′[1, 2]), . . . , Enc(M ′[1, k])

0
... Enc(M ′′)
0

⎞⎟⎟⎟⎠.

and by this to reduce the communication complexity by a factor of k. Note that
in each round of the protocol, Bob sends to Alice one row and one column of
Enc(M), (masked with random vectors). In return, Alice sends O(k) vectors that
Bob adds to the matrix M . Each of these vectors is of size k, resulting in Õ(λk2)
communication per round.

However, as Bob is not using all the matrix entries in the following round,
we can have Alice send him only the single row and column that are needed for
completing the next round. We make a simple modification to the protocol, and
let Alice maintain a matrix L, where L[i, j] equals the sum of elements Bob needs
to add to the entry M [i, j]. Alice would then send Enc(L[i, j]) just before the ith
row, or the jth column is needed for Bob. Moreover, whenever Bob multiplies
his matrix by a full-rank matrix, Alice needs to multiply L by the same matrix,
and this is the reason why Alice and Bob choose the random matrices together.
This reduces the communication complexity of each round to Õ(λk), and hence
the communication of the entire protocol to Õ(λk2).

4.5 Reducing the Round Complexity

The round complexity of our protocol is linear in the matrix dimension, that is
Ω(k). In this section we show how to reduce the round complexity to sub-linear
while preserving the low communication complexity. The idea is to combine
our communication efficient protocol with the general purpose round efficient
protocol of Yao [18]. This idea was used before, in, e.g., [12].

The protocol is still based on Gaussian Elimination, only that here we elimi-
nate a number of columns together in the same round. Let � = kε where 0 < ε < 1
is a parameter to be specified later. The first modification we make to Oblivious
Gaussian Elimination is that Bob multiplies the matrix M by full rank ma-
trices from both sides and not only from the left. By Claim 1, if M is a full
rank matrix then with constant probability, the top-left �× � sub-matrix of M ,
denoted by N , is of full rank as well.

In this stage Alice and Bob execute a secure sub-protocol base on [18], such
that at the end of the protocol Bob holds an encryption of N−1 if N is invertible,
and an encryption of the 0 matrix if N is not full rank. Following this stage,

Communication Efficient Secure Linear Algebra 533

the protocol is very similar to the original Oblivious Gaussian Elimination
protocol. We divide the k rows of M into k/� blocks of � rows each. Denote the
block of the top � rows of M by K. The notations are depicted in Figure 1. For
every other �-rows block L, Alice and Bob perform the following:

N K

X L

...

...

�

�

k

k

Fig. 1. Notations for the round efficient protocol

Denote the � × � left sub-matrix of L by X. Bob uses the help of Alice to
compute L ← L−XN−1K. If N is not invertible, then Bob has an encryption
of the 0 matrix as N−1, and thus the matrix is left unchanged. Otherwise,
this procedure zeros the � leftmost columns of L. As this process succeeds with
constant probability, we repeat it a polylogarithmic number of times. Using basic
techniques Alice and Bob can make sure that after finding a non-invertible N ,
no changes are done to the matrix till working on the next block of columns.

We first analyze the communication complexity of the protocol excluding the
sub-protocol for computing N−1. The communication complexity from Bob to
Alice in each round is Õ(λ�k) as Bob sends a masking of the top � rows and
the leftmost � columns to Alice. Therefore, as there are k/� rounds, the overall
communication from Bob to Alice is Õ(λk2). The communication complexity
from Alice to Bob in each round is large as she needs to send O(λ�k) bits for
every �-rows block. However, as before, we use lazy evaluation. Alice only sends
Bob the O(λ�k) bits he needs for the next block of columns, and keeps a matrix
with the changes needed to be made to all the other entries in the matrix of Bob.
This makes the overall communication complexity from Alice to Bob O(λk2),
excluding the protocol for computing N−1.

We now analyze the communication complexity of the secure sub-protocol for
computing N−1. The communication complexity of securely inverting a matrix
using Yao’s garbled circuit method is related to the circuit complexity of matrix
inversion. As matrix inversion is reducible to matrix multiplication, this can be
done using a circuit of size O(�ω), where the best known upper bound [6] for ω
is approximately 2.38.

Therefore, the communication complexity of the sub-protocol is O(λ�ω). As it
is executed Õ(k/�) times through the protocol we get that the overall complexity
of executing the sub-protocol is:

(λk/�)�ω = λk�ω−1 = kkε(ω−1) = λk1+εω−ε.

534 K. Nissim and E. Weinreb

To get a communication complexity of Õ(λk2), we set the value of ε such that
1 + εω − ε = 2, i.e., ε = 1/(ω − 1) = 1/1.38 ∼= 0.725. The round complexity of
the protocol is Õ(k1−ε) = Õ(k0.275). Choosing different values for �, one gets a
tradeoff between the communication complexity and the round complexity.

Theorem 7. There is a protocol for the Oblivious Gaussian Elimination Prob-
lem for Square Matrices (See Definition 2) over GF(2) with communication com-
plexity Õ(λk2) and round complexity Õ(k0.275).

4.6 Handling Non-square Matrices

Protocol Oblivious Gaussian Elimination as described above works with very
high probability for square matrices. We now show how to generalize the protocol
to non-square matrices using a reduction. On a non-square matrix M of dimen-
sions ka×kb, Bob first randomly chooses a ka×ka full-rank matrix TA and a kb×kb

full-rank matrix TB and computes M∗ = TAMTB . Suppose w.l.o.g., that ka < kb

(otherwise perform the elimination onMT). Alice and Bob execute the Oblivious
Gaussian Elimination protocol on the top left ka × ka of M∗, denoted by N∗.
The kb−ka right columns ofM are updated during the protocol, but are not elimi-
nated. By Claim 2, if rank(M) ≥ r then with constant probability, rank(N∗) = r,
and thus after executing the Oblivious Gaussian Elimination protocol on N∗,
Bob holds an encrypted matrix Enc(M ′) such that M ′ is upper triangular, and
with constant probability M ′ has exactly r non-zero entries on its diagonal. The
communication complexity of the protocol is Õ(λkakb) and the round complexity
remains Õ(k0.275

a). This completes the proof of Theorem 3.

5 Finding a Random Element in the Intersection

As in the previous sections, Alice holds a ka-dimensional subspace VA⊆F k rep-
resented by a ka ×k matrix A, while Bob holds holds a kb-dimensional subspace
VB⊆F k represented by B. Alice and Bob wish to securely compute a uniformly
distributed random vector in the subspace VA ∩VB. The main step in the design
of our protocol is the addition of random linear constraints to the linear system
created by the input subspaces, to reduce the number of solutions into only one
random uniformly distributed solution.

We start with a definition of the Oblivious Linear Solve Problem.

Definition 3 (Oblivious Linear Solve Problem). Input: Alice holds a pri-
vate key of a public key homomorphic encryption scheme over a finite field F .
Bob holds a ka × kb matrix M and a vector v ∈ F kb , encrypted by Alice’s public
key.

Output: (i) If there exists a vector x such that xM = v, then with constant probabil-
ity, Bob holds an encryption of an arbitrary such vector, and with constant proba-
bility Bob holds an encryption of 0. (ii) Otherwise Bob holds an encryption of 0.

Communication Efficient Secure Linear Algebra 535

In Appendix B we modify protocol Oblivious Gaussian Elimination to get
protocol Oblivious Linear Solve whose properties are summarizes in the fol-
lowing claim.

Claim 8. Protocol Oblivious Linear Solve is a secure protocol for the Obliv-
ious Linear Solve Problem. The communication complexity of the protocol is
Õ(λkak) and the round complexity is Õ(k0.275

a).

As in our previous protocols, Alice sends Bob Enc(A), and Bob computes Enc(M)
for M = AB⊥. By Claim 2, it is enough for Alice and Bob to find a random
solution vector x to the linear system xM = 0. However, this linear system may
have many solutions and picking an arbitrary solution is not satisfactory for our
purpose. Therefore, we add random linear constrains to the linear system. That
is, we concatenate a matrix R to M from the left, and a vector u to 0 and solve
the linear system x(R|M) = (u|0). We want to choose R and u so that with high
probability, the system has a unique uniformly distributed solution.

The number of constraints needed to be added to the linear system depends on
the dimension of the solution space of xM = 0. To this end, Alice and Bob first
execute the Oblivious Gaussian Elimination protocol on M . By Theorem 3,
with constant probability, the number of non-zero elements on the main diagonal
of the result matrix M ′ equals the rank of M . Thus, Alice and Bob add a random
linear constraint to R and u for every 0 on the main diagonal of M ′ and a trivial
x0 = 0 constraint for every non-zero element on the diagonal of M ′. Alice and
Bob pick each random constraint by Alice sending the encryption of a random
vector to Bob, who adds to it a second random vector. This way neither Alice
nor Bob have information regarding the random constraints used. The technical
method to add the constraints is depicted in Protocol Random Intersection
Vector.

After adding the random constraints, Alice and Bob run the Oblivious
Linear Solve protocol to get an encryption of a solution to the system x(R|M)=
(u|0). There are three possible cases: (i) The vector (u|0) is not in the row span
of the matrix (R|M). In this case we get x = 0. (ii) There exists a non-zero vec-
tor x such that x(R|M) = (u|0), but x is not unique. In this case it holds that
xM = 0 but we do not argue that x is a random vector satisfying this require-
ment. (iii) There exist a unique non-zero vector x such that x(R|M) = (u|0). In
this case, by a symmetry argument, the vector x is a random vector satisfying
xM = 0.

Alice and bob run Linear Equations Solve � times and finally use the
sum of the vectors xj computed in these � executions. The vectors x satisfy-
ing xM = 0 form a subspace, and hence are closed for addition. Thus, it is
enough for one execution of Linear Equations Solve to yield a random solu-
tion, as in case (iii) above. To get to case (iii) we need the Oblivious Gaussian
Elimination protocol to succeed and we need the linear system x(R|M) = (u|0)
to have a unique solution. The first event succeeds with constant probability. The
success probability of the second event equals the probability that the sum of
two random subspaces V1, V2⊆Fn of dimensions s and n−s satisfy V1⊕V2 = Fn.
The probability for this event is a constant as well. As both events occur with

536 K. Nissim and E. Weinreb

Protocol Random Intersection Vector

Input: Alice (resp. Bob) holds a ka ×k (resp. kb ×k) matrix A (resp. B) over GF (2)
representing a subspace VA⊆GF(2)k (resp. VB⊆GF(2)k).
Output: Alice locally outputs a random vector v satisfying v ∈ VA ∩ VB .

1. Alice generates keys for a homomorphic public key encryption system, and sends
Bob Enc(A) and the public key.

2. Bob locally computes Enc(M), where M
def= AB⊥.

3. For every j ∈ {1, . . . , 	}:
(a) Alice and Bob execute Protocol Oblivious Gaussian Elimination on M .

Let Bob’s output be Enc(M ′).
(b) For every 1 ≤ i ≤ ka, Alice and Bob choose a random vector wi and set the

ith column of the matrix R to be ci = (1 − M ′[i, i])wi. That is, For every 0
on the diagonal of M ′, the vector ci is a random vector, and for every 1 on
the diagonal it is an encryption of 0.

(c) Bob generates the vector u ∈ GF(2)ka in the following way. For 1 ≤ i ≤ ka,
if M ′[i, i] = 1 Bob assigns u[i] = 0, while if M ′[i, i] = 0 Bob randomly
assigns u[i] ∈R {0, 1}. That is, Bob adds a random constraint for every 0 on
the diagonal of M ′.

(d) Alice and Bob execute protocol Linear Equations Solve on (R|M) and
(u|0) to get an encryption of a vector xj such that xj(R|M) = (u|0), or
Enc(0) if no such vector exists.

4. Bob’s computes Enc(x) =
∑�

j=1 Enc(xj) and sends Enc(x) to Alice.
5. Alice outputs v = xA.

constant probability, case (iii) occurs with constant probability, and thus it is
enough to run Linear Equations Solve ω(log k) times, to get a negligible error
probability.

Theorem 9. Protocol Random Intersection Vector is a secure protocol for
computing a random intersection vector. The communication complexity of the
protocol is Õ(λkak) and the round complexity is Õ(k0.275

a).

6 Intersection of Affine Subspaces

In the affine subspace intersection problem Alice’s input is an affine subspace
va + VA where va ∈ F k and VA⊆F k is a ka dimensional linear subspace. Simi-
larly, Bob’s input is vb + VB , where kb = dim(VB). We design secure protocols
for several problems concerning (va +VA)∩(vb +VB). Our protocols are based on
reductions to problems on linear subspaces. For example, to compute the inter-
section of two affine subspaces, we need both the Intersection Computation
and the Random Intersection Vector protocols on linear subspaces. The fol-
lowing simple claims reduces the problem into computing whether a vector is
contained in a subspace.

Communication Efficient Secure Linear Algebra 537

Claim 10. There exists a vector v ∈ (va+VA)∩(vb+VB) if and only if va−vb ∈
VA + VB.

Proof. Assume v ∈ (va + VA) ∩ (vb + VB). Then v = va + wa for some wa ∈ VA

and v = vb + wb for some wb ∈ VB . Hence va + wa = vb + wb, and therefore,
va − vb = wb −wa, which means that va − vb ∈ VA + VB . Now assume va − vb ∈
VA + VB . Then there exist wa ∈ VA and wb ∈ VB such that va − vb = wa + wb.
Then z

def= va − wa = vb + wb is in the intersection (va + VA) ∩ (vb + VB).

Claim 11. Suppose va + wa = vb + wb for some wa ∈ VA and wb ∈ VB. Then
(va + VA) ∩ (vb + VB) = (va + wa) + (VA ∩ VB).

Proof. Let v ∈ (va + VA) ∩ (vb + VB). Then there exist za ∈ VA and zb ∈ VB

such that v = va + za = vb + zb. As va +wa = vb +wb, by subtracting equations
we get wa − za = wb − zb. Since wa − za ∈ VA and wb − zb ∈ VB , we get that
wa − za ∈ VA ∩ VB . Thus v = (va + wa) − (wa − za) ∈ (va + wa) + (VA ∩ VB).

For the other direction, let v ∈ (va +wa)+(VA∩VB). Thus, v = va +wa +z =
vb + wb + z where z ∈ (VA ∩ VB). As wa + z ∈ VA and wb + z ∈ VB we get
v ∈ (va + VA) ∩ (vb + VB).

Deciding if (va + VA) ∩ (vb + VB) is empty. Protocol Affine Intersection
Decision below is based on Claim 10. I.e., it checks whether v = va − vb ∈
span(VA +VB). The privacy of the protocol follows from that of protocol Linear
Equations Feasibility, and the communication complexity is Õ(λk(ka +kb)).

Protocol Affine Intersection Decision

Input: Alice holds a ka dimensional affine subspace va + VA of GF(2)k. Bob holds a
kb dimensional affine subspace vb + VB of GF(2)k.
Output: The output is 1 if and only if va + VA ∩ vb + VB 	= ∅.

1. Alice sends Bob Enc(A) and Enc(va), where A is a ka × k matrix representing
VA.

2. Bob computes Enc(B) and Enc(vb), where B is a kb × k matrix representing VB .
3. Alice and Bob execute Protocol Linear Equations Feasibility on the matrix(

Enc(A)
Enc(B)

)
and the vector Enc(va + vb). Bob sends the outcome of Protocol

Linear Equations Feasibility to Alice, that decrypts it as the output.

Computing (va + VA) ∩ (vb + VB). We describe a protocol for computing (va +
VA)∩(vb+VB), assuming the intersection is not empty. By Claim 11, it is enough
for Alice and Bob to compute VA ∩ VB , and find wa ∈ VA and wb ∈ VB such
that va +wa = vb +wb. We use Protocol Linear Equation Solve on the matrix(

Enc(A)
Enc(B)

)
and the vector Enc(va+vb). In the end of Protocol Linear Equation

Solve Bob holds an encryption of a vector c ∈ GF(2)ka+kb . Bob denotes the ka

538 K. Nissim and E. Weinreb

leftmost coordinates of c by wa. Alice and Bob now execute Protocol Random
Intersection Element on VA and VB , such that Bob holds an encryption of a
vector r ∈R VA ∩VB . Bob sends Enc(vi)

def= Enc(va +wa + r) to Alice. Now Alice
and Bob execute Protocol Intersection Computation such that Alice learns
VI

def= VA ∩ VB . Alice outputs vi + VI .

Random Intersection Vector. Note that if instead of computing VI in the pro-
tocol above, Alice simply outputs vi, we get a protocol for computing a random
intersection element.

Acknowledgments. We thank Amos Beimel, Yinnon Haviv, Benny Pinkas
and Lior Zolf for helpful conversations.

References

1. D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF Formulas on Ciphertexts.
TCC 2005 pages 325–341.

2. M. Bellare, O. Goldreich, and E. Petrank. Uniform Generation of NP-Witnesses
Using an NP-Oracle. In Inf. Comput. 163(2): 510-526 (2000).

3. A. Beimel, and E. Weinreb. Separating the Power of Monotone Span Programs
over Different Fields. In FOCS 2003: 428-437.

4. A. Borodin, J. von zur Gathen, and J. Hopcroft. Fast parallel matrix and gcd
computations. In Information and Control, 52(3):241-256, March 1982.

5. R. Cramer, and I. Damg̊ard. Secure Distributed Linear Algebra in a Constant
Number of Rounds. In CRYPTO 2001: 119-136.

6. D. Coppersmith, and S. Winograd. Matrix Multiplication via Arithmetic Progres-
sions. In Proc. 19th ACN Symp. on Theory of Computing, pp. 1–6, 1987.

7. I. Damg̊ard and M. Jurik. A generalization, a simplification and some applications
of Paillier’s probabilistic public-key system. In K. Kim, editor, Proceedings of
Public Key Cryptography 2001, volume 1992 of LNCS, pages 119–136. Springer,
2001.

8. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469–472, Jul 1985.

9. O. Goldreich. The Foundations of Cryptography - Volume 2. Cambridge University
Press, 2004.

10. S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental poker
keeping secret all partial information. In Proceedings of the fourteenth annual ACM
symposium on Theory of computing, pages 365–377. ACM Press, 1982.

11. M. Karchmer and A. Wigderson. On Span Programs In Proc. of the 8th IEEE
Structure in Complexity Theory, pages 102–111, 1993.

12. Y. Lindell and B. Pinkas. Privacy Preserving Data Mining In J. Cryptology
15(3):177–206, 2002.

13. P. Pallier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, Proceedings of Eurocrypt 1999, volume 1592 of LNCS, pages
223–238. Springer-Verlag, May 1999.

14. T. P. Pedersen. A threshold cryptosystem without a trusted party. In D. Davies, ed-
itor, Proceedings of Eurocrypt 1991, volume 547 of LNCS, pages 522–526. Springer,
1991.

Communication Efficient Secure Linear Algebra 539

15. R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Commun. ACM 21(2): 120–126 (1978).

16. T. Sander, A. Young, and M. Yung. Non-interactive CryptoComputing for NC1. In
Proceedings of the 40th Symposium on Foundations of Computer Science (FOCS),
pages 554–567, New York, NY, USA, Oct. 1999. IEEE Computer Society Press.

17. M. Sipser. A Complexity Theoretic Approach to Randomness. In Proc. of the 15th
Annual Symp. on the Theory of Computing, 1983.

18. A. C. Yao. Protocols for secure computations. In Proceedings of the 23rd Sym-
posium on Foundations of Computer Science (FOCS), pages 160–164. IEEE Com-
puter Society Press, 1982.

A Security Proof for the Intersection Computation
Protocol

In this section we prove Bob’s security in Protocol Intersection Computation.
Note that the only information Bob sends to Alice is Enc(M), from which she
learns M .

Simulator Alice

Input: A ki × k matrix C representing VI , a ka × k matrix A representing VA and
an integer kb ≤ k.
Output: A matrix M in the same distribution of M in protocol Intersection
Computation.

1. Compute a ki ×ka matrix D, satisfying DA = C. As VI⊆VA such a matrix exists
and is easy to compute.

2. Compute a kb × ka matrix E by adding kb − ki zero rows to D.
3. Compute the ka × kb′ matrix E⊥ whose columns represent the kernel of the

matrix E.
4. Randomly choose a k′

b × k′
b full rank matrix TE and output M = E⊥TE .

Claim 12. MS is distributed identically to M in Intersection Computation.

Proof. Define the subspace W = {v : vA ∈ A ∩B}. The rows of the matrices D
and E in the simulator span W . Therefore the columns of the matrix E⊥ span
the subspace W⊥. Moreover, according to Claim 2, the columns of the matrix
AB⊥ from protocol Intersection Computation also span W⊥.

Thus, there exists a full rank matrix T0 of dimensions k′b × k′b such that
E⊥T0 = AB⊥. The probability that a matrix MS is the simulator output is
PrTE

[MS = E⊥TE]. For every such choice of TE take TB = T−1
0 TE to be the

choice of the protocol, to get M = AB⊥TB = AB⊥T−1
0 TE = E⊥TE . Conversely,

for every random choice TB of the protocol, set TE = T0TB to get MS = E⊥TE =
E⊥T0TB = AB⊥TB. Therefore, the distributions are identical.

540 K. Nissim and E. Weinreb

B Obliviously Solving Sets of Linear Equations

Let Bob hold an encrypted matrix Enc(M) and an encrypted vector Enc(v).
We consider the decisional and functional versions of solving the linear system
cM = v (i.e., deciding whether exists a vector c satisfying cM = v, and finding
such c).

Protocol Linear Equations Feasibility

Input: Alice holds a private key for a public-key homomorphic encryption scheme
over GF(2). Bob holds an encryption Enc(M) of a ka × kb matrix over GF (2) (we
assume ka ≤ kb; the general case is analogous), and an encryption Enc(v) of a vector
v ∈ GF(2)kb .
Output: If a vector c ∈ GF(2)ka exists such that cM = v then Bob locally outputs
Enc(1); Otherwise, he outputs Enc(0).

1. Bob randomly chooses a non-singular ka × ka matrix TR, and a non-singular
kb × kb matrix TC , and computes M ′ = TRMTC , and v′ = vTC .

2. Alice and Bob run protocol Oblivious Gaussian Elimination, on the (ka+1)×

kb matrix
(

M ′

v′

)
, with the following exception: when multiplying the matrix M ′

by random matrices from the left, Alice and Bob pick a matrix that does not
change the lower row of M ′. Let Bob’s output be Enc(M ′′).

3. Alice and Bob use the Multiply protocol to compute an encryption of
∏kb

i=1(1−
M ′′[ka + 1, i]). This product is 1 if and only if the ka + 1 row of M ′′ is 0.

In the first step of the protocol Bob multiplies M by random operators from
the left and from the right to get M ′ = TRMTC . The following simple claim
shows that it is enough to check if there exists a vector c′ such that c′M ′ = v′

to solve the original cM = v system.

Claim 13. There exists a vector c ∈ GF(2)ka such that cM = v if and only if
there exists a vector c′GF(2)ka such that c′M ′ = v′.

Proof. If there exists a vector c ∈ GF(2)ka such that cM = v, then the rows of
M span v. Multiplying M by TR from the left does not change the row space
of M . Thus, there exists a vector c∗ such that c∗TRM = v. Multiplying both
sides by TC from the right results in c∗M ′ = c∗TRMTC = vTC = v′. The other
direction follows similarly.

By Claim 1, if M is a rank r matrix, then with constant probability the r× r
top left sub-matrix of M ′ is of full rank. In the second step, Alice and Bob jointly

perform Gaussian Elimination on the matrix
(
M ′

v′

)
. We run the protocol on

the ka × ka top left sub-matrix, letting Basic Column Elimination update the
entire matrix. If the rows of the matrix M ′ span the row v′, then by the end
of the Gaussian Elimination protocol, the bottom row will be 0. Otherwise, the

Communication Efficient Secure Linear Algebra 541

bottom row will not be 0. In step 3. we translate a zero vector in the last column
to Enc(1), and a non-zero vector to Enc(0).

The protocol has a one-sided error. If the answer is NO then Bob will always
hold an encryption of 0. If the answer is YES, then if in step (1) the rank of
the top-left ka × ka sub-matrix of M ′ is that of M , Bob will hold an encryption
of 1. As this happens with constant probability, Alice and Bob can execute the
protocol a polylogarithmic number of times, and OR the results in order to make
the error probability negligible.
Solving the Linear System. Note that the computation done in the Gaussian
Elimination protocol may be viewed as multiplying M by non-singular matrices
from the right and from the left (for column elimination, and for randomizing).
That is, at the end of the protocol we get an encryption of M ′ where M ′ =
T1MT2 for some non-singular matrices T1 and T2.

To have Bob hold an encryption of a vector c such that cM = v, we need Bob
to hold an encryption of T1. We modify the Gaussian Elimination protocol such
that any operation done on the rows of the input matrix M is simultaneously
performed on the rows of a unit matrix Ika+1. At the end of this process Bob
holds an encryption T1Ika+1 = T1.

We now describe protocol Linear Equations Solve. We assume that cM = v
is feasible, and compute such a solution c. Alice and Bob execute protocol Linear
Equations Feasibility, using the modified Oblivious Gaussian elimination

protocol. As a result, Bob holds a matrix T1 such that T1

(
M ′

v′

)
=

(
M ′′

0

)
.

Denote the lower row of T1 by t1. The vector t1 gives a linear combination of M ′

and v′ that gives the vector 0. Moreover, as we modified the Gaussian Elimination
protocol not to use the bottom row in the elimination process, the rightmost entry
of t1 must be 1. Thus, denoting the ka left entries of t1 by c1, we get that c1M ′ +
v′ = 0, that is, over GF (2), c1M ′ = v′. Recall that M ′ = TRMTC and v′ = vTC ,
and thus c1TRMTC = vTC . Therefore, c1TRM = v, and having an encryption of
c1, Bob can output Enc(c1TR) as the output of the protocol.

Threshold and Proactive Pseudo-Random
Permutations

Yevgeniy Dodis1,�, Aleksandr Yampolskiy2,��, and Moti Yung3

1 New York University, Department of Computer Science,
251 Mercer Street, New York, NY 10012, USA

dodis@cs.nyu.edu
2 Yale University, Department of Computer Science,

51 Prospect Street, New Haven, CT 06520, USA
aleksandr.yampolskiy@yale.edu

3 RSA Laboratories and Columbia University, Department of Computer Science,
1214 Amsterdam Avenue, New York, NY 10027, USA

moti@cs.columbia.edu

Abstract. We construct a reasonably efficient threshold and proactive
pseudo-random permutation (PRP). Our protocol needs only O(1) com-
munication rounds. It tolerates up to (n − 1)/2 of n dishonest servers
in the semi-honest environment. Many protocols that use PRPs (e.g., a
CBC block cipher mode) can now be translated into the distributed set-
ting. Our main technique for constructing invertible threshold PRPs is
a distributed Luby-Rackoff construction where both the secret keys and
the input are shared among the servers. We also present protocols for
obliviously computing pseudo-random functions by Naor-Reingold [41]
and Dodis-Yampolskiy [25] with shared input and keys.

Keywords: Distributed Block Ciphers, Distributed Luby-Rackoff Con-
struction, Oblivious Pseudo-Random Functions, Threshold Cryptography.

1 Introduction

Block ciphers are familiar cryptographic tools, which transform blocks of plain-
text into blocks of ciphertext of the same length. The DES (U.S. Data En-
cryption Standard) is a well-known example of a block cipher, which was, until
recently, used by many financial firms to protect online transactions. Tradition-
ally, pseudo-random permutations (PRPs) have been used to model secure
block ciphers [35]. They map l-bit inputs into unique l-bit outputs that appear
random to parties who lack the secret key. A close relative of the PRP is a
pseudo-random function (PRF), which needs not be invertible, but whose
outputs also look like random bit-strings without the secret key [29].

� Supported in part by NSF career award CCR-0133806 and NSF grant CCR-0311095.
�� Supported by NSF grants CCR-0098078,ANI-0207399,CNS-0305258, and CNS-

0435201.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 542–560, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Threshold and Proactive Pseudo-Random Permutations 543

Motivation. The security of these functions relies on the owner of the secret
key, who has a primary responsibility of keeping the key safe. Alas, it is not
always realistic to put all trust into a single party. The area of threshold cryp-
tography deals exclusively with sharing the ability to perform cryptographic
operations between a set of n servers [20]. A long line of research produced many
distributed protocols that are more efficient than generic multi-party solutions
when used for public key encryption [44,17,45], digital signatures [19,21,22,28],
key generation [1,8,27], pseudo-random functions [42,40,10], and other applica-
tions. The extra security and increased availability of constructions justify the
added complexity. The pseudo-random permutation is the only primitive that is
still missing from this long list.

Several initial attempts [9,37] gave a very basic sharing structure with many
limitations and drawbacks.1 The question of constructing a threshold PRP was
yet left open. In this paper, we resolve this problem. Many protocols are de-
fined for PRPs (block ciphers) and, when needed, can now be readily translated
into the distributed setting. This makes sense for sensitive operations like key-
encrypting-key in the Key Distribution Center [40]. Applications such as dis-
tributed remotely keyed authenticated encryption and CBC encryption mode
become possible, since they require a PRP as a building block (regular PRFs do
not suffice).

We focus on implementing the Luby-Rackoff construction [35] as a method for
building PRPs. It uses the Feistel permutation for function F (denoted F̄),
which sends a 2l-bit string (xL, xR) to a 2l-bit string (xR, xL ⊕ F (xR)). Luby
and Rackoff showed that a composition of four Feistel permutations (denoted
Ψ(F1, F2, F3, F4) = F̄1 ◦ · · ·◦ F̄4) is a secure 2l-bit PRP when Fi are independent
l-bit PRFs. While a sequential composition of PRFs to build a sequential PRP
is generic, there is a major technical difficulty in the distributed Luby-Rackoff
construction. Particularly, the difficult part is that if one uses a PRF as an in-
termediate round function, then not just the secret key, but also the output
needs to be kept distributed to assure the security of the entire Luby-Rackoff
construction. At the same time, the computation needs to continue and com-
pute on these shares, which means that we need to compute on shared inputs
as well.

Our Results. This paper describes anO(1) round distributed protocol for eval-
uating Ψ(F1, F2, F3, F4), which results in a threshold pseudo-random per-
mutation. Our protocol invokes the multiplication protocol for the underlying
secret sharing scheme O(mn+m logm) times, where n is the number of servers
and m is the maximum input length. It tolerates up to τ = �(n− 1)/2� dishonest
servers in the semi-honest model, which is consistent with some prior work on
distributed PRFs [40] and multiparty tools [1, 12, 15] used in our constructions.

1 They showed how to build rather inefficient cascade ciphers Ek(x) =
gkm(. . . gk2(gk1(x))), where g(·) is itself a secure cipher, by sharing a sequence of
keys in a special way. For τ -out-of-n sharing, the number of keys and composition
layers is on the order of n

τ
, which is exponential for most τ = ω(1).

544 Y. Dodis, A. Yampolskiy, and M. Yung

It can be made robust using standard techniques [46] and, as we show, can be
amended to ensure proactive security [33].

As we have explained, intermediate Feistel values arising after each round
of the Luby-Rackoff construction must be kept secret, yet we must evaluate the
PRFs Fi on them. Unfortunately, prior distributed PRF constructions [42,40,10]
are inapplicable to our problem, because they require the PRF input to be
publicly known. We give two protocols for distributed computation of PRFs by
Naor-Reingold [41] and Dodis-Yampolskiy [25] when both the secret keys and
the input are shared among the servers. Effectively, we implement oblivious
distributed PRFs, where servers do not learn what the input is, yet blindly
compute the PRF value.

We note that, theoretically, we can always use general multi-party tech-
niques [5] to distribute the computation of a PRP. Until recently, this was not
a viable option. These techniques either (i) required a linear number of com-
munication rounds (in the circuit depth) [5, 48] or (ii) ran in O(1) rounds but
used expensive zero-knowledge proofs for each gate of the circuit [4]. A recent
improvement by Damg̊ard et al. [16] allows to securely evaluate any circuit C in
O(1) rounds using O(|C|n) cryptographic operations (|C| is the circuit size). If
we distribute the DES circuit (which is believed to be a PRP) using Damg̊ard et
al.’s techniques, we obtain comparable efficiency to our threshold PRP.2 Our
protocol is thus fairly practical. In addition, it has theoretical value in and of
itself and could be of independent interest in other fields.

Overview of Our Construction. In our protocol, servers hold Shamir
shares [47] of secret keys SKi to PRFs Fi used in the Luby-Rackoff (LR) con-
struction of a PRP Ψ(F1, F2, F3, F4). The untrusted user who wants to compute
the PRP’s value broadcasts his input x to the servers. Servers somehow ver-
ify that the user is entitled to evaluate the PRP and engage in an interactive
protocol, which terminates with shares of the PRP’s value.

Our round functions Fi are based on a PRF by Dodis-Yampolskiy [25]. We
chose this PRF because it possesses useful algebraic properties and can be com-
puted in O(1) rounds. Given an l-bit input x = x1x2 . . . xl (which can be
viewed as an element of ZQ) and a secret key SK ∈ ZQ, the PRF value is
FSK(x) = g1/(x+SK). Here, g is the generator of a group in which the decisional
Diffie-Hellman inversion (y-DDHI) problem is hard. The y-DDHI problem
asks: “given (g, gx, . . . , g(xy), R) as input, to decide whether R = g1/x or not.”
It appears hard in a quadratic residues subgroup GQ of Z∗

P (P = 2Q + 1) for
sufficiently large primes P,Q.

Dodis and Yampolskiy showed that FSK(·) is secure only for inputs of small
length l = ω(log k), which makes it unsuitable for the LR construction, whose
2 In fact, for realistic settings, our algorithm performs better. The full DES circuit

contains about |C| ≈ 16000 Boolean gates [6]. Let the group size be a m = 1024
bit prime and the number of servers be n = 100. Our protocol performs roughly
(mn + m log m) · (m2n + mn2 log n) ≈ 1.95 × 1013 bit operations, while Damg̊ard et
al.’s protocol [16] performs (|C|n) · (mn2 log n) ≈ 10.9× 1013 operations to compute
the DES circuit.

Threshold and Proactive Pseudo-Random Permutations 545

round functions must accept longer l = Θ(k) bit inputs (k is the security param-
eter). In this paper, we assume subexponential hardness of the y-DDHI problem.
This immediately allows us to support inputs of size a = Θ(kδ) for some small
δ ≈ 1/3. We can shrink the input to the LR construction from l = Θ(k) bits down
to a = Θ(kδ) bits using an ε-universal hash function hi(x) = (ix mod Q) mod 2a.
We thus get a new PRF F ′

i,SK(x) = FSK(hi(x)), which can be used in the (cen-
tralized) LR construction.

We distribute the LR construction using well-known multiparty tools of ad-
dition, multiplication, inversion, etc. [3, 5, 1]. We rely heavily on an O(1) round
protocol by Damg̊ard et al. [15], which computes shares of bits of x ∈ ZP from
shares of x. This protocol allows us to efficiently perform modular reduction,
exponentiation, and truncation of shared values.

We can compute the PRF F ′
i,SK(x) with shared input x and keys (i, SK) as

follows. Computing the ε-universal hash hi(x) = (ix mod Q) mod 2a amounts to
a single multiparty multiplication, followed by a call to Damg̊ard et al.’s pro-
tocol to extract the trailing a bits. We can also distribute the computation of
FSK(x) = g1/(x+SK) because it is well-known how to do multiparty addition,
inversion, and exponentiation. As a result, we obtain a sharing of F ′

i,SK(x), a
random group element in GQ, whereas we need a sharing of a random l-bit
string. We can use a deterministic extractor E(x) = (x(P+1)/4 mod P) mod 2l

to convert this group element into a random l-bit string. Computing this extrac-
tor distributively entails a single distributed exponentiation followed by a call
to Damgard et al.’s protocol to extract l bits.

Armed with a protocol for computing the PRF F ′
i,SK(·), we can distribute a

single Feistel permutation, which maps (xL, xR) into (xR, xL ⊕F ′
i,SK(xR)). The

only missing link is how to XOR shares of PRF’s bits with shares of input’s bits.
Given shares of bits b1, b2 ∈ {0, 1}, we can get a share of b1⊕b2 by distributively
computing (b1 + b2) · (2 − (b1 + b2)). This completes our calculation. We obtain
a threshold PRP by iterating the distributed Feistel permutation four times,
cross-feeding its outputs to inputs.

Paper Organization. The remainder of the paper is organized as follows.
Section 2 reviews some preliminaries and defines our system model. In Section 3,
we give distributed protocols for evaluating pseudo-random functions by Naor-
Reingold [41] and Dodis-Yampolskiy [25] when keys and input are shared. In
Section 4, we present our distributed Luby-Rackoff protocol. Some practical
applications of our construction appear in Section 5. We conclude in Section 6.
Due to limitations in space, some details have been omitted; they can be found
in the full version, available as a Yale CS technical report [26].

2 Preliminaries

In this section, we discuss some basic definitions and assumptions.

546 Y. Dodis, A. Yampolskiy, and M. Yung

2.1 Our Model

Let k be a security parameter. We consider n computationally bounded servers
P1, . . . , Pn, which are connected by secure and authentic channels3. Our proto-
cols are secure against a static, honest-but-curious adversary who controls up to
τ = �(n− 1)/2� servers. This threshold results from the multiplication protocol
by Ben-Or et al. [5], which is used throughout the paper. We prove security
in the framework by Canetti [11]. In the honest-but-curious setting, privacy is
preserved under non-concurrent modular composition of protocols. This compo-
sition theorem will be the main source of our privacy proofs.

2.2 Notation

The notation in this paper is adapted from [1, 15]. We define ZP as the set
{0, . . . , P − 1}. We denote additive shares over ZP of a value a ∈ ZP by
〈a〉P1 , . . . , 〈a〉Pn ∈ ZP ; i.e., a =

∑n
j=1〈a〉Pj mod P . Meanwhile, we denote Shamir

shares [47] of a ∈ ZP by [a]P1 , . . . , [a]
P
n ∈ ZP ; i.e., a =

∑τ
j=1 λj [a]Pj mod P ,

where τ is the threshold and λj are the Lagrange coefficients.
We denote protocols as follows: the term [a]Pj ← PROTOCOL([b]Pj , c) means that

server Pj executes the protocol PROTOCOL with local input [b]Pj and public input
c. As a result of the protocol, it gets back local output [a]Pj . In all cases, the
local inputs and outputs will be Shamir shares over the appropriate field.

2.3 Building Blocks

We review some standard tools for multiparty computation that are used through-
out the paper. All these protocols require O(1) rounds of communication. We
measure their running time in terms of bit operations in m = $log2 P� (the mod-
ulus length) and n (the number of servers). Below, we use B as a shorthand for
O(nm2 +mn2 logn).

Sharing a Secret. To compute a Shamir sharing of x ∈ ZP over ZP , player Pj

chooses random coefficients αk ∈ ZP for k = 1, . . . , τ . He then sends [x]Pi =
x+

∑τ
k=1 αk · ik mod P to player Pi. We denote this protocol by RANDSS(x,ZP);

it takes O(n2m logn) bit operations.

Basic Operations. Addition and multiplication of a constant and a Shamir share
can be done locally. Hence, [x]Pj + c mod P is a polynomial share of x+ c mod P
and c · [x]Pj mod P is a share of xc mod P . These operations take O(m) and
O(m2) bit operations, respectively. Similarly, we can compute [x]Pj +[y]Pj mod P ,
which is a share of x+ y mod P . Addition requires O(m) bit operations.

Multiplication. We note that a product of polynomially many shared secrets
x1, . . . , xs ∈ Z∗

P can be computed in constant rounds [3, 15]. We denote this
protocol by MUL([x1]Pj , . . . , [xs]Pj); it uses O(sB) bit operations.

3 Such channels can be implemented using public-key encryption and digital
signatures.

Threshold and Proactive Pseudo-Random Permutations 547

Conversion Between Bit Shares. Given Shamir shares of a single bit b ∈ {0, 1}
in ZP , we may need to obtain its shares in ZQ. We can do this as follows.
First, each server Pj locally computes [b′]Pj ← −2 · [b]Pj + 1 (mod P) to convert
the bit from a 0/1 to a 1/ − 1 encoding. Next, Pj chooses a random bj ∈
{1,−1} and shares it among servers in both ZP and ZQ. He computes [b′′]Pj ←
MUL([b′]Pj , [b1]

P
j , . . . , [bn]Pj) and reveals it for all servers to reconstruct b′′. Finally,

Pj multiplies b′′ (mod Q) by its share of MUL([b1]
Q
j , . . . , [bn]Qj) and converts the

result to a 0/1 encoding. The protocol requires O(1) rounds and O(nB) bit
operations.

Bit Representation. Let x ∈ ZP be a shared secret (written xm . . . x1 in binary).
In some situations, we will need to obtain Shamir shares of the bits of x. For
this, we will use a protocol by Damg̊ard et al. [15], denoted ([x1]Pj , . . . , [xm]Pj) ←
BITS([x]Pj), which uses O((m logm)B) bit operations.

Occasionally, we will need to compute shares of a least significant bits of
x ∈ ZP in ZQ (rather than in ZP). We will first run the BITS([x]Pj) protocol
and then convert each bit share from ZP to ZQ. We denote this protocol by
([x1]

Q
j , . . . , [xa]Qj) ← BITS([x]Pj , a,ZQ). It requires O(1) rounds and O((an +

m logm)B) bit operations.
Given bit-by-bit shares of x ∈ ZP , denoted [x1]Pj , . . . , [xm]Pj , we can easily

obtain shares of x by locally computing [x]Pj ←
∑m

i=1 2i−1 · [xi]Pj mod P . This
takes O(m3) bit operations.

Inversion. Let x ∈ ZP be a shared secret. A protocol due to Bar-Ilan and
Beaver [3], denoted by INV([x]Pj), allows us to compute the shares of x−1 mod P .
It takes an expected number of O(B) bit operations.

Generating a Random Number. Occasionally, servers may need to jointly gener-
ate shares of a random number. A simple protocol, denoted JRP(ZP), accom-
plishes this in O(mn2 logn) bit operations [1]. There also exists a protocol
JRPZ(ZP) to jointly compute a sharing of zero modulo P in O(mn2 logn) bit
operations.

Exponentiation. Some of our protocols require computing the shares of xy mod P
when: (i) the exponent y ∈ ZQ is shared, but the base is fixed; (ii) the base x ∈
ZP is shared and the exponent is fixed; or (iii) both the base and the exponent are
shared. We denote protocols for the above scenarios EXP1(x, [y]

Q
j), EXP2([x]Pj , y),

and EXP([x]Pj , [y]
Q
j). They run in O(1) rounds and require, respectively, O((mn+

m logm)B), O(m3+nB), and O(m4+(mn+m logm)B) bit operations per player.
They appear in the full version of the paper [26].

3 Distributed Pseudo-Random Functions

In this section, we describe two distributed PRF constructions, where both the
secret key and the input are shared. This will ensure that unscrupulous servers do

548 Y. Dodis, A. Yampolskiy, and M. Yung

not learn the results of intermediate Luby-Rackoff computations. In Section 3.1,
we show how to do this for the PRF by Naor and Reingold [41]. Then in Sec-
tion 3.2, we describe how to do this for the recently introduced PRF by Dodis
and Yampolskiy [25].

Let the input size l : N �→ N be a function computable in poly(k) time.
Sometimes, for simplicity, we will write l for l(k). The initial input for all
servers is a triple (P,Q, g), where P,Q are large primes such that P = 2Q +
1 and P ≡ 3 mod 4. Here g is a generator of quadratic residues subgroup
GQ of Z∗

P . The group Z∗
P must be sufficiently large, i.e., P) 2k. Such a

triple can be publicly chosen without a trusted party by executing Bach’s al-
gorithm [2].

Both centralized PRFs take as input an l-bit message x, the secret key SK
and output a random group element in GQ. In our distributed PRFs, each server
Pj receives a share of the secret key SK and l shares of bits of x.

3.1 Naor-Reingold PRF

The secret key SK = (a0, a1, . . . , al) consists of l + 1 random exponents in ZQ.
Given an l-bit input x = x1 . . . xl, the PRF FNR

SK : {0, 1}l �→ GQ is defined as

FNR
SK (x) = (ga0) i : xi=1 ai .

This PRF was shown to be secure for polynomially sized inputs, l(k) =
poly(k), under the decisional Diffie-Hellman (DDH) assumption: “given (g, gx, gy)
and R ∈ GQ, it is hard to determine if R = gxy or not.”

We can compute the PRF value recursively. Set h0 = ga0 . Then, for all i =
1, . . . , l,

hi =
{
hai

i−1 if xi = 1,
hi−1 otherwise. (1)

It is easily seen that the PRF value must be equal to hl. This form is convenient
for distributed computation when both the input x and the secret exponents ai

are shared. One problem here is that we need to implement an if-condition on
secret input x. We can use a simple trick and rewrite Equation (1) as

hi = hi−1(1 − xi) + hai

i−1xi for xi ∈ {0, 1}. (2)

Computing the PRF value distributively amounts to several rounds of dis-
tributed multiplication and exponentiation(see Algorithm 1).

Proving security of this protocol is straightforward given the security of its
sub-protocols by the composition theorem. The size of the secret key is pro-
portional to the length of the input. What is worse, this protocol requires O(l)
rounds of communication. The running time is dominated by l calls to exponen-
tiation protocol in line 6, yielding O(m4l + (mn + m logm)Bl). bit operations
per player.

Threshold and Proactive Pseudo-Random Permutations 549

Algorithm 1. A protocol PRF-NR(([a0]
Q
j , . . . , [al]

Q
j), ([x1]Pj , . . . , [xl]Pj)) for

distributed computation of FNR
SK (x).

[0]Pj ← JRPZ(ZP) �Servers jointly generate a sharing of 0 mod P1

[h0]Pj ← [0]Pj + g mod P �And compute a share of generator g.2

for i ← 1 to l �For all input bits i,3

do4

[r]Pj ← MUL([hi−1]Pj , 1 − [xi]Pj)5

[s]Pj ← EXP([hi−1]Pj , [ai]
Q
j)6

[t]Pj ← MUL([s]Pj , [xi]Pj) �we compute shares of Equation (2)7

[hi]Pj ← [r]Pj + [t]Pj8

end9

return [hl]Pj �Return a share of the PRF value.10

3.2 Dodis-Yampolskiy PRF

The pseudo-random function FDY
SK : {0, 1}l(k) �→ GQ (|Q| > l) is as follows.

Given an l-bit input x (which can also be thought of as an element in ZQ) and
the secret key SK ∈ ZQ, the function value is FDY

SK (x) = g1/(x+SK) [25]. Dodis-
Yampolskiy’s proof of security relied on an unorthodox q-decisional Diffie-
Hellman inversion (q-DDHI) assumption: “given the tuple

(
g, gx, . . . , g(xq)

)
and R ∈ GQ as input, it is hard to decide whether R = g1/x or not.” Specifically,
they showed:

Theorem 1 (Dodis-Yampolskiy). Suppose an attacker who runs for s(k)
steps cannot break the 2l(k)-DDHI assumption in group GQ with advantage ε(k).
Then no algorithm running in less than s′(k) = s(k)/(2l(k) · poly(k)) steps can
distinguish FDY

SK (·) from a random function with advantage ε′(k) = ε(k) · 2l(k).

Because the security reduction is rather loose, we can construct PRFs only with
small superlogarithmic input l(k) = ω(log k). Unfortunately, “as is” this PRF is
unsuitable for use in the Feistel transformation. A Feistel transformation uses
length-preserving PRFs which map l(k) = poly(k) input bits to l(k) pseudo-
random bits. In theory, small inputs are not a problem. We can either (1) shrink
the inputs using a collision-resistant hash function [14] or (2) utilize the generic
tree construction [29] to extend the input range. However, when we need to dis-
tribute the computation of this PRF between different servers, neither of these
options becomes acceptable. As of today, we do not know how to efficiently dis-
tribute collision-resistant hash functions. And if we decide to utilize the generic
tree construction, then we might as well use the Naor-Reingold PRF from the
start.

Instead, we assume subexponential hardness of the q-DDHI assumption in
GQ; that is, we suppose that there is no way to break the q-DDHI assumption
except by computing the discrete logarithm of gx in Z∗

P . The fastest algorithm
for computing discrete logarithms modulo P runs in time roughly exp((1+o(1))·

550 Y. Dodis, A. Yampolskiy, and M. Yung

√
logP

√
log logP) [13]. It seems reasonable to assume that no algorithm running

in time less than s(k) = 2kε2 (for some small ε2 ≈ 1
3) can break the q-DDHI

assumption. Formally:

Definition 1 (strong DDHI assumption). We say that the strong DDHI
assumption holds in GQ if there exist 0 < ε1 < ε2 such that for all probabilistic
families of Turing machines {Ak}k∈N with running time O(2kε2) and q ≤ 2kε1 ,
we have: ∣∣∣ Pr

x

[
Ak(g, gx, . . . , g(xq), R) = 1 | R ← g1/x

]
−

Pr
x

[
Ak(g, gx, . . . , g(xq), R) = 1 | R $← GQ

] ∣∣∣ ≤ poly(k)/2kε2
,

where the probability is taken over the coin tosses of Ak and the random choice
of x ∈ Z∗

Q and R ∈ GQ.

By Theorem 1, the strong DDHI assumption immediately allows us to support
inputs of size kε1 for small ε1 > 0.

What we need is a shrinking hash function, which maps long l(k) = k bit
inputs to smaller a(k) = kε1 bit inputs, which can be used as an input to
FDY

SK (·). A typical tool used for this purpose is a family of δ-universal hash
functions H = {hi : {0, 1}l �→ {0, 1}a}i∈Z∗

Q
.4 The simplest such construct is

hi(x) = (ix mod Q) mod 2a,

where the collision probability δ = 1/2a = 1/2kε1 is the best we can hope for.
We can thus define a new function F ′ : {0, 1}l �→ GQ as

F ′
SK,i(x) = FDY

SK (hi(x)),

which is easily seen to be a secure PRF for polynomially sized inputs using a
standard hybrid argument.

This new PRF can be used in the Feistel transformation. We describe how to
distribute its computation in Algorithm 2.

The security of the protocol again follows by composition theorem from secu-
rity of its subcomponents. Unlike Algorithm 1, this algorithm uses O(1) rounds
of communication. However, it relies on a rather strong complexity assumption.
Line 8 dominates the running time. It requires O((mn + m logm)B) bit oper-
ations, which is more than l times cheaper than the Naor-Reingold distributed
protocol.

4 We say that a hash family is δ-universal if, for all distinct inputs x, x′ ∈ {0, 1}l, we
have Pri[hi(x) = hi(x′)] ≤ δ.

Threshold and Proactive Pseudo-Random Permutations 551

Algorithm 2. A protocol PRF-DY([i]Qj , [SK]Qj , [x1]
Q
j , . . . , [xl]

Q
j)

[x]Qj ←
∑l−1

i=0 2i · [xi+1]
Q
j mod Q �Encode input x as an element in Z∗

Q.1

[r]Qj ← MUL([i]Qj , [x]
Q
j) �Then hash it to ix mod Q.2

a←
⌊
l1/3

⌋
�Shrinking factor a = l1/3.3

([r1]
Q
j , . . . , [ra]Qj) ← BITS([r]Qj , a,ZQ) �Chop all but a least significant bits.4

[x̃]Qj ←
∑a−1

i=0 2i · [ri+1]
Q
j mod Q5

[s]Qj ← [x̃]Qj + [SK]Qj mod Q �A share of (x̃ + SK).6

[t]Qj ← INV([s]Qj) �Invert the share into 1/(x̃ + SK).7

[y]Pj ← EXP1(g, [t]
Q
j) �Exponentiate to get shares of g1/(x̃+SK).8

return [y]pj9

x

y G
Q

Z
P

*

y

x

l bits

l bits

a bits

log P bits

chop
a

(ix mod Q)

~

g
1/(SK+x)

~

chop
k
(y

(P+1)/4
mod P)

~

~

Fig. 1. Transformation of F DY
SK (·) into a length-preserving PRF

4 Distributed Pseudo-Random Permutations

We now show how to construct a threshold pseudo-random permutation
by distributing the Luby-Rackoff construction. In principle, the Luby-Rackoff
construction can be used with any PRF. However, we will use it with the PRF
by Dodis-Yampolskiy [25], which allows us to evaluate the threshold PRP in
only O(1) communication rounds.

We begin by reviewing some formal definitions in Section 4.1. In Section 4.2,
we show how to distribute a single Feistel permutation. In Section 4.3, we put all
of the pieces together and explain how to distribute the entire Feistel cascade.
Finally, in Section 4.4, we analyze our protocol’s security and sketch how to
make it proactive.

552 Y. Dodis, A. Yampolskiy, and M. Yung

4.1 Definitions

Definition 2 (Feistel transformation). Let F : {0, 1}l �→ {0, 1}l be an l-
bit mapping. We denote by F̄ the permutation on {0, 1}2l defined as F̄ (x) =
(xR, xL ⊕ F (xR)), where x = (xL, xR). Note that F̄ is a permutation even if F
is not. Its inverse is given by F̄−1(yL, yR) = (f(yL) ⊕ yR, yL).

Definition 3 (Feistel network). Let F1, . . . , Fk : {0, 1}l �→ {0, 1}l be l-bit
mappings. Then a k-round Feistel network is a composition

Ψ(F1, . . . , Fk) = F̄1 ◦ F̄2 · · · F̄k

Theorem 2 (Luby-Rackoff). The permutation Ψ(F1, F2, F3, F4) on {0, 1}2l

cannot be distinguished from a random permutation by a PPT adversary. Here,
Fi are independently keyed pseudo-random functions.

4.2 Distributed Feistel Transformation

In Section 3.2, we defined a PRF acting on l(k) = poly(k) bit inputs by F ′
i,SK(x)

= FDY
SK (hi(x)). We also gave an O(1) round protocol PRF-DY that computes

shares of a PRF value g1/(hi(x)+SK) from shares of input’s bits and secret key.
We now show how to distribute the Feistel transformation F ′

i,SK , which maps
(xL, xR) to (xR, xL ⊕ F ′

i,SK(xR)). The inverse Feistel transformation can be
computed in a similar manner.

Our PRF protocol outputs shares of a random group element in GQ. Mean-
while, we need a sharing of a random l-bit string to use in the Feistel transfor-
mation. We use a deterministic extractor, which does not lose any entropy, to ex-
tract l bits of randomness. In the centralized setting, given PRF output ỹ ∈ GQ,
we can simply compute its square root by letting y = (ỹ(P+1)/4 mod P) mod 2l

(see also Figure 1). To distribute the extractor, we use a distributed exponen-
tiation protocol followed by a conversion into bit shares. Notice that if we have
shares of bits xi, yi ∈ {0, 1}, denoted by [xi]

Q
j and [yi]

Q
j , we can compute a

share of their exclusive-OR as [zi]
Q
j ← [xi]

Q
j + [yi]

Q
j and [zi]

Q
j ← MUL([zi]

Q
j , 2 −

[zi]
Q
j mod Q).
We show how to compute Feistel transformation in Algorithm 3.
Security follows from composition theorem and security of its subprotocols.

The protocol requires O(1) rounds of communication between servers, because
the for-loop is computed in parallel, and all other primitives take O(1) rounds.
The bit complexity is dominated by a call to the PRF-DY protocol in line 1 and
by l = o(m) calls to MUL in line 7, yielding O((mn +m logm)B) bit operations
per player.

4.3 Distributed Luby-Rackoff Construction

Once we have a distributed protocol for the Feistel transformation, it is easy to
distribute the Luby-Rackoff construction of PRP gs(x) = Ψ(F1, F2, F3, F4)(x).

Threshold and Proactive Pseudo-Random Permutations 553

Algorithm 3. One round of Feistel transformation FEISTEL([i]Qj , [SK]Qj ,
[x1]

Q
j , . . . , [x2l]

Q
j).

[ỹ]Pj ← PRF-DY([i]Qj , [SK]Qj , [xl+1]Qj , . . . , [x2l]Qj) �PRF value at xR.1

[y]Pj ← EXP2([ỹ]Pj , (P + 1)/4) �Extract square root y(p+1)/4 mod P .2

([y1]Qj , . . . , [yl]Qj) ← BITS([y]Pj , l, ZQ) �Truncate to l bits.3

for i ← 1 to l (in parallel) �For all bits i4

do5

[zi]Qj ← [xi]Qj + [yi]Qj mod Q6

[zi]Qj ← MUL([zi]Qj , 2 − [zi]Qj mod Q) �We compute a share of xi ⊕ yi.7

end8

return ([xl+1]Qj , . . . , [x2l]Qj , [z1]Qj , . . . , [zl]Qj) �Return shares of9

(xR, xL ⊕ F DY
SK (xR)).

Initially, the n servers own shares of four independently chosen secret keys for
the PRFs. These keys may either be jointly generated by servers or distributed
to servers by a trusted party. An untrusted user, who wants to evaluate the PRP
on input x = (xL, xR), broadcasts x to the servers.5 The servers convert x into
bit shares and then run the distributed Feistel transformation for four rounds.
We thus get Algorithm 4.

The round complexity is O(1). Bit complexity is dominated by four calls to
the Feistel protocol, which take O((mn+m logm)B) bit operations per player.

Similarly, we can distribute the inverse permutation g−1
s (·) by replacing calls

to Feistel transforms with calls to inverse Feistel transforms. We denote the
resulting protocol by LUBY-RACKOFF−1. The round and bit complexity remain
the same.

Algorithm 4. LUBY-RACKOFF(([i1]
Q
j , [SK1]

Q
j), . . . , ([i4]

Q
j , [SK4]

Q
j), x)

[0]Qj ← JRPZ(ZQ) �Shares of zero.1

for i ← 1 to 2l (in parallel) �Locally compute shares of input’s bits.2

do3

[yi]Qj ← [0]Qj + xi mod Q4

end5

for rnd ← 1 to 4 �Run the Feistel transformation for four rounds.6

do7

([y1]Qj , . . . , [y2l]Qj) ← FEISTEL([irnd]Qj , [SKrnd]Qj , [y1]Qj , . . . , [y2l]Qj)8

end9

return ([y1]Qj , . . . , [y2l]Qj)10

5 Alternatively, the user can split x into bit shares himself.

554 Y. Dodis, A. Yampolskiy, and M. Yung

4.4 Security

In the stand-alone case, the security of a PRP gs(·) : {0, 1}2l �→ {0, 1}2l is
formalized via a game between an attacker and an oracle. The attacker can
query the oracle for gs(·) and g−1

s (·) on messages of his choice. Roughly, the
PRP is deemed secure if no attacker can tell apart gs(x∗) from random for any
message x∗, which was not asked as a query.

In the distributed setting, the attacker also gets transcripts of semi-honest
servers. The security property of threshold PRP states that these tran-
scripts do not help the attacker in any way. Formally, for any PPT A = (A1,A2)
that breaks the security of threshold PRP by corrupting servers Pi1 , . . . , Piτ ,
there exists a PPT B = (B1,B2) that breaks the security of the original PRP.

The attacker A learns key shares of corrupted servers. Then A1 runs in the
first stage where it can interact with any honest servers on inputs of his choice.
Attacker can ask servers either encryption queries where he learns shares of
gs(x) or decryption queries for g−1

s (y). At the end of the phase, A1 outputs
state information for A2 and a challenge input x∗, whose PRP value was not
asked as a query. In the second stage, a random coin b ∈ {0, 1} is tossed. A2

receives a challenge Γb, which is either Γ0 ← gs(x∗) or Γ1
$← {0, 1}2l. We let A2

interact with honest servers, but prohibit it from asking encryption queries on
x∗ or decryption queries on Γb. Finally, A2 outputs a guess b′. We say that A
breaks the scheme if Pr[b = b′] > 1/2 + negl(k).

Theorem 3. LUBY-RACKOFF protocol is an
⌊

n−1
2

⌋
-secure threshold pseudo-

random permutation in the static, honest-but-curious setting.

Proof (sketch). In the honest-but-curious setting, LUBY-RACKOFF protocol cor-
rectly computes a permutation gs(x) = Ψ(F1, F2, F3, F4)(x) for some secret key
s = ((i1, SK1), . . . , (i4, SK4)). We thus concentrate on the pseudorandomness
property.

For sake of contradiction, suppose there exists adversary A = (A1,A2) that
breaks the security of LUBY-RACKOFF. Since A is static, we assume it corrupts the
maximum allowed threshold of servers before the protocol starts6. By symmetry,
we can assume corrupt servers Pj have indices Bad = {1, . . . , τ}. Bad servers
learn their shares of secret key s. They also observe the protocol’s input x, output
y = gs(x), shares of output’s bits y1, . . . , y2l of both good and bad servers, and
all messages Ξ exchanged during the protocol. The adversarial view viewLuby,A
is thus a random variable〈

([i1]
Q
k , [SK1]

Q
k), . . . , ([i4]

Q
k , [SK4]

Q
k), x, y, [y1]

Q
j , . . . , [y2l]

Q
j , Ξ

〉
for j = 1, . . . , n and k ∈ Bad.

We construct a simulator B = (B1,B2) that breaks the security of a PRP
gs(·). It will run A in a virtual distributed environment and imitate A’s replies
to distinguish gs(·) from a random permutation, thereby violating Theorem 2.

6 If not, we can arbitrarily fix some of the honest servers to be corrupt.

Threshold and Proactive Pseudo-Random Permutations 555

Setup. Algorithm B generates random shares of keys for corrupt servers. For
j ∈ Bad, it picks
([i1]

Q
j , [SK1]

Q
j), . . . , ([i4]

Q
j , [SK4]

Q
j) $← Z∗

Q × Z∗
Q and gives them to A.

Responding to Queries. When A initiates an honest server Pj (j �∈ Bad) on
input x, B in turn asks his oracle for y = gs(x). It generates random output

shares [z1]
Q
j , . . . , [z2l]

Q
j

$← Z∗
Q for j ∈ Bad. Then, B augments the set of

shares of corrupted servers into a full and random sharing of y’s bits. For
each bit yi ∈ {0, 1} (1 ≤ i ≤ 2l), B picks a random polynomial αi(x) ∈
ZQ[X] satisfying αi(j) = [zi]

Q
j and αi(0) = yi. The adversary A receives

randomized output shares (α1(j), . . . , α2l(j)) for all servers Pj (1 ≤ j ≤ n).
In the semi-honest setting, we can simulate the transcript of each subprotocol
used by LUBY-RACKOFF given its input and output values. We can thus use
these protocols as black-boxes and simulate messagesΞ in ViewLuby,A. These
values provide a perfect simulation of the coalition’s view. Decryption queries
are handled just like encryption queries except B queries another oracle
g−1

s (·).
Challenge. Eventually, attacker A outputs a message x∗ on which it wants to

be challenged. It claims to be able to distinguish output of LUBY-RACKOFF(x∗)
from a random 2l-bit string. B sends the same challenge x∗ to the trusted
party and gets back Γ , which is either gs(x∗) or a random string. Finally, B
gives Γ to A.

Guess. Attacker A continues to issue queries for messages other than x∗. Simu-
lator B responds to queries as before. Finally, A outputs a guess b′ ∈ {0, 1},
which B also returns as its guess. ��

An adversary who controls less than τ = �(n− 1)/2� servers cannot break the
privacy of our protocol. The protocol can easily be amended to achieve proac-
tive security [33] and withstand the compromise of even all servers as long as
at most τ servers are corrupted during each time period. The basic idea is to
have servers periodically refresh their shares of the input and the secret keys.
To be exact, each server Pj will from time to time execute the JRPZ protocol to
generate a random share of zero, called [0]Qj . It will then update its input share
to [x]Qj ← [x]Qj + [0]Qj and its secret keys’ shares to [SKi]

Q
j ← [SKi]

Q
j + [0]Qj .

5 Applications of Our Construction

In the previous section, we have constructed a threshold pseudorandom per-
mutation. Whenever a PRP is used as part of the construction, we can plug in
our protocol instead.

Let gs : {0, 1}2l �→ {0, 1}2l be a 2l-bit pseudo-random permutation obtained
from the Luby-Rackoff construction Ψ(F1, F2, F3, F4). The PRP’s key s consists
of four secret keys SKi of pseudo-random functions Fi used in the construc-
tion. We denote by LUBY-RACKOFF our distributed protocol, which evaluates
the gs(·).

556 Y. Dodis, A. Yampolskiy, and M. Yung

5.1 CCA-Secure Symmetric Encryption

A PRP is deterministic, so by itself it cannot be a secure encryption scheme [30].
The adversary can easily detect if the same message has been encrypted twice.
Desai [18] described how a CCA-secure symmetric encryption scheme can
be obtained from a PRP: The encryption Es(m) of a (2l − k)-bit message m is
defined as Es(m) = gs(m, r), where r is a k-bit randomly generated nonce. To de-
crypt, the user computes Ds(c) = g−1

s (c) and extracts the message. To distribute
the computation, the key s is split into shares among the n servers. Upon receiv-
ing a message m, the servers run the JRP protocol to generate shares of a secret
random number r. They can extract shares of k bits, written [r1]

Q
j , . . . , [rk]Qj ,

using the BITS protocol. Bit shares ofm are easy to compute sincem is public. Fi-
nally, the servers invoke LUBY-RACKOFF on ([m1]

Q
j , . . . , [m2l−k]Qj , [r1]

Q
j , . . . , [rk]Qj)

to get shares of gs(m, r).

5.2 Authenticated Encryption

If we make the nonce r public and check during decryption that it matches the
nonce in the ciphertext, then we get a distributed authenticated encryption
scheme (AE). Encryption of m is given by AEs(m) = (r, gs(m, r)). The decryp-
tion algorithm ADs(r′, c) computes (r,m) = g−1

s (c) and checks that r = r′ before
returning m to the user. The message here is rather short: It is limited to (2l−k)
bits by the length of the PRP. For longer messages, we can use an amplification
paradigm of Dodis and An [24]: We compute a concealment (b, h) of message
m (|b| + |m|), which is a specialized publicly known transformation. In fact, we
can even implement distributed remotely keyed authenticated encryption
(RKAE) [7], where the servers do not need to perform any checks and just serve
as PRP oracles for an untrusted user. The secret key s is split into shares among
several computationally bounded smartcards, and an insecure, powerful host
performs most of computations. The insecure host computes a concealment (b, h)
of m and sends it to the smartcards, who run the LUBY-RACKOFF protocol, and
return shares of gs(b).

5.3 Cipherblock Chaining Mode

We often need to encrypt messages that are longer than 2l bits. The messagem is
usually split into blocks (m1, . . . ,mk) each of length 2l. Then a PRP may be used
in cipher block chaining (CBC) mode [38], which initializes c0 with a random
2l-bit string and sets ci = gs(ci−1 ⊕mi) for i = 1, . . . , k. The encryption of m is
defined to be (c0, c1, . . . , ck). To decrypt, the user can compute mi = g−1

s (ci) ⊕
ci−1. The servers own shares of secret key s. The untrusted user broadcasts
message m to the servers. We must be careful to guard against the blockwise
adaptive attacks [34]; hence, we require the user to send an entire message m.
The servers run the JRP protocol to generate a random shared number from
which shares of a 2l-bit c0 are extracted. For i = 1, . . . , k rounds, the servers
distributively XOR shares of ci−1 and mi (as in Section 4.3), and then run the
LUBY-RACKOFF protocol on the result.

Threshold and Proactive Pseudo-Random Permutations 557

5.4 Variable Input Block Ciphers

Existing block ciphers operate on blocks of fixed length (FIL). Often, one needs
a block cipher that can operate on inputs of variable length (VIL). There ex-
ist centralized constructions for VIL ciphers, which use a FIL block cipher as
a black box: most notably, CMC [32], EME∗ [31] and an unbalanced Feistel
network [43]. Our threshold PRP enables us to distribute the computation of
these modes. Besides basic arithmetic operations, these modes XOR the cipher-
texts (to distribute, we would use BITS), evaluate the fixed-length block cipher
(LUBY-RACKOFF), compute the universal hash function ha,b(x) = ax + b (MUL),
and truncate the outputs (BITS).

6 Conclusion

We gave a simple construction of a threshold PRP in the semi-honest model. Our
scheme is fairly practical. PRPs are commonly used tools in protocol design. Our
techniques enable distributing many protocols (using PRPs), which until now
only existed in the centralized setting. In particular, we showed how to distribute
the computation of a CBC encryption mode and a remotely keyed authenticated
encryption scheme.

One open problem is whether we could use group multiplication to imple-
ment the distributed Feistel transformation rather than having to convert group
elements into bit strings and avoid using the expensive protocol by Damg̊ard
et al. [16] altogether.

Acknowledgments

We thank Tomas Toft for his explanation of the bit conversion protocol.

References

1. J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation modulo a
shared secret with applications to the generation of shared safe prime products. In
Advances in Cryptology - Proceedings of CRYPTO 2002, volume 2442 of Lecture
Notes in Computer Science, pages 417–432. Springer-Verlag, 2002.

2. E. Bach. Analytic Methods in the Analysis and Design of Number-Theoretic Algo-
rithms. A.C.M. Distinguished Dissertations. MIT press, Cambridge, MA, 1985.

3. J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a con-
stant number of rounds. In Proceedings of the ACM Symposium on Principles of
Distributed Computation, pages 201–209, 1989.

4. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols.
In Proceedings of the 22nd Annual ACM Symposium on the Theory of Computing,
pages 503–513, 1990.

5. M. Ben-or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computing. In Proceedings of the 20th
Annual ACM Symposium on the Theory of Computing, pages 1–10, 1988.

558 Y. Dodis, A. Yampolskiy, and M. Yung

6. E. Biham. A fast new DES implementation in software. In Fast Software Encryp-
tion - Fourth International Workshop, volume 1267 of Lecture Notes in Computer
Science, pages 260–272. Springer-Verlag, 1997.

7. M. Blaze, J. Feigenbaum, and M. Naor. A formal treatment of remotely keyed
encryption. In Advances in Cryptology - Proceedings of EUROCRYPT 98, Lecture
Notes in Computer Science, pages 251–265. Springer-Verlag, 1998.

8. D. Boneh and M. K. Franklin. Efficient generation of shared RSA keys. Journal
of the Association for Computing Machinery, 48(4):702–722, 2001.

9. E. F. Brickell, G. D. Crescenzo, and Y. Frankel. Sharing block ciphers. In E. Daw-
son, A. Clark, and C. Boyd, editors, ACISP, volume 1841 of Lecture Notes in
Computer Science, pages 457–470. Springer, 2000.

10. C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asyn-
chronous broadcast protocols. In Advances in Cryptology - Proceedings of CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science, pages 524–541. Springer-
Verlag, 2001.

11. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science, pages 136–145, 2001.

12. D. Catalano, R. Gennaro, and S. Halevi. Computing inverses over a shared secret
modulus. In Advances in Cryptology - Proceedings of EUROCRYPT 2000, volume
1807 of Lecture Notes in Computer Science, pages 190–206. Springer-Verlag, 2000.

13. D. Coppersmith, A. M. Odlyzko, and R. Schroeppel. Discrete logarithms in GF(p).
Algorithmica, 1(1):1–15, 1986.

14. I. Damg̊ard. Collision free hash functions and public key signature schemes. In
Advances in Cryptology - Proceedings of EUROCRYPT 87, Lecture Notes in Com-
puter Science, pages 203–216. Springer-Verlag, 1987.

15. I. Damg̊ard, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally se-
cure constant-rounds multi-party computation for equality, comparison, bits and
exponentiation. In Third Theory of Cryptography Conference, 2006. To appear.

16. I. Damg̊ard and Y. Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In Advances in Cryptology - Proceedings of CRYPTO
2005, volume 3621 of Lecture Notes in Computer Science, pages 378–394. Springer-
Verlag, 2005.

17. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In Fourth International Workshop on
Practice and Theory in Public Key Cryptography, pages 119–136, 2001.

18. A. Desai. New paradigms for constructing symmetric encryption schemes se-
cure against chosen-ciphertext attack. In Advances in Cryptology - Proceedings
of CRYPTO 2000, pages 394–412, 2000.

19. Y. Desmedt. Society and group-oriented cryptography: a new concept. In Advances
in Cryptology - Proceedings of CRYPTO 87, pages 120–127, 1987.

20. Y. Desmedt. Some recent research aspects of threshold cryptography. In First
International Workshop On Information Security, pages 158–173, 1997.

21. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Advances in Cryptology
- Proceedings of CRYPTO 89, pages 307–315, 1989.

22. Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures.
In Advances in Cryptology - Proceedings of CRYPTO 91, pages 457–469, 1991.

23. Y. Dodis. Efficient construction of (distributed) verifiable random functions. In
Proceedings of 6th International Workshop on Theory and Practice in Public Key
Cryptography, pages 1–17, 2003.

Threshold and Proactive Pseudo-Random Permutations 559

24. Y. Dodis and J. H. An. Concealment and its applications to authenticated encryp-
tion. In Advances in Cryptology - Proceedings of EUROCRYPT 2003, volume 2656
of Lecture Notes in Computer Science, pages 312–329. Springer-Verlag, 2003.

25. Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and
keys. In Eighth International Workshop on Theory and Practice in Public Key
Cryptography, pages 416–431, 2005.

26. Y. Dodis, M. Yung, and A. Yampolskiy. Threshold and proactive pseudo-random
permutations. Technical Report YALEU/DCS/TR-1325, Yale University, Nov.
2005. Available at ftp://ftp.cs.yale.edu/pub/TR/tr1325.pdf.

27. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key genera-
tion for discrete-log based cryptosystems. In Advances in Cryptology - Proceedings
of EUROCRYPT 99, pages 295–310, 1999.

28. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signa-
tures. Inf. Comput., 164(1):54–84, 2001.

29. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
Journal of the Association for Computing Machinery, 33:792–807, 1986.

30. S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In Proceedings of the 14th Annual
ACM Symposium on the Theory of Computing, pages 270–299, 1982.

31. S. Halevi. EME∗: Extending EME to handle arbitrary-length messages with asso-
ciated data. In Advances in Cryptology - Proceedings of INDOCRYPT 2004, pages
315–327, 2004.

32. S. Halevi and P. Rogaway. A tweakable enciphering mode. In Advances in Cryp-
tology - Proceedings of CRYPTO 2003, pages 482–499, 2003.

33. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or:
How to cope with perpetual leakage. In Advances in Cryptology - Proceedings of
CRYPTO 95, pages 339–352, 1995.

34. A. Joux, G. Martinet, and F. Valette. Blockwise-adaptive attackers. revisiting the
(in)security of some provably secure encryption modes: CBC, GEM, IACBC. In
Advances in Cryptology - Proceedings of CRYPTO 2002, volume 2442 of Lecture
Notes in Computer Science, pages 17–30. Springer-Verlag, 2002.

35. M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal of Computing, 17:373–386, 1988.

36. A. Lysyanskaya. Unique signatures and verifiable random functions from DH-DDH
separation. In Proceedings of the 22nd Annual International Cryptology Conference
on Advances in Cryptology, pages 597–612, 2002.

37. K. M. Martin, R. Safavi-Naini, H. Wang, and P. R. Wild. Distributing the encryp-
tion and decryption of a block cipher. Designs, Codes, and Cryptography, 2005. to
appear.

38. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of applied
cryptography. CRC press LLC, Boca Raton, FL, 1997.

39. S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In Pro-
ceedings of the 40th IEEE Symposium on Foundations of Computer Science, pages
120–130, 1999.

40. M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and
KDCs. In Advances in Cryptology - Proceedings of EUROCRYPT 99, volume 1592
of Lecture Notes in Computer Science, pages 327–346. Springer-Verlag, 1999.

41. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In Proceedings of the 38th IEEE Symposium on Foundations of
Computer Science, pages 458–467, 1997.

560 Y. Dodis, A. Yampolskiy, and M. Yung

42. J. B. Nielsen. A threshold pseudorandom function construction and its applica-
tions. In Advances in Cryptology - Proceedings of CRYPTO 2002, volume 2442 of
Lecture Notes in Computer Science, pages 401–416. Springer-Verlag, 2003.

43. S. Patel, Z. Ramzan, and G. S. Sundaram. Efficient constructions of variable-input-
length block ciphers. In Selected Areas in Cryptography 2004, pages 326–340, 2004.

44. T. P. Pedersen. A threshold cryptosystem without a trusted party. In Advances in
Cryptology - Proceedings of EUROCRYPT 91, pages 522–526, 1991.

45. T. Rabin. A simplified approach to threshold and proactive RSA. In Advances in
Cryptology - Proceedings of CRYPTO 98, pages 89–104, 1998.

46. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In Proceedings of the 21th Annual ACM Symposium on the Theory
of Computing, pages 73–85, 1989.

47. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

48. A. Yao. Protocols for secure computation (extended abstract). In Proceedings of
the 23rd IEEE Symposium on Foundations of Computer Science, pages 160–164,
1982.

PRF Domain Extension Using DAGs

Charanjit S. Jutla

IBM T. J. Watson Research Center,
Yorktown Heights, NY 10598

Abstract. We prove a general domain extension theorem for pseudo-
random functions (PRFs). Given a PRF F from n bits to n bits, it is
well known that employing F in a chaining mode (CBC-MAC) yields a
PRF on a bigger domain of mn bits. One can view each application of
F in this chaining mode to be a node in a graph, and the chaining as
edges between the node. The resulting graph is just a line graph. In this
paper, we show that the underlying graph can be an arbitrary directed
acyclic graph (DAG), and the resulting function on the larger domain is
still a PRF. The only requirement on the graph is that it have unique
source and sink nodes, and no two nodes have the same set of incident
nodes. A new highly parallelizable MAC construction follows which has
a critical path of only 3 + log∗ m applications of F .

If we allow Galois field arithmetic, we can consider edge-colored DAGs,
where the colors represent multiplication in the field by the color. We
prove an even more general theorem, where the only restriction on the
colored DAGs is that if two nodes (u and v) have the same set of incident
nodes W , then at least one w in W is incident on u and v with a dif-
ferent colored edge. PMAC (Parallelizable Message Authentication [6])
is a simple example of such graphs. Finally, to handle variable length
domain extension, we extend our theorem to a collection of DAGs. The
general theorem allows one to have further optimizations over PMAC,
and many modes which deal with variable lengths.

Keywords: PRF, MAC, DAG, Partial Order, Galois Field.

1 Introduction

There is often a need to extend the domain of a given pseudo-random function
(PRF). One of the most popular and well-known such schemes is the CBC-
MAC [1]. In [3] it was shown that if F is a pseudo-random function from n
bits to n bits, then the CBC (cipher block chaining) construction yields a PRF
from mn bits to n bits. Although the construction is called a MAC (message
authentication code), which is a strictly weaker notion than PRF [9], the above
shows that it is indeed a PRF domain extension method. Other domain exten-
sion schemes are known as well, for example, the cascade construction [2] and
the protected counter sum construction [5]. Recently, a scheme PMAC (or Par-
allelizable Message Authentication) [6] (also see XECB [11]) was also shown to
be a domain extension scheme.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 561–580, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

562 C.S. Jutla

Despite all these results, there is no unifying theme in these results. In this
paper, we attempt to remedy this situation, by proving a general theorem for
domain extension. In essence, we show that arbitrary acyclic networks of the
same pseudo-random function can be used to build a pseudo-random function
on a larger domain. To illustrate this paradigm, consider the CBC-MAC scheme.
Let F be a PRF from n bits to n bits (and which takes k bits of secret key).
For example, DES [10] is usually assumed to be such a PRF on 64 bits, with 56
bits of secret key. A PRF F̃ from mn bits to n bits is defined as follows. The
mn bit input is divided into m blocks P1, P2,, Pm. The function Fk (i.e. F
with key k) is applied to the first block P1 to yield an intermediate value C1.
The function Fk is next invoked on the xor of the next block P2 and previous
intermediate value C1, to yield C2. This chaining process is continued, and the
output of F̃k is just Cm. The chaining process defines an underlying directed
graph of m nodes V1, V2, ..., Vm, with an edge from Vi to Vi+1.

Now, consider an arbitrary directed acyclic graph (DAG) G = (V,E), with m
nodes V , and edges E. Assume that G has only one source node V1, and only
one sink node Vm. Given a PRF F from n bits to n bits, a composite PRF F̃
from mn bits to n bits is defined as follows. As before, assume that the input is a
sequence P1, ..., Pm. The first intermediate value is just C1 = Fk(P1). Inductively
assume that we have computed the intermediate values of all predecessors of a
node Vi. Then, the intermediate value Ci for the node Vi is

Ci = Fk(Pi ⊕
⊕

(i,j)∈E

Cj)

The output of the composite function F̃k is just Cm. See Figure 1 for an example.
Of course, not all DAGs are expected to yield a PRF. However, consider

DAGs with the restriction that no two nodes have the same set of incident nodes

F F

F

F
FP1

P2
P3

P4

P5

1 2
3

4

5

C1
C2

C4

C3

+

+
C5+ +

Fig. 1. A PRF Domain Extension Mode and its DAG

PRF Domain Extension Using DAGs 563

(u is said to be incident on v if there is an edge from u to v), and that they have
unique source and sink nodes. In this paper we show that given a PRF F from
n bits to n bits, the composite F̃ defined as above on such DAGs, is a PRF from
mn bits to n bits.

An immediate application is that if a party has access to parallel hardware,
then instead of simple chaining as in CBC-MAC, it can compute the PRF in
parallel. For instance, if it has four processors, then it can employ the method
given by the graph in Figure 2. A parallel mode with critical path of length only
3 + log∗ m also follows. Unlike PMAC [6], this mode does not use any Galois
arithmetic.

Fig. 2. A Parallel Mode for four processors

If we allow Galois Field arithmetic (in particular, fields GF(2n)), we can
consider edge-colored DAGs. The colors on the edges represent multiplication in
the field by the color (assume that each color is mapped to a unique element in
the field). For example, going back to figure 1, suppose we employ three colors,
col1, col2 , and col3. Let w be a primitive element in the field. We map col1
to unity in the field, col2 to w, and col3 to w2. Then, if we color the edge
(1, 4) by col2, then in the definition of the composite function, we multiply the
intermediate result C1 with w in the field, before xoring it with the plaintext P4
and C2, and applying Fk.

The main result of the paper can be stated as follows. Consider an edge
colored DAG G with unique source and sink nodes and m total nodes, and with
the condition that if two nodes (say u and v) have the same set of incident
nodes (say W), then for at least one node w in W , the color on the edge (w, u)
is different from the color on the edge (w, v). Given a PRF F from n bits to n
bits, the composite F̃ built using the graph G as above, is a PRF from mn bits
to n bits. The result is proven under the adaptive adversary model, which is of
course the difficult case. Our proof technique is novel, and even when considered
as just a proof for CBC-MAC it offers a simpler and novel proof in the adaptive
adversary model. It is well known that the difficulty in analyzing the security of
such schemes stems from the fact that we need to model the underlying oracle
as a function, i.e. an oracle replying consistently with earlier queries. The key
advance is an identity (lemma 1) which reduces the analysis to a scheme where
the oracle replies randomly. The adversary remains adaptive, but the analysis
in this “random game” becomes much easier.

Using the new theorem, the mode in fig 2 can now be parallelized further as
in fig 3(a). The additional cost is a few GF(2n) operations. Security of PMAC [6]

564 C.S. Jutla

col1

col2

col3

col4

col1

col2

col3

col4

colm

(a) (b)

Fig. 3. Modes using GF(2n)

follows (see fig 3(b)), as it is a simple example of such a colored DAG. Further,
we obtain an additional optimization over PMAC, because unlike PMAC, we do
not even need to compute Fk on the all zero word (i.e. Fk(0n)).

In Section 5 we extend our results to variable length domain extension.

2 Definitions

Definition 1. For positive integers n, l, let F(n→l) be the set of all functions
from n bits to l bits.

Definition 2. (PRF) A pseudo-random function has signature

F : {0, 1}k × {0, 1}n→{0, 1}l.

Define SecF (q, T) to be the maximum advantage an adaptive adversary can
obtain when trying to distinguish between FK(·) (with K chosen uniformly at
random) and a function chosen uniformly at random from F(n→l), when given
q queries and time T .

3 Domain Extension Using Arbitrary Acyclic Graphs

Definition 3. Let G = (V,E), be a directed acyclic graph (DAG) [13] with a
finite vertex set V and edges E. A node u is said to be incident on a node v, if
there is an edge from u to v, i.e E(u, v). Such an edge will sometimes be denoted
〈u, v〉. Define a DAG to be non-redundant if for every pair of nodes, the set
of their incident nodes is different. For two vertices u and v, we say that u ≺ v
if there is a directed path from u to v. Since G is a finite DAG, the relation ≺
is a finite partial order.

Definition 4. Given a function f from n bits to n bits, and a non-redundant
DAG G = (V,E) with only one source node and only one sink node, and a total
of m nodes, define fG : {0, 1}nm→{0, 1}n as follows:

PRF Domain Extension Using DAGs 565

– Let the input to fG be an mn bit string P , which is divided into m n-bit
strings P1, P2, ..., Pm.

– Since |V | = m, let V1,.....,Vm be an enumeration of the nodes. When it is
clear from context, we will identify the index of a vertex with the vertex
itself. Let the unique source node be V1, and the unique sink node be Vm.

– For the unique source node, define M1 = P1.
– For every non-source node Vj , j > 1, inductively (over ≺) define Mj =
Pj ⊕u:E(u,j) f(Mu)

– For notational convenience, for every node Vj , let Cj denote f(Mj).
– The output of the function fG is just Cm.

It is clear that the restriction of one sink node is crucial, for if there was another
sink node other than Vm, then the plaintext fed into this other sink node has
no influence on Cm. It is possible that there are instances of DAGs G with two
source nodes such that FG is a PRF; however, a more stringent requirement than
non-redundancy will definitely be required. Consider a DAG G, with two source
nodes V1 and V2, both with only one outgoing edge and that too to the same
vertex. Then, the resulting function is clearly not a PRF. A similar situation
motivates the requirement of non-redundancy.

One may be tempted to weaken the non-redundancy requirement. For in-
stance, one idea is to have a condition on the DAG that it have no non-trivial
automorphism. However, such a DAG may not yield a secure PRF, as illustrated
in Figure 4. The two queries 〈p1, p2, p2, p4, p5, p6〉 and 〈p1, p2, p2, p5, p4, p6〉 yield
the same result.

V1 V2

V3

V4

V5 V6

Fig. 4. A non-automorphic DAG

Theorem 1. For a non-redundant DAG G = (V,E) with unique source and
sink nodes, and m total nodes, let fG be as above. Then, no adaptive adversary,
with q queries, can distinguish between (a) fG where f is chosen uniformly at
random from F(n→n), (b) and a function chosen uniformly at random from
F(nm→n), with probability more than (mq)22−(n+1).

In the next section, we state and prove a more general theorem.

4 Domain Extension Using Colored DAGs and GF(2n)

If we allow Galois field arithmetic, we get an even more general construction,
and a corresponding PRF domain extension theorem. Assuming that the

566 C.S. Jutla

underlying function F has an n-bit output, we will use the Galois field GF(2n).
Such fields have the property that they have exactly 2n elements. Moreover,
each element can be represented as a n bit vector, with addition in the field
being just the bitwise exclusive-or (⊕). Since multiplication distributes over ad-
dition in a field, it follows that if a, b and c are three elements in the field then
a ∗ (b ⊕ c) = a ∗ (b + c) = (a ∗ b) + (a ∗ c) = (a ∗ b) ⊕ (a ∗ c). A further useful
property of finite fields is that for a fixed non-zero a in the field, if b is picked
uniformly at random from the field, then a ∗ b is also uniformly distributed in
the field.

Definition 5. Let G = (V,E), be a directed acyclic graph (DAG). Let |V | = m.
A coloring χ of the edges of the graph is a map χ : E→[1..m]. The triple (V,E, χ)
will be called an edge-colored DAG. Define an edge-colored DAG to be non-
singular if for every pair of nodes u, v, if the set of their incident nodes is same
(say W), then at least for one w ∈W , χ(〈w, u〉) �= χ(〈w, v〉). For two vertices u
and v, we say that u ≺ v if there is a directed path from u to v. Since G is a
finite DAG, the relation ≺ is a finite partial order.

Definition 6. Given a function f from n bits to n bits, and a non-singular
edge-colored DAG G = (V,E, χ) with only one source node and only one sink
node and a total of m < 2n nodes, define fG : {0, 1}nm→{0, 1}n as follows:

– Since m < 2n, we can view χ as a map from E to GF(2n)∗, i.e. the non- zero
elements of the field.

– Let the input to fG be mn bit string P , which is divided into m n-bit strings
P1, P2, ..., Pm.

– Since |V | = m, let V1,.....,Vm be an enumeration of the nodes. When it is
clear from context, we will identify the index of a vertex with the vertex
itself. Let the unique source node be V1, and the unique sink node be Vm.

– For the unique source node, define M1 = P1.
– For every non-source node Vj , j > 1, inductively (over ≺) define Mj =
Pj +

∑
u:E(u,j) χ(〈u, j〉) ∗ f(Mu), where f(Mu), which is an n-bit quantity,

is viewed as an element of GF(2n). The summation is addition in the field,
which is the same as n-bit exclusive-or.

– For notational convenience, for every j, we denote f(Mj) by Cj .
– The output of the function fG is just Cm.

Theorem 2. : (Main Theorem) For a non-singular edge-colored DAG G =
(V,E, χ) with unique source and sink nodes, and m < 2n total nodes, let fG

be as above. Then, no adaptive adversary, with q queries, can distinguish be-
tween (a) fG where f is chosen uniformly at random from F(n→n), (b) and
a function chosen uniformly at random from F(nm→n), with probability more
than (mq)22−(n+1).

Theorem 3. Given a PRF F : {0, 1}k × {0, 1}n→{0, 1}n, and a non-singular
edge-colored DAG G = (V,E, χ) with unique source and sink nodes, and m < 2n

total nodes, a function FG : {0, 1}k ×{0, 1}mn→{0, 1}n can be defined be letting
for each K, (FG)K to be (FK)G (as in definition 6). Then,

PRF Domain Extension Using DAGs 567

SecF G(q, T) ≤ SecF (q, T) + (mq)22−(n+1)

The proof follows from Theorem 2 by standard techniques.

4.1 Background

Most theorems in cryptography involving PRF [3,2,5,6,11] and PRP
[21,22,15,12] constructions, as well as modes of operations of block ciphers
[4,16,11,24,19]1, from other primitives must tackle the issue of collisions in the
oracle calls to the smaller primitive. Fortunately, these collision probabilities are
usually low, and conditioning on distinctness of oracle calls, the target construct
can be shown to behave like a random function or permutation.

Upper bounding the collision probability requires different techniques in many
of these theorems, and the difficulty in the proof can depend on issues like
whether there are two independent oracles (as in [22,16]) or if a fresh initial
vector is used in each invocation (as in [4,16,24,19]). In particular, the proof of
security of CBC-MAC [3] is more involved than that of CBC [4] for precisely this
reason, i.e. in the former there is no fresh initial vector in each invocation. As
our theorem generalizes CBC-MAC, we expect similar intricacies in our proof.
However, as mentioned in the introduction, we prove a novel technical lemma
which precisely captures this nuance of CBC-MAC.

4.2 Notation

Before we prove theorem 2, we need to fix more notation and give a general idea
of the proof. We first note that we allow arbitrary functions as adversaries and
not just computable functions. Then without loss of generality, we can assume
that the adversary is deterministic, as every probabilistic adversary is just a
probability distribution over all deterministic adversaries [18].

Fix an adaptive adversary. Since the adversary is deterministic, the first
query’s plaintext (say P 1 = 〈P 1

1 , ..., P
1
m〉) is fixed for that adversary. Thus, the

first query’s output, say C1
m is only a function of f . The adversary being adap-

tive, its second query is a function of C1
m. But, since C1

m is only a function of f ,
the second query’s plaintext can also be written just as a function of f . Thus,
C2

m is only a function of f , and so forth.
We will denote probabilities under the first scenario, i.e. (a) in the theorem 2

statement, as Pr, and the probabilities in the second scenario, i.e. (b) in the
theorem 2 statement, as Pr(b). Most of the analysis will be devoted to the first
scenario. So, unless otherwise mentioned, all random variables from now on are
in the first scenario.

For all variables corresponding to a query, we will use superscripts to denote
the query number. Subscripts will be used to denote blocks within a query.
The variables will be as in Definition 6, i.e. P standing for plaintext input, M
standing for the variable on which the f function is applied, and C standing for
the output of f .
1 These references are not meant to be exhaustive.

568 C.S. Jutla

Thus, by the convention above Ci
j is the output of f in the ith query’s jth

block. We will use C to denote the whole transcript {Ci
j}i∈[q],j∈[m] of f outputs.

There will often be a need to just refer to the sequence of last blocks of each
query; we will use C∗

m to denote the sequence C1
m,...,Cq

m, i.e. the mth block
from all the queries. More precisely, as argued earlier, these variables should be
written as a function of f , e.g. C(f), but we will drop the argument when it is
clear from context.

Let c denote a constant mqn-bit transcript, i.e. a prospective value for C(f).
For a fixed c, P i

j and M i
j can be viewed as functions of only c (see definition 6),

and we will write them as P i
j (c) and M i

j(c). Just as for C, we will use P (c) to
denote the whole sequence.

Definition 7. Given a constant mqn-bit transcript c, let the plaintext chosen
by the adversary be p = P (c). For any vertices j, j′, and query indices i, i′ we
say that (i, j) ≡c (i′, j′) if

(j = j′) and ∀k 4 j : pi
k = pi′

k

Define
μc(i, j) = min{i′|(i′, j) ≡c (i, j)}.

Not every mqn-bit constant c can be a real transcript C(f) for some f . So, we
define a notion of consistent c. We call c consistent (con(c)) if

∀j ∈ [1..m],∀i : cij = c
μc(i,j)
j

Define the following “correcting” function ρ from mq n-bit blocks to mq n-bit
blocks:

ρ(c) = c, where cij = c
μc(i,j)
j .

The above definition of a correcting function is similar to the one used in the
proof of the Luby-Rackoff theorem (see [20]).

Define the core index set of c to be I = {(i, j)|μc(i, j) = i}. Informally, I is
the set of indices which are not required to be “consistent” with smaller indices.
Thus, ρ(c) retains the values at core indices, and corrects them otherwise.

Consider the following condition PD (pairwise different).

Definition 8. For any constant c, define PD(c) to be

∀i, i′ ∈ [1..q],∀j, j′ ∈ [1..m], j �= j′ : M i
j(c) �= M i′

j′ (c),

and ∀i, i′ ∈ [1..q],∀j ∈ [1..m] : (i, j) �≡c (i′, j) ⇒M i
j(c) �= M i′

j (c).

4.3 Proof of Main Theorem

Lemma 1 (PRF Technical Lemma). For every qn-bit constant r=〈ri〉i∈[1..q]

Prc∈U{0,1}mqn,f∈UF (n→n)[C(f) = c ∧ PD(c) | c∗m = r]

= 2−mqn ∗ Prc∈U{0,1}mqn [PD(ρ(c)) | c∗m = r]

PRF Domain Extension Using DAGs 569

In the left hand side of the lemma, we have that c is consistent, as it is not
difficult to see that C(f) is consistent (as proven below in lemma 2(i)). Now for
consistent c, it is also easy to see that “correcting” it leaves it unchanged, i.e.
ρ(c) = c (see lemma 2(f)). Hence, we can replace PD(c) by PD(ρ(c)) in the left
hand side above. Thus, the lemma can be restated as

Prc,f [C(f) = c | PD(ρ(c)) ∧ c∗m = r] = 2−mqn

To prove this, we can try to see what constraints are imposed on f and c by
C(f) = c. For C(f) to be same as c, the transcript c must be consistent, as
C(f) is consistent. Let I be the core index set of c. Let l = |I|. Then for c to
be consistent, there are exactly (mq − l) n-bit linear constraints on c. We will
also see that for every consistent c (in which case c = ρ(c)), such that PD(c)
holds, a function fc can be defined using the M and the c values at core indices
I such that C(fc) = c (see lemma 3). Moreover, such an fc is unique on these
l input values M (lemma 2(f)). Thus, there are exactly l n-bit constraints on f
such that C(f) = c. Thus, there are a total of mq n-bit constraints on f and
c. However, we have not addressed the issue of whether the condition PD(ρ(c))
perhaps influenced this count of mq total constraints. We show below rigorously
that even under the condition PD(ρ(c)) the number of n-bit constraints on f
and c is exactly mq.

So to start with, for each consistent c, we would like to define a function fc

such that C(fc) = c. We also show below (lemma 2(h)) that for consistent c,
M i

j(c) = M
μc(i,j)
j (c). Thus, if we define fc at core indices, i.e. define fc(M i

j(c)) =
cij for all i in I, we might have C(fc) = c. There is a slight problem however,
i.e. fc may not be well-defined, as the M(c) values at core indices may not be
distinct. In fact, we will need an even stronger distinctness condition, i.e. PD
defined above, than just being distinct at core indices.

Definition 9. For each c, such that PD(c) holds, define fc as follows. Let I =
{(i, j) | μc(i, j) = i} be the core index set. For (i, j) ∈ I, define fc(M i

j(c)) = cij .
This is well defined as PD(c) holds. We will not need to define fc on other values.

In Lemma 3 below we show that for every consistent c such that PD(c) holds
it is indeed the case that C(fc) = c.

We collect all simple statements about μ, ρ and consistency and their relation-
ships to each other in the following lemma.

Lemma 2. For all i, i′ ∈ [1..q], i �= i′, for all j ∈ [1..m] and mqn bit constant
transcript c:

(a) (i,m) �≡c (i′,m), i.e. μc(i,m) = i,
(b) ≡c is an equivalence relation,
(c) μc(μc(i, j), j) = μc(i, j),
(d) μc = μρ(c),
(e) ρ(c) is consistent,
(f) Let c be consistent, and let b be such that for all i s.t. μc(i, j) = i, bij = cij.
Then ρ(b) = c. Also, for consistent c, ρ(c) = c

570 C.S. Jutla

(g) For u 4 j, μc(i, u) = μc(μc(i, j), u).
(h) For consistent c, M i

j(c) = M
μc(i,j)
j (c)

(i) C(f) is consistent,
(j) For the transcript c let p = P (c) be its corresponding plaintext. If for all u
s.t. E(u, j), μc(i, u) = μc(i′, u), and pi

j = pi′

j , then μc(i, j) = μc(i′, j).

Proof: (a) As we have assumed, wlog, that the adversary does not repeat queries,
it follows that i and i′ (i �= i′) can never be equivalent over all vertices V . In
particular, it is not the case that (i,m) ≡c (i′,m). To see this, note that we have
assumed that the graph has only one sink node, i.e. Vm. It follows that for every
node j, j 4 m, hence the claim.
(b) & (c) straightforward.
(d) Note that the adversary’s choice of p = P (c) depends only on c∗m. So we
first show that for all i, ρ(c)i

m = cim. This follows as μc(i,m) = i by (a). Thus p
remains same for ρ(c).
(e) We just note that for all i, i′, (i, j) ≡c (i′, j) implies μc(i, j) = μc(i′, j). Thus,
by definition of ρ, we have ρ(c)i

j = ρ(c)i′

j .
(f)We first note that, since by (a), μc(i,m) = i, we have bim = cim. Thus, as in
proof of (d) above, μb = μc. Now, ρ(b)i

j = b
μb(i,j)
j = b

μc,j(i)
j = c

μc,j(i)
j , the last

equality following from (c) and condition on b. For consistent c, this is same as cij .
(g) For u 4 j, (i, j) ≡c (i′, j) implies (i, u) ≡c (i′, u). Now, (i, j) ≡c (μc(i, j), j).
Thus, (i, u) ≡c (μc(i, j), u).
(h) M i

j(c) = P i
j (c)+

∑
u :E(u,j) χ(〈u, j〉)∗ ciu. First note that P i

j (c) = P
μc(i,j)
j (c).

Also, for consistent c and u 4 j, ciu = c
μc(i,u)
u =cμc(μc(i,j),u)

u by (g). Again
by consistency of c, the latter is same as c

μc(i,j)
u . This shows that M i

j(c) =

M
μc(i,j)
j (c).

(i) by induction on the finite partial order ≺.
(j) We just need to show that (i, j) ≡c (i′, j). But μc(i, u) = μc(i′, u) implies
(i, u) ≡c (i′, u). This along with pi

j = pi′

j shows that p agrees in queries i and i′

over all blocks j′ 4 j. ��

Lemma 3. For any consistent c such that PD(c) holds:

C(fc) = c

Proof: Follows by induction. See the appendix for a full prove. ��

Lemma 1 (PRF Technical lemma restated). For every qn-bit constant r =
〈ri〉i∈[1..q]

Prc∈U{0,1}mqn,f∈UF (n→n)[C(f) = c ∧ PD(c) | c∗m = r]

= 2−mqn ∗ Prc∈U{0,1}mqn [PD(ρ(c)) | c∗m = r]

Proof: We first show that the LHS above is same as

Γ = Prc,b∈U{0,1}mqn [bij = cij |(i,j):μc(i,j)=i ∧ con(c) ∧ PD(c) | c∗m = r]

PRF Domain Extension Using DAGs 571

By lemma 2(i), the conjunct con(c) can be added to the LHS of the lemma.
We show that the two probabilities are same for every constant c. So, fix a c.
As before, let I = {(i, j) | μc(i, j) = i} be the core index set of c. Let S =
{M i

j(c) | (i, j) ∈ I}. Since PD(c) holds, |S| = |I|. Let S′ be an arbitrary set of n
bit strings, disjoint from S, and |S′| = mq − |I|. Thus, |S ∪ S′| = mq.

By lemma 3, C(fc) = c. Thus, for each b agreeing with c on I, we have
a function fc defined on |I| inputs S, such that C(fc) = c. We can use the
remaining mq− |I| values of b (i.e. from indices which are not in I) to extend fc

to be defined on S ∪ S′. This map from b to the extended fc is 1-1.
Similarly, for any function f defined on S ∪ S′, such that C(f) = c (note

that f need only be defined on S for C(f) to be well defined), we can define an
mqn-bit long b which agrees with c on I. For indices in (i, j) ∈ I, use f(M i

j(c))
to define bij , and use f(s), s ∈ S′, to define the remaining part of b. This map
from f to b is also 1-1. This shows that the LHS of the statement of the lemma
is same as Γ .

We next show that, the RHS of the statement of the lemma is same as Γ . To
this end, we show that the following two sets are equinumerous, i.e. we show a
bijection between the two sets. The two sets are

C = {c|c ∈ {0, 1}mqn,PD(ρ(c)), and c∗m = r}

D = {(c, b)|c, b ∈ {0, 1}mqn, bij = cij |(i,j)∈I , con(c), PD(c), and c∗m = r}

That they are equinumerous follows easily from lemma 2(e,f,a,d), but to be
rigorous consider the following extension of ρ to a function ρ̂ from C to D.

ρ̂(c) = (ρ(c), c)

It needs to be shown that the function has D as its range, is 1-1 and onto.
The function is obviously 1-1. To prove that its range is D, we need to prove
three things:

1. ρ(c) is consistent: follows by lemma 2(e).
2. cij = ρ(c)i

j |μρ(c)(i,j)=i: follows directly from definition of ρ and lemma 2(d).
3. ∀i, ρ(c)i

m = ri: by lemma 2(a) and definition of ρ we have ρ(c)i
m = cim; and

hence cim = ri implies ρ(c)i
m = ri.

To prove that it is onto, for any (c, b) in D, we show that b is in C and ρ̂(b) = (c, b).
But for any (c, b) in D, by lemma 2(f), ρ(b) = c. Thus, ρ̂(b) = (c, b). It also follows
that PD(ρ(b)) holds. Moreover, by lemma 2(a), b∗m = c∗m. Thus b is in C.

The lemma follows by noting that Γ = |D|/22mqn = 2−mqn ∗ (|C|/2mqn).
��

Lower bounding the right hand side of the above lemma is a much easier task,
as there is no function f involved.

We will denote by Δ the quantity (mq)22−(n+1).

572 C.S. Jutla

Lemma 4. For every qn bit constant r,

Prc∈U{0,1}mqn [PD(ρ(c)) | c∗m = r] ≥ 1 −Δ

Proof: First note that for all i, cim = ρ(c)i
m, by lemma 2(a) and definition of ρ.

Thus, once c∗m is fixed (and hence ρ(c)∗m) to r, the plaintext p = P (c) is fixed,
independent of other cij (i ∈ [1..q], j < m). We will prove the lemma by upper
bounding the probability of ¬PD by union bound.

For each vertex j, let Vj be its set of incident vertices, i.e. Vj = {u| E(u, j)}.
Recall,

M i
j(ρ(c)) = pi

j +
∑

u:E(u,j)

χ(〈u, j〉) ∗ cμc(i,u)
u

If j �= j′, and Vj �= Vj′ , wlog let w ∈ Vj and w �∈ Vj′ . Then M i
j(ρ(c)) = M i′

j′ (ρ(c))
iff

χ(〈w, j〉) ∗ cμc(i,w)
w

= pi
j + pi′

j′ +
∑

u:E(u,j),u �=w

χ(〈u, j〉) ∗ cμc(i,u)
u +

∑
u:E(u,j′)

χ(〈u, j′〉) ∗ cμc(i′,u)
u

Since, cμc(i,w)
w does not appear on the RHS, and w < m, and χ(〈w, j〉) �= 0, the

probability of above is 2−n.
If j �= j′, and Vj = Vj′ , then for some w ∈ Vj , χ(〈w, j〉) �= χ(〈w, j′〉), as

the underlying graph G is non-singular. Thus, similarly to the argument above,
M i

j = M i′

j′ happens with probability 2−n.
When j equals j′ (and i �= i′), we have three cases. If for some u incident on

j (E(u, j)), μc(i, u) �= μc(i′, u), then the probability of the two Ms being equal
is at most 2−n. Otherwise, if pi

j �= pi′

j , then the probability is zero. If pi
j = pi′

j ,
we have μc(i, j) = μc(i′, j) by lemma 2(j), and hence the corresponding disjunct
in ¬PD is false.

Since all the probabilities are 2−n or zero, the bound in the lemma follows. ��

Lemma 5

Prf [PD(C(f))] ≥ 1 −Δ

Proof:

Prf [PD(C(f))]

=
∑

r

∑
c

Prf [C(f) = c ∧ PD(c) ∧ c∗m = r]

=
∑

r

Prc,f [C(f) = c ∧ PD(c) ∧ c∗m = r] ∗ 2mqn

=
∑

r

Prc,f [C(f) = c ∧ PD(c) | c∗m = r] ∗ 2−qn ∗ 2mqn

=
∑

r

2−qn ∗ Prc[PD(ρ(c)) | c∗m = r] (by lemma 1)

≥ 1 −Δ (by lemma 4) ��

PRF Domain Extension Using DAGs 573

Since the adversary A decides 0 or 1 based on the oracle replies, say O =
〈O1, O2, ..., Oq〉, we can write its output as A(O). In scenario (a), O is really
C∗

m(f), with f chosen randomly. Since in scenario (b), the oracle is a random
function with range n bits, O is just a uniformly random string of length qn.

Lemma 6

Pr(b)[A(O) = 0] ≥ Prf [A(C∗
m) = 0 ∧ PD(C(f))] ≥ (1 −Δ)Pr(b)[A(O) = 0]

Proof: To begin with, we have

Prf [A(C∗
m) = 0 ∧ PD(C(f))] =

∑
c

Prf [A(c∗m) = 0 ∧ C(f) = c ∧ PD(c)]

= 2mqn ∗ Prc∈U{0,1}mqn,f [A(c∗m) = 0 ∧ C(f) = c ∧ PD(c)]
= 2mqn ∗ Prc∈U{0,1}mqn,f [C(f) = c ∧ PD(c) |A(c∗m) = 0] ∗ Pr(b)[A(O) = 0]

The above is at least (1 −Δ)Pr(b)[A(O) = 0] by lemma 1 and lemma 4, and at
most Pr(b)[A(O) = 0]. ��

Proof of Theorem 2 (Main Theorem): By lemma 6 and lemma 5 it follows that

|Prf [A(C∗
m(f)) = 0]−Pr(b)[A(O) = 0] | ≤ Δ ��

5 Variable Length Domain Extension and Family of
Graphs

The previous constructions were devoted to extending the domain of a function
from n bits to mn bits, for a fixed m. In other words, the plaintext queries of
the adversary were restricted to be exactly mn bits. We could fix m to be large
enough, say m = 2n, and use a canonical encoding of smaller sized plaintexts
into length mn bit strings. Such an encoding exists for all plaintexts of size less
than mn by appending plaintexts of size q bits, by 10i, where i = mn− q− 1. In
other words, 10i acts as an end marker. However, smaller sized plaintexts have
to undergo m = 2n applications of F , which is very inefficient. This problem of
a really long end marker was resolved by [23] (also see [7]) by noting that the
end marker can actually be of length zero, if it can be authenticated.

The simplest way to achieve this is to have two independent PRFs F1 and
F2. Use F1 when the plaintext is not a multiple of the block size n, and use F2
when the plaintext is a multiple of n. In the former case, append an end marker
of the kind 10i, but now i need only be of length at most n− 2.

So, given a function Fk on n bits, consider a collection of graphs, one graph
Gq in the family for each (plaintext) bit-length q. Then if we define F̃Gq

k similarly
to as before, we have a composite function from all strings to n bits. We know
that individually each F̃Gq is a PRF given F is a PRF. As explained in the
previous paragraph, we need to assure that these different functions are (almost)

574 C.S. Jutla

independent. We prove that if the family of graphs satisfy certain constraints
then this is indeed the case.

We consider a fixed n throughout the rest of this section. We will assume that
we are only interested in domain extension up to length 2n ∗ n bits, as theorem
2 is ineffective beyond that length (this restriction is only for sake of simplicity).
Each query of the adversary will be a string p of length q bits, (0 < q < 2n ∗ n).
We let the composite function answers the query as follows: If q is a multiple
of n, then it returns fGq (p). Otherwise, let p′ be p appended with 10i, where
i is the smallest positive number to make |p′| a multiple of n. The composite
function then returns fG|p′|(p′).

For every 0 ≤ l < 2n, since strings of length ln + 1 to ln + n − 1 bits get
canonically encoded in the above method, we can use the same graph for all these
lengths. Thus, for each l, we really need only two graphs ([7]), one for lengths
ln + 1 to ln + n − 1, and one for length ln + n. From now on, we will assume
that all plaintexts are of bit length multiples of n. Each adversarial query will
be a pair: (p, z), where p is a bit string of length multiple of n, and z is in {0, 1}
(z signifies if the plaintext was of length a multiple of n or if it was padded to
make it so).

Definition 10. Let S be the set of all binary strings of length non-zero multiples
of n, but less than 2n ∗ n. Let F be the set of all functions:

S × {0, 1}→{0, 1}n

Let F̃ be a function with signature:

{0, 1}k × S × {0, 1}→{0, 1}n

Given a PRF F from n bits to n bits, we need to define F̃ such that no adaptive
adversary can distinguish between F̃K , with K chosen randomly, and a function
chosen uniformly at random from F . As in the previous sections, given a function
f from n bits to n bits, and given a collection of graphs G, we first define a
function fG in F .

Definition 11. Let G be a collection of edge-colored DAGs G(l) (see definition
5), l ≤ (2n − 1) ∗ 2. Each G(l) is required to have unique source and sink nodes.
Further, each G(l) is required to have at least $ l

2� nodes. Define a function fG
as follows:

fG(p, z) = fG(2∗|p|−z)(p)

where fG is as in definition 6. If the graph has more nodes than the length of
the plaintext, then append enough zeroes to the plaintext. Usually, graphs will
have exactly the required number of nodes. However, at the base cases, i.e. small
length plaintexts, it may be necessary to have extra nodes. For an example, see
Section 5.1.

For a theorem similar to theorem 2 to hold, we need further restrictions on
G. In particular, it will not be enough that individual graphs in G be non-
singular. Since, we will need to extend the notion of non-singularity to the whole

PRF Domain Extension Using DAGs 575

1 2 3 4

1 2 3 4

Fig. 5. An Incorrect Construction

collection of graphs, it is best to fix a set of vertices V , and just define the edges
and colorings for the individual graphs. Thus, we will define E(l), and χ(l). The
partial order ≺l is, as before, the transitive closure of E(l).

To motivate the generalized definition of non-singularity, we first consider an
example where it is not enough for individual graphs to be non-singular. Let
V = [1..4]. The graphs are identical (see fig 5), except that the second graph
G(2) has an extra edge from 3 to 4. The first graph G(1) is used to answer
queries of length 3 blocks, and the second to answer queries of length 4. Clearly,
both graphs are individually non-singular. Consider two queries, one of length
three, and another of length four, the latter being just an extension of the first.
However, the first graph’s output is C3, and is accessible to the adversary. Thus,
during the second query the internal state C3 is available to the adversary, and
it can force M4 to be any value of its choice.

This suggests that for each graph G(i), the graph G(i) itself cannot be allowed
to be an induced subgraph of another graph G(i′). We prove that this condition
is sufficient for the composite function to be a PRF.

Definition 12. For any vertex j in V , let U l
j be the set of incident vertices of j

in G(l).
For any vertex j in V , we say (l, j) ∼= (l′, j) if either (j = 1) or

- U l
j = U l′

j , and
- for all u ∈ U l

j : χl(〈u, j〉) = χl′(〈u, j〉), and inductively (l, u) ∼= (l′, u).
Essentially, (l, j) is congruent to (l′, j) if the two graphs G(l) and G(l′) are
identical till j.

Definition 13. Let G = 〈G(l)〉, where each G(l) = (V,E(l), χ(l)) is an edge-
colored DAG, be a collection of graphs.

– With each G(l) we associate its size m(l) to be the largest numbered node
in V such that there is an edge directed to it in G(l).

– For each G(l) we define the graph G̃(l) = ([1..m(l)], E(l), χ(l)), to be the
induced subgraph of G(l) on vertices [1..m(l)].

The collection G is called PRF-preserving if

– each G̃(l) has only one source node, one sink node, has at least $ l
2� nodes,

and

576 C.S. Jutla

– if for any pair of nodes u, v (u �= v), and graphs G(l) and G(l′), the set of
incident nodes of u in G(l), and the set of incident nodes of v in G(l′) are
same (say W), then for at least one w ∈W , χl(〈w, u〉) �= χl′(〈w, v〉).

– for each graph G(l), it is not the case that there is another graph G(l′),
l′ �= l, s.t. (l,m(l′)) ∼= (l′,m(l′))

Basically, the second condition above has extended the non-singularity require-
ment to be over all graphs.

Theorem 4. For a PRF-preserving collection of 2∗ (2n −1) DAGs G, let fG be
as in definition 11. Then, no adaptive adversary, with q adaptive queries 〈(pi, zi)〉
(i ∈ [1..q], and |pi| ≤ 2n − 1), can distinguish between (a) fG where f is chosen
uniformly at random from F(n→n), (b) and a function chosen uniformly at
random from F , with probability more than (

∑
i∈[1..q] |pi|)22−(n+1).

Proof: To adapt the proof of theorem 2, we first need to redefine the notion of
consistent transcripts c. First note that, on a fixed transcript c, the queries of
the adversary are fixed, say 〈pi, zi〉i∈[1..q]. Recall, by definition of fG , on input
pi, zi the graph G(2 ∗ |pi| − zi) is used. We just denote this graph by Gi. The
corresponding edge relation, coloring and partial order will be denoted Ei, χi,
and ≺i resp. Also, for the graph Gi, its induced subgraph as per definition 13,
will be denoted G̃i. Similarly, the size of the graph G̃i will be denoted by mi.
Note that mi = |ci| ≥ |pi|.

Definition 14. For any vertex j in V , let V i
j be the set of incident vertices of j

in Gi.
For any vertex j in V , we say (i, j) ∼=c (i′, j) if either (j = 1) or

- V i
j = V i′

j , and
- for all u ∈ V i

j : χi(〈u, j〉) = χi′
(〈u, j〉), and inductively (i, u) ∼=c (i′, u).

Essentially, (i, j) is congruent (w.r.t. c) to (i′, j) if the two graphs Gi and Gi′

are identical till j.
Once we generalize the definition of ≡c, rest of the definitions and proofs

remain almost the same.

Definition 15. For any vertices j, j′, and query indices i, i′ we say that (i, j) ≡c

(i′, j′) if
(j = j′) and (i, j) ∼=c (i′, j) and ∀k 4i j : pi

k = pi′

k

As before, define
μc(i, j) = min{i′|(i′, j) ≡c (i, j)}.

We call c consistent (con(c)) if

∀j ∈ [1..2n − 1],∀i : cij = c
μc(i,j)
j

Define the following “correcting” function ρ:

ρ(c) = c, where cij = c
μc(i,j)
j , for j ∈ [1..mi]

PRF Domain Extension Using DAGs 577

Since the proof of theorem 10 will be adapted from the proof of theorem 2, we will
denote all lemmas for theorem 10 corresponding to lemmas for theorem 2 by the
prime symbol. In the proof of lemma 2(a)′, if mi �= mi′

, then (i,m) �∼=c (i′,m′).
Otherwise, if the plaintexts pi and pi′

are different, then again (i,mi) �≡c (i′,mi).
If the plaintexts are also same, then as the adversary does not repeat queries,
wlog let Gi = G(2 ∗mi − 1), and Gi′

= G(2 ∗mi). But (i,mi) ∼=c (i′,mi) is not
allowed in G which is PRF-preserving. That proves lemma 2(a)′.

Proof of rest of lemma 2′ is similar to proof of lemma 2. In the statement
and proof of lemma 2(f)′, j must be restricted to be [1..mi]. Similar restrictions
apply in the definition of PD (definition 8) and definition of fc (definition 9).
Proof of lemma 3′ is similar to proof of lemma 3.

Lemma 1 is now restated as (recall S from definition 10):

Lemma 1′. For every qn bit constant 〈ri〉 (i ∈ [1..q])

Prc∈U Sq,f [C(f) = c ∧ PD(c) | ∀i : cimi = ri]
= 2−mqn ∗ Prc∈U Sq [PD(ρ(c)) | ∀i : cimi = ri]

Proof Sketch: The proof is similar to proof of lemma 1, if we notice that we fix
c in the first part of the proof. For a fixed c, let I = {(i, j) | μc(i, j) = (i, j), j ∈
[1..mi]}. Let T = {M i

j(c) | (i, j) ∈ I}. Since PD(c) holds, |T | = |I|. Let T ′ be
an arbitrary set of n bit strings, disjoint from T , and |T ′| =

∑
i∈[1..q]m

i − |I|.
Thus, |T ∪ T ′| =

∑
i∈[1..q]m

i.
By, lemma 3′, C(fc) = c. Thus, for each b agreeing with c on I, we have

a function fc defined on |I| inputs T , such that C(fc) = c. We can use the
remaining

∑
i∈[1..q]m

i − |I| values of b (i.e. from indices which are not in I) to
extend fc to be defined on T ∪ T ′. This map from b to the extended fc is 1-1.

The reverse direction is done as in lemma 1.
Rest of the proof is also as in proof of lemma 1. ��
Let Δ denote (

∑
i∈[1..q]m

i)2 ∗ 2−(n+1).

Lemma 7′. For every qn bit constant 〈ri〉 (i ∈ [1..q]),

Prc∈U Sq [PD(ρ(c)) | cimi = ri] ≥ 1 −Δ

Proof: First note that for all i, cimi = ρ(c)i
mi , by lemma 2(a)′ and definition of ρ.

As opposed to lemma 4, we need to show that it is not the case that a ρ(c)i
j , with

j �= mi, can be defined to be a ci
′

j , such that j = mi′
. Suppose, there is indeed an

(i′, j) ≡c (i, j), such that j = mi′
. Since, (i′, j) ≡c (i, j), we have (i′, j) ∼=c (i, j).

Thus the graphs Gi and Gi′
are identical till j = mi′

. Thus, unless they are the
same graph, this is not allowed by the condition on PRF-preserving G. If they
are the same graph, then j = mi, a contradiction.

Rest of the proof is similar to proof of lemma 4. ��
Rest of the proof of theorem 10 is identical to that of theorem 2.

578 C.S. Jutla

5.1 Applications to Variable Length Domain Extension

As an application of theorem 10, we get the variable length domain extension
scheme as described in figure 6. In the figure, for each plaintext block length
two graphs are given as required in definition 11. The number on the left of
the graphs denotes the plaintext block lengths for which those graphs are to be
employed. The 0/1 bit signifies if the plaintext was padded to make its bit-length
a multiple of n. We have only illustrated graphs up to length five, as for larger
lengths, we follow similar methods as for length four and five. Note that for
plaintext block length one, we have graphs which have two nodes. As remarked
at the end of definition 11, this requires that plaintexts of length one block must
be appended with a zero block, before employing graphs “ONE-0” or “ONE-1”.

This mode has an advantage over XCBC [7], and OMAC [14] that it does not
even need to employ the initial F on a constant like 0n. Moreover, the scheme
shows that if the plaintexts are restricted to be more than three blocks in length,
then no Galois field arithmetic is required.

col2 col3

col4 col5

col2

ONE

TWO

THREE

FOUR

FIVE

ONE

TWO

THREE

FOUR

FIVE

−0

−0

−0

−0

−0

−1

−1

−1

−1

−1

Fig. 6. A Variable Length Mode

References

1. ANSI X3.106, “American National Standard for Information Systems - Data En-
cryption Algorithm - Modes of Operation”, American National Standards Institute,
1983.

2. M . Bellare, R. Canetti, H. Krawczyk, “ Pseudorandom Functions Revisited: The
Cascade Construction and its Concrete Security”, Proc. IEEE FOCS 1996.

3. M. Bellare, J. Kilian, P. Rogaway, “The Security of Cipher Block Chaining”, JCSS,
Vol. 61, No. 3, Dec 2000, pp. 362-399

4. M. Bellare, A. Desai, E. Jokiph, P. Rogaway, “A Concrete Security Treatment
of Symmetric Encryption: Analysis of the DES Modes of OPeration”, 38th IEEE
FOCS, 1997

5. D. Bernstein, “ How to Stretch Random Functions: The security of Protected
Counter Sums”, J. of Cryptology, Vol 12,No. 3, (1999).

PRF Domain Extension Using DAGs 579

6. J. Black, P. Rogaway, “ A Block Cipher Mode of Operation for Parallelizable
Message Authentication”, Proc. Eurocrypt 2002.

7. J. Black, P. Rogaway, “CBC MACs for arbitrary length messages: The three key
constructions”. CRYPTO 2000, LNCS 1880.

8. J. Carter, M. Wegman, “Universal Classes of Hash Functions”, JCSS, Vol. 18, 1979,
pp 143-154.

9. O. Goldreich, S. Goldwasser, and S. Micali, “ How to construct random functions”,
J. ACM, vol. 33, no. 4, 1986.

10. National Bureau of Standards, Data Encryption Standard, U.S. Department of
Commerce, FIPS 46 (1977)

11. V.D. Gligor, P. Donescu, “Fast Encryption Authentication: XCBC Encryption and
XECB Authentication Modes”,
http://csrc.nist.gov/encryption/modes/workshop1

12. S. Halevi and P. Rogaway, “A Tweakable Enciphering Mode”, CRYPTO 2003,
LNCS 2729.

13. F. Harary, Graph Theory, Addison-Wesley 1969.
14. T. Iwata, K. Kurosawa, “ OMAC: One -key CBC-MAC”, FSE 2003, LNCS 2887.
15. C. S. Jutla, “Generalized Birthday Attacks on Unbalanced Feistel Networks”,

CRYPTO 1998, LNCS 1462.
16. C. S. Jutla, “ Encryption Modes with Almost Free Message Integrity”, Proc. Eu-

rocrypt 2001, LNCS 2045, 2001.
17. Hugo Krawczyk, “LFSR-based Hashing and Authentication”, Proc. Crypto 94,

LNCS 839, 1994
18. H.W. Kuhn, “Extensive games and the problem of information” in Contributions

to the Theory of Games II, H.W. Kuhn and A. W. Tucker eds., Annals of Mathe-
matical Studies No. 28, Princeton Univ. Press, 1950.

19. M. Liskov, R. Rivest and D. Wagner, “Tweakable Block Ciphers”, CRYPTO 2002,
LNCS 2442.

20. M. Luby, “Pseudorandomness and Cryptographic Applications”, Princeton Com-
puter Science Notes, Princeton Univ. Press, 1996

21. M. Luby and C. Rackoff, “How to Construct Pseudorandom Permutations From
Pseudorandom Functions”, SIAM J. on Computing, Vol. 17, 1988, pp. 373-386.

22. M. Naor and O. Reingold, “On the construction of pseudo-random permutations:
Luby-Rackoff revisited”, Proc. 29th ACM STOC, 1997, pp 189-199.

23. E. Petrank, C. Rackoff, “CBC-MAC for real-time data sources”, J. of Cryptology,
vol 13, no. 3, nov 2000.

24. P. Rogaway, M. Bellare, J. Black and T. Krovetz, “OCB: A block-cipher mode of
operation for efficient authenticated encryption”, Proc. 8th ACM Conf. Comp. and
Comm. Security (CCS), ACM, 2001.

Appendix

Lemma 3. For any consistent c such that PD(c) holds:

C(fc) = c

Proof: Let p = P (c) and M = M(c) be shorthands. Also, we will use c̄ as
shorthand for C(fc). Similarly, let M̄ = M(c̄), p̄ = P (c̄).

We do induction over the query index.

580 C.S. Jutla

Base Case: Since the adversary is fixed, the first plaintext message is the same,
i.e. p̄1 = p1. Since M̄1

1 = p1
1, c̄

1
1 = fc(M̄1

1) = fc(M1
1) = c11, as (1, 1) is trivially

in I. For j > 1, M̄1
j = p1

j +
∑

u :E(u,j) χ(〈u, j〉) ∗ c̄1u But, by induction over the
partial order ≺, c̄1u = c1u, hence M̄1

j = M1
j . Moreover, (1, j) is trivially in I, and

hence c̄1j = c1j .
So, assume that for all i′ < i, and all j, c̄i

′

j = ci
′

j . Thus, p̄i = pi. Again,

M̄ i
1 = pi

1 = M i
1. Thus, c̄i1 = fc(M i

1) = fc(M
μc(i,1)
1) by lemma 2(h). By definition

of fc, this is same as cμc(i,1)
1 = ci1. For j > 1, M̄ i

j = pi
j +

∑
u :E(u,j) χ(〈u, j〉) ∗ c̄iu.

But, by induction over the partial order ≺, c̄iu = ciu, thus M̄ i
j = M i

j . As before,
using lemma 2(h), we are done. ��

Chosen-Ciphertext Security from Tag-Based
Encryption�

Eike Kiltz

CWI Amsterdam,
The Netherlands
kiltz@cwi.nl

http://kiltz.net

Abstract. One of the celebrated applications of Identity-Based Encryp-
tion (IBE) is the Canetti, Halevi, and Katz (CHK) transformation from
any (selective-identity secure) IBE scheme into a full chosen-ciphertext
secure encryption scheme. Since such IBE schemes in the standard model
are known from previous work this immediately provides new chosen-
ciphertext secure encryption schemes in the standard model.

This paper revisits the notion of Tag-Based Encryption (TBE) and
provides security definitions for the selective-tag case. Even though TBE
schemes belong to a more general class of cryptographic schemes than
IBE, we observe that (selective-tag secure) TBE is a sufficient primi-
tive for the CHK transformation and therefore implies chosen-ciphertext
secure encryption.

We construct efficient and practical TBE schemes and give tight se-
curity reductions in the standard model from the Decisional Linear As-
sumption in gap-groups. In contrast to all known IBE schemes our TBE
construction does not directly deploy pairings. Instantiating the CHK
transformation with our TBE scheme results in an encryption scheme
whose decryption can be carried out in one single multi-exponentiation.

Furthermore, we show how to apply the techniques gained from the
TBE construction to directly design a new Key Encapsulation Mecha-
nism. Since in this case we can avoid the CHK transformation the scheme
results in improved efficiency.

1 Introduction

Since Diffie and Hellman proposed the idea of public key cryptography [14], one
of the most active area of research in the field has been the design and analysis
of public key encryption (PKE) schemes. In [16, 27] efficient primitives were
suggested from which to build encryption schemes. Formal models of security
were developed in [19, 23, 26] and nowadays it is widely accepted that security
against chosen-ciphertext attacks provides the “right level of security” for public-
key encryption schemes.

� The paper was written while the author was a visitor at University of California,
San Diego, supported by a DAAD postdoc fellowship.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 581–600, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

582 E. Kiltz

There have been numerous efficient schemes that were shown to be chosen-
ciphertext secure in the random oracle model [2]. Unfortunately a proof in the
random oracle model can only serve as a heuristic argument and has proved to
possibly lead to insecure schemes when the random oracles are implemented in
the standard model (see, e.g., [10]).

Dolev, Dwork, and Naor [15] were the first to come up with a public-key en-
cryption scheme provably chosen-ciphertext secure in the standard model (with-
out random oracles). Later Cramer and Shoup [12] presented the first really
practical public-key encryption scheme. Their approach was further generalized
in [13] and later shown by Elkind and Sahai [17] to fit into a more general frame-
work. The nowadays most efficient chosen-ciphertext secure encryption scheme
in the standard model is the one due to Kurosawa and Desmedt [21, 1] itself being
an improvement of the original Cramer-Shoup scheme. Both schemes, Cramer-
Shoup and Kurosawa-Desmedt are secure under the Decisional Diffie-Hellman
(DDH) assumption.

From IBE to PKE. One of the recent celebrated applications of Identity-Based
Encryption (IBE) is the work due to Canetti, Halevi, and Katz [11] showing an
elegant black-box transformation from any IBE into a PKE scheme without
giving up its efficiency. We will refer to this as the CHK transformation. If the
IBE scheme is selective-identity secure then the resulting PKE scheme is chosen-
ciphertext secure. Efficient constructions of IBE schemes in the standard model
were recently developed by Boneh and Boyen [3] so the CHK transformation
provides further alternative instances of chosen-ciphertext secure PKE schemes
in the standard model.1

Another fact worth mentioning about the CHK transformation is that it does
not seem to fall into the general framework characterized by Elkind and Sahai.
Boneh and Katz [7] later improve the CHK transformation resulting in shorter
ciphertexts and more efficient encryption/decryption. Since the two IBE schemes
from [3] employ pairing operations the resulting schemes are still less efficient
than the Kurosawa-Desmedt scheme.

Tag-Based Encryption. MacKenzie, Reiter, and Yang [22] introduce the no-
tion of tag-based encryption (TBE) and show (independent from [11]) that the
CHK transformation also transforms any “weakly secure” TBE scheme into a
chosen-ciphertext secure PKE scheme. However, the only TBE schemes in the
standard model mentioned in [11] are directly derived from known PKE schemes
(for example the Cramer-Shoup scheme) and the CHK transformation applied
to TBE schemes does not readily give us new instantiations of chosen-ciphertext
secure PKE schemes.

1 The underlying computational assumptions for the security reduction of the two IBE
schemes from [3] are both “pairing-assumptions”, i.e. the Bilinear Decisional Diffie-
Hellman (BDDH) assumption and the q-strong Decisional Bilinear Diffie-Hellman
Inversion (q-strong BDDHI) assumption.

Chosen-Ciphertext Security from Tag-Based Encryption 583

1.1 Our Contribution

From TBE to PKE. As pointed out in the last two paragraphs selective-
identity secure IBE (or weakly secure TBE) schemes are sufficient to construct
chosen-ciphertext secure PKE schemes. The natural question that arises is if in
the transformation some of the security requirements made to the IBE/TBE
scheme can be dropped while still preserving security of the resulting PKE
scheme. One of our contributions is to answer this question to the affirmative.

We revisit the security definitions for TBE schemes and introduce the notion
of selective-tag secure TBE schemes. Selective-tag security for TBE can be seen
as the selective-identity analog for IBE and is weaker than the TBE definition
from [22] and the IBE definition from [11]. One of our main results is to show
that selective-tag secure TBE is sufficient to build chosen-ciphertext secure PKE.
Our construction uses the CHK transformations.

On the theoretical side our result underlines that for the CHK transformation,
an IBE scheme is basically overkill since some of its functionality is superfluous.
In particular, there is no need to have an IBE key-derivation algorithm, which
seems to be what distinguishes IBE from all other public-key encryption primi-
tives. The notion of TBE can be viewed as some sort of “flattened IBE scheme”
(i.e., as IBE without key-derivation) and therefore exactly captures the above
observation. Our contribution is to extract the best out of the afore mentioned
papers: we are able to combine the known CHK transformation with a secu-
rity requirement that is substantially weaker than the requirements that were
believed to be necessary.

Comparing different security notions of TBE, IBE, and PKE. What
distinguishes TBE from IBE is the IBE key-derivation algorithm. Indeed, as we
will point out later, it seems to be hard to transform (even particular instances
of) TBE schemes into IBE schemes. The difference between selective-tag TBE
and weakly secure TBE schemes seems marginal at first glance but (similar to the
IBE case [3]) it turns our that the “selective-tag” property is the key to make
security proofs for TBE schemes much easier to construct. An even stronger
security definition of TBE schemes was already used by Shoup [29] (where the
tag was called “label”). Interestingly we show that such “strongly secure” TBE
schemes are equivalent to chosen-ciphertext secure PKE schemes. Since the CHK
transformation is black-box, our results imply that all the afore mentioned three
flavors of TBE security together with chosen-ciphertext secure PKE are in fact
all equivalent through efficient black-box reductions.

TBE and PKE are equivalent. So what is TBE good for? One may
ask the question why to make the long detour over TBE when designing PKE
schemes at all? The answer is simple. Since TBE is simpler and more general
than PKE (and IBE) our hope is that TBE may prove itself useful in the future to
come up with more chosen-ciphertext secure encryption in the standard model.
In particular, we would like to have chosen-ciphertext secure PKE schemes based
on different intractability assumptions. (Different from the BDDH or DDH as-
sumption, hopefully even weaker or at least unrelated.)

584 E. Kiltz

An efficient TBE Scheme without Pairing Operations. To underline
the usefulness of our TBE to PKE transformation we present an efficient TBE
scheme that (in contrast to all known IBE schemes) does not directly rely on
pairing operations for encryption and decryption. In particular, the decryption
operation of our new TBE scheme is very efficient and (similar to the KD scheme)
only performs one single multi-exponentiation. The recently introduced deci-
sional linear (DLIN) assumption [4] states that, roughly, it should be computa-
tional infeasible to decide if w = zr1+r2 , given random (g1, g2, z, gr1

1 , g
r2
2 , w) as

input. Our TBE scheme can be proved to meet the necessary security properties
under the DLIN assumption in the standard model. The security reduction is
tight, simple, and very intuitive. In contrast to all known efficient IBE schemes
our TBE scheme does not directly use pairings. However, our proofs of security
have to be carried out in gap-groups [25], i.e. groups in which CDH is believed
to be hard even though they are equipped with an algorithm that efficiently
solves the Decisional Diffie-Hellman (DDH) problem. One particular instance of
such gap-groups (which is actually the only one we know at the time being) is
obtained using pairings.

Instantiating the scheme with our TBE to PKE transformation we obtain a
new and reasonably efficient chosen-ciphertext secure encryption scheme in the
standard model based on the DLIN assumption. We remark that this is the first
(practical) chosen-ciphertext secure PKE based on the DLIN assumption in the
standard model.

Direct Key Encapsulation. A key encapsulation mechanism (KEM) is a
light PKE scheme intended to encapsulate and decapsulate a random (symmet-
ric) key. It is well known how to transform any chosen-ciphertext secure KEM
into a fully fledged chosen-ciphertext secure PKE scheme using symmetric en-
cryption (with appropriate security properties).

Surprisingly, our techniques from constructing the TBE scheme can also be ex-
ploited to directly build a chosen-ciphertext secure KEM in the standard model.
Our construction avoids the CHK transformations and (similar to [12, 21]) only
deploys a target collision-resistant hash function. As a result the ciphertext size
of the scheme is more compact compared to the PKE scheme obtained us-
ing the above transformation. Furthermore encryption and decryption can be
done more efficiently. Our KEM construction is practical and enjoys a simple
proof of security with a tight reduction to the DLIN assumption in the standard
model.

1.2 Related Work

Independent of our work, Boyen, Mei, and Waters [9] recently look at some
specific PKE schemes obtained from the CHK transformation instantiated with
the IBE schemes from [3, 30] and show how to make the resulting schemes more
efficient (in terms of computation time and ciphertext length). In particular,
they also come up with a practical chosen-ciphertext secure KEM (BMW-KEM)

Chosen-Ciphertext Security from Tag-Based Encryption 585

whose security is based on the BDDH assumption in the standard model.2 Com-
pared to our KEM, the BMW-KEM is based on bilinear pairings and therefore
results in a less efficient decryption algorithm (one pairing and one exponen-
tiation compared to one multi-exponentiation in our KEM). The BMW-KEM,
however, is slightly more efficient in terms of encryption operations and comes
with smaller ciphertexts. Compared to our KEM, the Kurosawa-Desmedt PKE
scheme provides the same efficiency for decryption whereas it is more efficient for
encryption. In Section 7.1 we discuss efficiency of all known encryption schemes
in the standard model. Comparing the overall performance of all known encryp-
tion schemes in the standard model the Kurosawa-Desmedt scheme [21] can still
be considered as the most efficient.

However, in contrast to the Kurosawa-Desmedt/Cramer-Shoup scheme, our
KEM shares with the BMW-KEM the nice property that the validity (or consis-
tency) of ciphertexts can be verified even without knowledge the the secret key.
This observation was recently used in [9] to propose a threshold cryptosystem
based on their BMW-KEM. With a similar idea and also based on the public
validity test our KEM can also be used to build a threshold encryption scheme.

2 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes its
size. If k ∈ N then 1k denotes the string of k ones. If S is a set then s $← S denotes
the operation of picking an element s of S uniformly at random. Unless other-
wise indicated, algorithms are randomized. “PT” stands for polynomial time
and “PTA” for polynomial-time algorithm or adversary. We write A(x, y, . . .)
to indicate that A is an algorithm with inputs x, y, . . . and by z

$← A(x, y, . . .)
we denote the operation of running A with inputs (x, y, . . .) and letting z be
the output. We write AO1,O2,...(x, y, . . .) to indicate that A is an algorithm with
inputs x, y, . . . and access to oracles O1,O2, . . . and by z

$← AO1,O2,...(x, y, . . .)
we denote the operation of running A with inputs (x, y, . . .) and access to oracles
O1,O2, . . ., and letting z be the output.

3 Definitions

In this section we formally introduce PKE and TBE schemes together with a
security definition. We also give a parameter generating algorithm for bilinear
groups and pairings and state our complexity assumptions.

3.1 Public-Key Encryption

An public-key encryption (PKE) scheme PKE = (PKEkg,PKEenc,PKEdec) con-
sists of three polynomial time algorithms (PTAs). Via (pk , sk) $← PKEkg(1k)
2 We note that the same scheme as in [9] was independently discovered during research

for this paper. Since [9] is already published at the time of writing this extended
abstract we decided not to include it here.

586 E. Kiltz

the randomized key-generation algorithm produces keys for security parameter
k ∈ N; via C $← PKEenc(pk ,M) a sender encrypts a message M under the public
key pk to get a ciphertext; via M ← PKEdec(sk ,C) the possessor of secret key
sk decrypts ciphertext C to get back a message. Associated to the scheme is a
message space MsgSp. For consistency, we require that for all k ∈ N and mes-
sages M ∈ MsgSp(k) we have Pr[PKEdec(sk ,PKEenc(pk ,M)) = M] = 1, where
the probability is taken over the coins of all the algorithms in the expression
above.

Privacy. Privacy follows [26]. Let PKE = (PKEkg,PKEenc,PKEdec) be an PKE
scheme with associated message space MsgSp. To an adversary A we associate
the following experiment:

Experiment Exppke-cca
PKE,A (k)

(pk , sk) $← PKEkg(1k)
(M0,M1, st)

$← ADec(·)(find, pk)
b

$← {0, 1} ; C ∗ $← PKEenc(pk ,Mb)
b′

$← ADec(·)(guess,C ∗, st)
If b �= b′ then return 0 else return 1

where the oracle Dec(C) returns M ← PKEdec(sk ,C) with the restriction that
in the guess phase adversary A is not allowed to query oracle Dec(·) for the
target ciphertext C ∗. Both challenge messages are required to be of the same
size (|M0| = |M1|) and in the message space MsgSp(k). We define the advantage
of A in the above experiment as

Advpke-cca
PKE ,A (k) =

∣∣∣∣Pr
[
Exppke-cca

PKE,A (k) = 1
]
− 1

2

∣∣∣∣ .
PKE scheme PKE is said to be secure against chosen ciphertext attacks (CCA-
secure) if the advantage function Advpke-cca

PKE,A is a negligible function in k for all
PTAs A.

The weaker security notion of security against chosen-plaintext attacks (CPA-
security) is obtained in the above security experiment when depriving adversary
A of the the access to the decryption oracle.

3.2 Tag-Based Encryption

Informally, in a tag-based encryption scheme [22], the encryption and decryption
operations take an additional “tag”. A tag is simply a binary string of appropriate
length, and need not have any particular internal structure. We define security for
tag-based encryption in manners analogous to security for standard encryption
schemes. In particular, we define selective-tag security against chosen-ciphertext
attacks. The selective-tag variant is reminiscent to the selective-identity variant
of IBE schemes [11] and was not considered in [22].

More formally, a tag-based encryption (TBE) scheme TBE = (TBEkg,TBEenc,
TBEdec) consists of three PTAs. Via (pk , sk) $←TBEkg(1k) the randomized key-
generation algorithm produces keys for security parameter k ∈ N; via C $←

Chosen-Ciphertext Security from Tag-Based Encryption 587

TBEenc(pk , t ,M) a sender encrypts a message M with tag t to get a ciphertext;
via M ← TBEdec(sk , t ,C) the possessor of secret key sk decrypts ciphertext C
to get back a message or the symbol reject. Note that the tag t must explicitly
be provided as the input of the decryption algorithm and is usually not explic-
itly contained in the ciphertext. Associated to the scheme is a message space
MsgSp. For consistency, we require that for all k ∈ N, all tags t and messages
M ∈ MsgSp(k) we have Pr[TBEdec(sk , t ,TBEenc(pk , t ,M)) = M] = 1, where
the probability is taken over the choice of (pk , sk) $← TBEkg(1k), and the coins
of all the algorithms in the expression above.

Privacy. To an adversary A we associate the following experiment:

Experiment Exptbe-stag-cca
TBE ,A (k)

(t∗, st0)
$← A(1k, init)

(pk , sk) $← TBEkg(1k)
(M0,M1, st)

$← ADec(·,·)(find, pk , st0)
b

$← {0, 1} ; C ∗
tbe

$← TBEenc(pk , t∗,Mb)
b′

$← ADec(·,·)(guess,C ∗
tbe, st)

If b �= b′ then return 0 else return 1

where the oracle Dec(C, t) returns M ← TBEdec(sk , t , C) with the restriction
that A is not allowed to query oracle Dec for tag t∗ (called target tag). Both
messages must be of the same size (|M0| = |M1|) and in the message space
MsgSp(k). We define the advantage of A in the above experiment as

Advtbe-stag-cca
TBE ,A (k) =

∣∣∣∣Pr
[
Exptbe-stag-cca

TBE ,A (k) = 1
]
− 1

2

∣∣∣∣ .
TBE scheme TBE is said to be selective-tag weakly secure against chosen cipher-
text attacks if the advantage function is negligible for all PTAs A.

In the security experiment adversary A is allowed to make decryption queries
for any tag t �= t∗, t∗ being the tag the challenge ciphertext is created with.
In particular, this includes queries for the target ciphertext C ∗

tbe (when queried
with a different tag t �= t∗). In other words, the security notion offers chosen-
ciphertext security for all tags t �= t∗ and chosen-plaintext security for t = t∗.
The target tag t∗ has to be output by A before even seeing the public key. That
means that a simulator may “tailor” the public-key to secure the scheme with
respect to the above definition.

Discussion of different TBE variants. Tags in public-key encryption
were already considered by Shoup [29] (and were called “labels”) and later by
MacKenzie, Reiter, and Yang [22]. While functionality is the same as in our
definition, in terms of security there are small but crucial differences between
the definitions given in the different papers. We recall the two TBE security
variants from [29, 22] and point out the differences to our definition. Let C ∗

tbe be
the target ciphertext and t∗ be the target tag selected by the adversary A in the
security experiment.

588 E. Kiltz

– To obtain the notion of weak CCA security for TBE schemes (as considered
in [22]3) we modify the above security experiment in a way such that A does
not have to commit to the target tag t∗ in the beginning of the experiment.
Instead, A is allowed to choose t∗ at the end of its find stage, possibly
depending on the public key and on its queries. Clearly, this is a stronger
security requirement.

– To get (full) CCA-security (as considered in [29]), we further modify the se-
curity experiment (of weak CCA security) such that the adversary is allowed
to ask any decryption query suspect to (t ,Ctbe) �= (t∗,C ∗

tbe). In particular
this includes queries for the target tag t∗ as long as Ctbe �= C ∗

tbe.

The differences between the different TBE security notions are summarized in
the following table.

TBE security Restriction to Dec(t ,Ctbe) queries Selective-tag?
(full) CCA [29] (t ,Ctbe) �= (t∗,C ∗

tbe) no
weak CCA [22] t �= t∗ no
selective-tag weak CCA t �= t∗ yes

Clearly, the three definitions form a hierarchy of security notions, Shoup’s CCA
security being the strongest and our selective-tag weak CCA security being the
weakest. We want to remark that selective-tag weak CCA security is strictly
weaker than weak CCA security, i.e. there exists a TBE scheme that is selective-
tag but not weakly CCA secure. (This can be shown by an example recently
used in [18] to show a similar separation related to IBE schemes.)

Relation between TBE and PKE. It is easy to see that by identifying a
message/tag pair (M, t) with a message M ||t , any CCA-secure PKE scheme is
also a CCA-secure TBE scheme. On the other hand, by identifying a message
M with message/tag pair (M, t) (for an arbitrary tag t that is appended to
the ciphertext in the plain) any CCA-secure TBE scheme can be used as a
CCA-secure PKE scheme. Note that the same trick is not possible anymore if
we weaken the security requirement to the TBE scheme to weak CCA security.
(An adversary against the CCA security of the PKE scheme could query the
decryption oracle for (C ∗

tbe, t) for t �= t∗ what would give it the plaintext Mb.)
The above remarks show that the two notions of CCA-secure TBE and CCA-
secure PKE can in fact be seen as equivalent. Fig. 1 in Section 4 is summarizing
the relations between PKE and the different security flavors of TBE.

3.3 Identity Based Encryption

An identity based encryption (IBE) scheme can be viewed as a special kind of
tag-based encryption scheme where the tag t is associated with an identity id .

3 Note that weak CCA-security for TBE schemes was called CCA-security in [22]. But
for its relation to PKE schemes we prefer to refer to it as weak CCA-security. This
should become clear later.

Chosen-Ciphertext Security from Tag-Based Encryption 589

The difference is that an IBE scheme is equipped with an additional algorithm,
the key derivation algorithm KeyDer. On input of the secret key sk and an
identity id , KeyDer generates a user secret key usk [id] for identity id . This
secret key allows the identity to decrypt all messages that were encrypted to
identity id . In the terminology of TBE this means that usk [t] is a “wild-card” to
decrypt arbitrary ciphertexts that were encrypted with tag t , without knowing
the secret key. A formal definition of IBE, together with a security model for
(selective-identity) chosen-plaintext security, is given in the full version [20].

Relation between IBE and TBE. By the above it is easy to see that every
IBE scheme can be transformed into a TBE scheme while maintaining its secu-
rity properties. In the transformation TBE tag t is identified with IBE identity
id . The key generation and encryption algorithms are the same. The TBE de-
cryption algorithm first computes the secret key usk [t] for “identity” t and then
uses the public IBE decryption algorithm to recover the plaintext. It is easy to
verify that if the IBE scheme is (selective-identity) CPA-secure then the TBE
scheme is (selective-tag) weakly CCA-secure.4 Furthermore, a CCA-secure IBE
scheme translates to a CCA-secure TBE scheme. (See full version [20] for exact
IBE security definitions.)

To the best of our knowledge it is not known how to generically transform
a TBE scheme into an IBE scheme. This seems particularly difficult since it is
not clear how, in general, the user secret key usk [id] of the IBE scheme can be
defined since in TBE there is no such concept as the “user secret key”.

The above observations together with the discussion from Section 3.2 indicate
that the class of selective-tag weakly CCA-secure TBE schemes is more general
than the class of weakly CCA-secure TBE/selective-identity CPA-secure IBE
schemes and gives furthermore hope that TBE schemes in the weak selective-tag
model are easier to construct. Fig. 1 in Section 4 is summarizing the relations
between TBE and IBE.

4 Chosen-Ciphertext Security from Tag-Based
Encryption

Canetti, Halevi, and Katz [11] demonstrate how to transform any selective-
identity CPA-secure IBE scheme into a CCA-secure PKE scheme by adding
a one-time signature (we will refer to this as CHK transformation). Independent
of [11], MacKenzie, Reiter, and Yang [22] exploit the same construction as [11]
and describe how to convert any weakly CCA-secure TBE scheme into a CCA-
secure PKE scheme. In this section we combine the above three papers [11, 22, 7]
and show that a selevtice-tag weakly CCA-secure TBE scheme is sufficient to
construct an CCA-secure PKE scheme. More precisely, we note that the CHK
transformation may as well be instantiated with any TBE scheme (the PKE
decryption algorithm needs to be adapted to the TBE definition). If the TBE

4 Note that CCA security for TBE schemes naturally corresponds to CPA security for
IBE schemes.

590 E. Kiltz

CCA−secure TBE CCA−secure PKE

CPA−secure PKE

(x)
CPA−secure IBE

CCA−secure IBE

sID CPA−secure IBEstag weakly CCA−secure TBE

weakly CCA−secure TBE

Fig. 1. Relation between IBE, TBE, and PKE with different security definitions. Solid
arrows indicate direct implications, dashed lines indicate relations through a black-box
reduction. All direct implications were discussed in Section 3. The upper left dashed
black-box implication is due to [22], the right one due to [11], and the one with the
marker (x) shows our contribution.

scheme is selective-tag weakly CCA-secure then the resulting PKE scheme is
CCA-secure. We summarize the known relations among TBE, PKE, and IBE in
Fig. 1. The results of this section settle the implication marked by (x).

4.1 The Transformation

Given a TBE scheme TBE = (TBEkg,TBEenc,TBEdec) with tag-space TagSp we
construct a public-key encryption scheme PKE = (PKEkg,PKEenc,PKEdec). In
the construction, we use a one-time signature scheme OTS = (SKG, SIGN,VFY)
in which the verification key output by SKG(1k) is an element from TagSp. We
require that this scheme be secure in the sense of strong unforgeability (cf. [20]).
The transformation defines the public/secret key pair of the PKE scheme to be
the public/secret key pair of the TBE scheme, i.e. PKEkg(1k) outputs whatever
TBEkg(1k) outputs. The construction proceeds as follows:

TBE to PKE transformation
PKEenc(pk ,M)

(vk , sigk) $← SKG(1k)
Ctbe

$← TBEenc(pk , vk ,M)
sig $← SIGN(sigk ,Ctbe)
Return C ← (Ctbe, vk , sig)

PKEdec(sk ,C)
Parse C as (Ctbe, vk , sig)
If VFY(vk ,Ctbe, sig) = reject

then return reject.
Else return M ← TBEdec(sk , vk ,Ctbe)

It is easy to check that the above scheme satisfies correctness.
Let us now give some intuition why the PKE scheme is CCA-secure. Let

(C ∗
tbe, vk

∗, sig∗) be the challenge ciphertext output by the simulator in the secu-
rity experiment. It is clear that, without any decryption oracle queries, the value
of the bit b remains hidden to the adversary. This is so because C ∗

tbe is output
by TBEenc which is CPA-secure, vk∗ is independent of the message, and sig∗ is
the result of applying the one-time signing algorithm to C ∗

tbe.

Chosen-Ciphertext Security from Tag-Based Encryption 591

We claim that decryption oracle queries cannot further help the adversary in
guessing the value of b. Consider an arbitrary ciphertext query (Ctbe, vk , sig) �=
(C ∗

tbe, vk
∗, sig∗) made by the adversary during the experiment. If vk = vk∗ then

(Ctbe, sig) �= (C ∗
tbe, sig

∗) and the decryption oracle will answer reject since the
adversary is unable to forge a new valid signature sig with respect to vk∗. If
vk �= vk∗ then the decryption query will not help the adversary since the actual
decryption using TBE will be done with respect to a tag vk different to the
target tag vk∗. A formalization of the above arguments leads to the following:

Theorem 1. Assuming the TBE scheme is selective-tag chosen-ciphertext se-
cure, the OTS is a strong, one-time signature scheme, then the above public-key
encryption scheme is chosen-ciphertext secure.

The security reduction is tight (linear) with respect to all the public-key com-
ponents. The proof follows along the lines of [11, 5] and is therefore omitted
here. We note that the CHK transformation can also be used to transform a
(straight-forward definition of) tag-based KEM into a full KEM.

For simplicity we only described the CHK transformation in this Section. We
want to remark that the more efficient BK transformation [7, 5] (which basically
employs a MAC insteas of a signature) works as well for TBE schemes. The use
of a MAC instead of a one-time signature somewhat complicates exposition and
proof. The description of the BK transformation, together with all necessary
definitions, is deferred to the full version [20].

5 An Efficient TBE Scheme Based on the Linear
Assumption

In this section we demonstrate the usefulness of the TBE to PKE transformation
of Section 4. Whereas the only known IBE schemes are using pairings [3] we give
a simple and practical TBE scheme that does not perform any pairing operation.

5.1 Parameter Generation Algorithm for Gap Groups

All schemes will be parameterized by a gap parameter generator. This is a
PTA G that on input 1k returns the description of an multiplicative cyclic
group G of prime order p, where 2k < p < 2k+1, and the description of a
Diffie-Hellman oracle DDHvf. A tuple (g, gx, gy, gz) ∈ G4 is called a Diffie-
Hellman tuple if xy = z mod p. The oracle DDHvf is a PTA that for each input
(g, gx, gy, gz) ∈ G4 outputs 1 if (g, gx, gy, gz) is a Diffie-Hellman tuple and 0
otherwise. More formally we require that for each (G, p,DDHvf) $← G(1k) and
for each (g, gx, gy, gz) ∈ G4,

Pr[DDHvf(g, gx, gy, gz) = (xy = z)] ≥ 1 − neg(k)

where the probability is taken over all internal coin tosses of DDHvf and “xy = z”
is defined as 1 is xy = z mod p and 0 otherwise. We use G∗ to denote G \ {0},

592 E. Kiltz

i.e. the set of all group elements except the neutral element. Throughout the
paper we use GG = (G, p,DDHvf) as shorthand for the description of the gap
group. See [25] for a more formal treatment of gap groups. We note that one spe-
cific instantiation of such gap-groups can be obtained using bilinear pairings [6].

5.2 The Decision Linear Assumption

Let GG as above and let g1, g2, z ∈ G be random elements from group G. Con-
sider the following problem introduced By Boneh, Boyen, and Shacham [4]: Given
(g1, g2, z, gr1

1 , g
r2
2 , w) ∈ G6 as input, output yes if w = zr1+r2 and no otherwise.

One can easily show that an algorithm for solving the Decision Linear Problem
in G gives an algorithm for solving DDH in G. The converse is believed to be
false. That is, it is believed that the Decision Linear Problem is a hard problem
even in gap-groups where DDH is easy. To an adversary A we associate the
following experiment.

Experiment Expdlin
G,A(1k)

PG $← G(1k) ; g1, g2, z
$← G∗ ; r1, r2, r

$← Zp

β
$← {0, 1} ; if β = 1 then w ← zr1+r2 else w ← zr

β′ $← A(1k,PG , g1, g2, z, gr1
1 , g

r2
2 , w)

If β �= β′ then return 0 else return 1
We define the advantage of A in the above experiment as

Advdlin
G,A(k) =

∣∣∣∣Pr
[
Expdlin

G,B(1k) = 1
]
− 1

2

∣∣∣∣ .
We say that the decision linear assumption relative to generator G holds if
Advdlin

G,A is a negligible function in k for all PTAs A.
To put more confidence in the DLIN problem it was shown in [4] that the

DLIN problem is hard in generic gap-groups.

A basic scheme based on DLIN. Since it’s introduction the DLIN assump-
tion has already found some interesting applications (e.g., see [4, 8, 24]). As noted
in [4] the DLIN assumption readily gives a CPA-secure PKE scheme (called lin-
ear encryption scheme) as follows: The public key consists of random elements
g1, g2, z ∈ G, the secret key of elements x1, x2 such that gx1

1 = gx2
2 = z. En-

cryption of a message M is given by (C1, C2, E) ← (gr1
1 , gr2

2 , zr1+r2 ·M), where
r1, r2 ∈ Z∗

q are random elements. The message M is recovered by the possessor
of the secret key by computing M as M ← E/(Cx1

1 Cx2
2).

5.3 The Scheme

The starting point of our scheme will be the (CPA-secure) linear encryption
scheme from Section 5.2. By adding two additional values to the ciphertext we
can update it to a selective-tag CCA-secure TBE scheme. The values contain
redundant information and also depend on the tag. In the decryption algorithm
the two values are used to check the ciphertext for “validity” or “consistency”.
We build a TBE scheme TBE = (TBEkg,TBEenc,TBEdec) as follows:

Chosen-Ciphertext Security from Tag-Based Encryption 593

DLIN-based TBE
TBEkg(1k)

(G, p,DDHvf) $← G(1k)
g1

$← G∗ ; x1, x2, y1, y2
$← Z∗

p

Chose g2, z ∈ G with gx1
1 = gx2

2 = z
u1 ← gy1

1 ; u2 ← gy2
2

pk ← (G, p, g1, g2, z, u1, u2) ; sk ← (x1, x2, y1, y2)
Return (pk , sk)

TBEenc(pk , t ,M)
r1, r2

$← Z∗
p

C1 ← gr1
1 ; C2 ← gr2

2
D1 ← ztr1ur1

1 ; D2 ← ztr2ur2
2

K ← zr1+r2

E ←M ·K
Ctbe ← (C1, C2, D1, D2, E)
Return Ctbe

TBEdec(sk , t ,Ctbe)
Parse Ctbe as (C1, C2, D1, D2, E)
s1, s2

$← Z∗
p

K ← C
x1+s1(tx1+y1)
1 ·Cx2+s2(tx2+y2)

2
D

s1
1 ·Ds2

2

M ← E ·K−1

Return M

Note that the public key pk does not contain the description of the Diffie-
Hellman verification oracle DDHvf.

5.4 Correctness and Alternative Decryption

Let Ctbe = (C1, C2, D1, D2, E) ∈ G5 be a (possibly malformed) ciphertext. Ctbe

is called consistent with tag t if Ctx1+y1
1 = D1 and Ctx2+y2

2 = D2. Note that any
ciphertext that was properly generated by the encryption algorithm for tag t is
always consistent with (the same) tag t , i.e. for i = 1, 2 we have (gri

i)txi+yi =
ztriuri

i for any ri ∈ Zp.
The key K in the decryption algorithm is computed as

K =
C

x1+s1(tx1+y1)
1 C

x2+s2(tx2+y2)
2

Ds1
1 Ds2

2
= Cx1

1 Cx2
2 ·

(
Ctx1+y1

1

D1

)s1

·
(
Ctx2+y2

2

D2

)s2

for uniform s1, s2 ∈ Zq. This can be viewed as an implicit test if the ciphertext is
consistent with tag t . If so the key is computed as K = Cx1

1 · Cx2
2 . If not then at

least one of the two fractions in the above equation is different from 1 ∈ G and
(since G has prime order) a random keyK is returned, completely independent of
the “real key”Cx1

1 ·Cx2
2 . Hence the decryption algorithm in the above construction

is equivalent to the following (less efficient) decryption algorithm:

TBEdec′(sk , t ,Ctbe)
Parse Ctbe as (C1, C2, D1, D2, E)
If Ctx1+y1

1 �= D1 or Ctx2+y2
2 �= D2 then K

$← G∗

Else K ← Cx1
1 · Cx2

2
Return M ← E ·K−1

It leaves to verify that, in case the ciphertext is consistent, K ← Cx1
1 · Cx2

2
computes the correct key. Indeed we have (gr1

1)x1 · (gr2
2)x2 = zr1 · zr2 = zr1+r2 .

This shows correctness.

594 E. Kiltz

5.5 Public Verification

In this section we show that consistency (or validity) of a given TBE ciphertext
can be publicly verified. The above alternative decryption procedure TBEdec′

gives rise to an algorithm TBEpv(pk , t ,Ctbe) for public verification of the cipher-
text by checking if (g1, ztu1, C1, D1) and (g2, ztu2, C2, D2) are Diffie-Hellman
tuples. Both checks can be carried out using the Diffie-Hellman verification
algorithm DDHvf that we additionally have to provide in the public-key. To
verify correctness of the above public consistency check we have to show that
for i = 1, 2, Ctxi+yi

i = Di iff (gi, z
tui, Ci, Di) is a Diffie-Hellman tuple. Let

Ci = gri. Then (gi, z
tui = gxit+yi

i , Ci = gri

i , Di) is a proper Diffie-Hellman-tuple
iff g

(xit+yi)·ri

i = Di iff Cxit+yi

i = Di.

5.6 Security and Efficiency

Theorem 2. Under the decision linear assumption relative to generator G, the
TBE scheme from Section 5.3 is selective-tag secure against chosen-ciphertext
attacks.

Theorem 2 is proved in Appendix A. The intuition of the proof is as follows:
Given an adversary A against the security of the TBE scheme, we can build an
adversary B that breaks the linear assumption with the same success probability
of A. For simulating A’s view we use two main ingredients: First, when answering
the decryption queries, B can test for consistency using the public ciphertext
verification algorithm TBEpv from Section 5.5. (This is the reason why pairings
are needed for the security proof.) Second, we borrow techniques from [3] to
make sure that B can answer the (consistent) decryption queries for all tags but
for the target tag t∗ output by A in the beginning of the security experiment.

Encryption requires three exponentiations (to computeC1, C2 andK) and two
multi-exponentiation (to computeD1, D2) in G. Encryption may as well be carried
out in 7 exponentiations what is considerably faster when the receiver’s public key
is considered to be fixed and precomputation for fixed-base exponentiation is used.
Decryption is very fast and can be done with one multi-exponentiation.

6 Key Encapsulation Based on the Linear Assumption

A key encapsulation mechanism [29] (KEM) KEM = (KEMkg,KEMencaps,
KEMdecaps) consits of three PTAs can be seen as a light PKE scheme. Instead of
encrypting messages, the encapsulation algorithm KEMencaps generates a (ran-
dom) symmetric key K and a corresponding ciphertext C . The decapsulation
algorithm inputs the secret key and a ciphertext and reconstructs the symmetric
key K. In practice the key K is usually fed to a symmetric encryption scheme.
CCA-security of a KEM can be analogously defined as CCA-security security of
a PKE scheme; in the security game an adversary is given a ciphertext/key pair
and has to decide if the two pairs match or if the key is random and independent
from the ciphertext. A formal definition of a CCA-secure KEM can be looked
up in the full version [20].

Chosen-Ciphertext Security from Tag-Based Encryption 595

6.1 The KEM Scheme

We build a KEM scheme as follows. Let KEMkg(1k) be as in the TBE scheme of
Section 5.3. The public key pk additionally contains a target collision resistant
hash function TCR : G×G → Zq (i.e. given t = TCR(g1, g2) it should be hard to
find (h1, h2) ∈ G×G\{(g1, g2)} such that TCR(h1, h2) = t; we refer to [12] for a
formal definition).5 The encapsulation/decapsulation algorithms are as follows:

DLIN-based KEM
KEMencaps(pk)

r1, r2
$← Z∗

p

C1 ← gr1
1 ; C2 ← gr2

2
t← TCR(C1, C2)
D1 ← ztr1ur1

1 ; D2 ← ztr2ur2
2

K ← zr1+r2

Ckem ← (C1, C2, D1, D2)
Return (Ckem ,K)

KEMdecaps(sk ,Ckem)
Parse Ckem as (C1, C2, D1, D2)
t ← TCR(C1, C2)
s1, s2

$← Z∗
p

K ← C
x1+s1(tx1+y1)
1 ·Cx2+s2(tx2+y2)

2
D

s1
1 ·Ds2

2

Return K

Analogous to the TBE construction from Section 5 consistency of a ciphertext
Ckem = (C1, C2, D1, D2) can be publicly verified by computing t ← TCR(C1, C2)
and checking if (gi, z

tui, Ci, Di) is a Diffie-Hellman tuple for i = 1, 2.

6.2 Security

Theorem 3. Assume TCR is a target collision resistant hash function. Under
the decision linear assumption relative to the generator G the KEM from Sec-
tion 6.1 is secure against chosen-ciphertext attacks.

The security reduction is tight and compared to the reduction from Theorem 2
there appears an additional additive factor taking into account a possible col-
lision in the hash function TCR. The proof of Theorem 3 is similar to that of
Theorem 2 and is given in the full version [20].

The way we use the target collision hash function is reminiscent to the Cramer-
Shoup cryptosystem [12]. Indeed, the intuition is the same. Given an adversary
A against the security of the KEM, we can build an adversary B that breaks the
linear assumption with the same success probability of A. Let (C∗

1 , C
∗
2 , D

∗
1 , D

∗
2)

be the challenge ciphertext given to adversary A and let t∗ = TCR(C∗
1 , C

∗
2).

Consider a ciphertext (C1, C2, D1, D2) queried by adversary A during the CCA
experiment and let t = TCR(C1, C2). Similar to the proof of Theorem 2 we
can setup the public-key in a way such that B is able to correctly simulate all
such decryption queries as long as t �= t∗ and the ciphertext is constentent. The
latter one can be checked using the public consistency algorithm. Assume t = t∗.
On one hand, when (C1, C2) �= (C∗

1 , C
∗
2) then B found a collision in the hash

5 More formally we need a family of hash functions indexed by some random key c,
where c is contained in the public key and the description of the hash function is
included in the scheme parameters.

596 E. Kiltz

function. On the other hand, when (C1, C2) = (C∗
1 , C

∗
2) then consistency of the

ciphertext also implies D1 = D∗
1 and D2 = D∗

2 and hence the queried ciphertext
matches the target ciphertext what is forbidden in the experiment.

6.3 From KEM to Full PKE

It is well known that if both the public-key encapsulation scheme and the un-
derlying symmetric-key encryption scheme are CCA-secure, then the resulting
hybrid public-key encryption scheme is CCA-secure [13, Sec. 7]. The security
reduction is tight.

7 Discussion

7.1 Efficiency Considerations

An efficiency comparison of all previously known CCA-secure PKE schemes in
the standard model is assembled in Figure 2. The Cramer-Shoup scheme [12]
and the Kurosawa-Desmedt scheme [21] are listed for reference. BK/BBx refers
to one of the two Boneh-Boyen IBE schemes from [3] instantiated with the MAC
based BK-transformation (since the signature-based CHK transformation is less
efficient we decided not to list it in our comparison).

BMW is the recent KEM from Boyen, Mei, and Waters [9]. To obtain a
fair comparison we equipped the two KEM schemes (the BMW-KEM and ours
from §6) with a hybrid encryption scheme to obtain a fully fledged PKE scheme.

Together with the Kurosawa-Desmedt PKE, our proposed DLIN-based KEM
offers the nowadays fastest decryption algorithm. Compared to all other schemes
the obvious drawbacks of our schemes are slower encryption and longer cipher-
texts. Interestingly, the BK/BBx and BMW constructions tie with the KD
scheme in terms of encryption but lose in terms of decryption, whereas our
scheme loses in encryption but ties in decryption.

We note that the long ciphertexts are basically due to the different assump-
tion; this is since the basic (chosen-plaintext secure) linear encryption scheme
from Section 5.2 already comes with a ciphertext overhead of 2|p|.

7.2 Remarks

We hope that by having provided weaker sufficient conditions for the CHK/BK
transformations we make a step directed towards a better understanding and
utilization of CCA-security in PKE schemes. From a designer’s point of view
the definition of selective-tag security means that the scheme only has to be “se-
cured” with respect to the target tag. Furthermore, in the security reduction, the
generated keys may depend on this tag. Having that designing concept in mind
it would be interesting to come up with new CCA-secure TBE/PKE schemes
based on different assumptions.

A very efficient TBE construction based on the Kurosawa-Desmedt encryption
scheme [21] is obtained by removing the target collission-resistant hash function

Chosen-Ciphertext Security from Tag-Based Encryption 597

Scheme Origin Assumption Encryption Decryption Ciphertext Public
#pairings + #[multi,reg,fix]-exp Overhead Vfy?

KD direct DDH 0 + [1, 2, 0] 0 + [1, 0, 0] 2|p|(+hybrid) —
CS KEM DDH 0 + [1, 3, 0] 0 + [1, 1, 0] 3|p| —
BK/BB1 BK/IBE BDDH 0 + [1, 2, 0] 1 + [1, 0, 0] 2|p|+com+mac —
BK/BB2 BK/IBE q-BDDHI 0 + [1, 2, 0] 1 + [0, 1, 1] 2|p|+com+mac —
BMW KEM BDDH 0 + [1, 2, 0] 1 + [0, 1, 0] 2|p| yes
Ours (§5) BK/TBE DLIN 0 + [2, 3, 0] 0 + [1, 0, 0] 4|p|+com+mac —
Ours (§6) KEM DLIN 0 + [2, 3, 0] 0 + [1, 0, 0] 4|p| yes

Fig. 2. Efficiency comparison for CCA-secure PKE schemes. Some figures are bor-
rowed from [7, 5, 9]. All “private-key” operations (such as hash function/MAC/KDF)
are ignored. Cipher overhead represents the difference (in bits) between the ciphertext
length and the message length, and |p| is the length of a group element. For concrete-
ness one can think of mac = 128 and the commitment com = 512 bits. For comparison
we mention that relative timings for the various operations are as follows: bilinear
pairing ≈ 5 [28], multi-exponentiation ≈ 1.5, regular exponentiation = 1, fixed-base
exponentiation � 0.2.

and taking the former output of the hash function as the tag. A straightforward
question is if we can somewhat modify either this KD based TBE scheme or our
proposal from Section 5 to obtain an IBE scheme that does not use pairings.

Acknowledgments

We thank Mihir Bellare, Xavier Boyen, Yoshi Kohno, Gregory Neven, and the
anonymous TCC referees for useful remarks.

References

1. M. Abe, R. Gennaro, K. Kurosawa, and V. Shoup. Tag-KEM/DEM: A new frame-
work for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In
R. Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 128–146.
Springer-Verlag, May 2005.

2. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, pages 62–73. ACM Press, Nov. 1993.

3. D. Boneh and X. Boyen. Efficient selective-id secure identity based encryption with-
out random oracles. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 223–238. Springer-Verlag, May 2004.

4. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer-Verlag, Aug.
2004.

5. D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from
identity-based encryption. Journal submission. Available from author’s web page
http://crypto.stanford.edu/∼dabo/pubs.html, November 2005.

6. D. Boneh and M. K. Franklin. Identity based encryption from the Weil pairing.
SIAM Journal on Computing, 32(3):586–615, 2003.

598 E. Kiltz

7. D. Boneh and J. Katz. Improved efficiency for CCA-secure cryptosystems built
using identity-based encryption. In A. Menezes, editor, CT-RSA 2005, volume
3376 of LNCS, pages 87–103. Springer-Verlag, Feb. 2005.

8. D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In
ACM CCS 04, pages 168–177. ACM Press, Oct. 2004.

9. X. Boyen, Q. Mei, and B. Waters. Simple and efficient CCA2 security from IBE
techniques. In ACM Conference on Computer and Communications Security—CCS
2005, pages 320–329. New-York: ACM Press, 2005.

10. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
In 30th ACM STOC, pages 209–218. ACM Press, May 1998.

11. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based
encryption. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 207–222. Springer-Verlag, May 2004.

12. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In H. Krawczyk, editor, CRYPTO’98,
volume 1462 of LNCS, pages 13–25. Springer-Verlag, Aug. 1998.

13. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2003.

14. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22:644–654, 1978.

15. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on
Computing, 30(2):391–437, 2000.

16. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and D. Chaum, editors, CRYPTO’84, volume 196 of
LNCS, pages 10–18. Springer-Verlag, Aug. 1985.

17. E. Elkind and A. Sahai. A unified methodology for constructing public-key encryp-
tion schemes secure against adaptive chosen-ciphertext attack. Cryptology ePrint
Archive, Report 2002/042, 2002. http://eprint.iacr.org/.

18. D. Galindo and I. Hasuo. Security notions for identity based encryption. Cryptol-
ogy ePrint Archive, Report 2005/253, 2005. http://eprint.iacr.org/.

19. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28:270–299, 1984.

20. E. Kiltz. Chosen-ciphertext security from tag-based encryption. Cryptology ePrint
Archive, 2005. http://eprint.iacr.org/.

21. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme.
In M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 426–442.
Springer-Verlag, Aug. 2004.

22. P. D. MacKenzie, M. K. Reiter, and K. Yang. Alternatives to non-malleability:
Definitions, constructions, and applications. In M. Naor, editor, TCC 2004, volume
2951 of LNCS, pages 171–190. Springer-Verlag, Feb. 2004.

23. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd ACM STOC. ACM Press, May 1990.

24. L. Nguyen and R. Safavi-Naini. Efficient and provably secure trapdoor-free group
signature schemes from bilinear pairings. In P. J. Lee, editor, ASIACRYPT 2004,
volume 3329 of LNCS, pages 372–386. Springer-Verlag, Dec. 2004.

25. T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for
the security of cryptographic schemes. In K. Kim, editor, PKC 2001, volume 1992
of LNCS, pages 104–118. Springer-Verlag, Feb. 2001.

Chosen-Ciphertext Security from Tag-Based Encryption 599

26. C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In J. Feigenbaum, editor, CRYPTO’91, volume 576
of LNCS, pages 433–444. Springer-Verlag, Aug. 1991.

27. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signature and public-key cryptosystems. Communications of the ACM, 21(2):120–
126, 1978.

28. M. Scott. Faster pairings using an elliptic curve with an efficient endomorphism.
Cryptology ePrint Archive, Report 2005/252, 2005. http://eprint.iacr.org/.

29. V. Shoup. A proposal for an ISO standard for public key encryption (version 2.1).
manuscript, 2001. Available on http://shoup.net/papers/.

30. B. R. Waters. Efficient identity-based encryption without random oracles. In
R. Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127.
Springer-Verlag, May 2005.

A Proof of Theorem 2

Adversary B inputs an instance of the decisional linear problem, i.e. B inputs the
values (1k,GG , g1, g2, z, gr1

1 , g
r2
2 , w). B’s goal is to determine whether w = zr1+r2

or w is a random group element.
Now suppose there exists an adversary A that breaks the selective-tag CCA

security of the TBE scheme with (non-negligible) advantage Advtbe-stag-cca
TBE ,A (k).

We show that adversary B can run adversary A to solve its instance of the
decisional linear problem (i.e. to determine whether w = zr1+r2 or if w is a
random group element) with advantage

Advdlin
G,B(k) ≥ Advtbe-stag-cca

TBE ,A (k) . (1)

Now Eqn. (1) proves the Theorem. Adversary B runs adversary A simulating its
view as in the original TBE security experiment. We now give the description
of adversary B.

Init Stage. Adversary B runs adversary A on input 1k and init. A outputs
the target tag t∗ that is input by B.

Find Stage. B picks two random values c1, c2 ∈ Zp and sets

u1 ← z−t∗
· g1c1 , u2 ← z−t∗

· g2c2 .

The public key pk is defined as (G, p, g1, g2, z, u1, u2) and it is identically
distributed as in the original TBE scheme. Let x1 = logg1

z and x2 = logg2
z,

as in the original TBE scheme. This implicitly defines the values y1, y2 as

y1 = logg1
u1 = −t∗x1 + c1, y2 = logg2

u2 = −t∗x2 + c2 .

Note that no value of the corresponding secret key sk = (x1, x2, y1, y2) is
known to B.
Now consider an arbitrary ciphertextCtbe = (C1, C2, D1, D2) and let t ∈ Zp

be a tag. Recall that Ctbe is consistent with tag t if Cxi·t+yi

i = Di for
i ∈ {1, 2}. The way the keys are setup this condition can be rewritten as

Di = Ctxi+yi

i = Cxit−t∗xi+ci

i = (Cxi

i)t−t∗
· Cci

i , i ∈ {1, 2} . (2)

600 E. Kiltz

By Equation (2), Di/C
ci

i = (Cxi

i)t−t∗
and if t �= t∗ then the session key

K = Cx1
1 · Cx2

2 can alternatively be reconstructed as

K ←
(
D1 ·D2

Cc1
1 · Cc2

2

) 1
t−t∗

. (3)

Now adversary B runs A on input find and pk answering to its decryption
queries as follows: Let Ctbe = (C1, C2, D1, D2) be an arbitrary ciphertext
submitted to the decryption oracle Dec(Ctbe, t) for tag t �= t∗. First B
performs a public consistency check as explained in Section 5.5 using the
Diffie-Hellman verification algorithm DDHvf. If Ctbe is not consistent then B
returns a random message, as in the alternative (but equivalent) decryption
algorithm (Section 5.4) of the original TBE scheme. Otherwise, if the ci-
phertext is consistent adversary B computes the session key by Equation (3)
as K ← (D1D2

C
c1
1 C

c2
2

)
1

t−t∗ and returns M ← E ·K−1. This shows that as long
as t �= t∗ the simulation of the decryption queries is always perfect, i.e.
the output of oracle Dec(Ctbe, t) is identically distributed as the output of
TBEdec(sk ,Ctbe, t).

Guess Stage. A returns two distinct messages M0,M1 of equal length. Ad-
versary B picks a random bit b and constructs the challenge ciphertext
C ∗

tbe = (C∗
1 , C

∗
2 , D

∗
1 , D

∗
2 , E

∗) for message Mb as follows:

(C∗
1 = gr1

1 , C∗
2 = gr2

2 , D∗
1 = (gr1

1)c1 , D∗
2 = (gr2

2)c2 , E∗ = Mb · w)

By Equation (2), C ∗
tbe is always consistent with target tag t∗. If w = zr1+r2 ,

then E = Mb ·w is indeed a valid ciphertext of message Mb and tag t∗ under
the public key pk . On the other hand, when w is uniform and independent
in G then E = w ·Mb is independent of b in the adversary’s view.
AdversaryA is run with challenge ciphertext C ∗

tbe answering to its decryption
queries as in the find stage.
Eventually, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own
game by outputting a guess as follows: If b = b′ then B outputs 1 meaning
w = zr1+r2 . Otherwise, it outputs 0 meaning that w is random.

This completes the description of adversary B. We now analyze B’s success in
breaking the decisional linear problem.

When the value w input by B equals to w = zr1+r2 , then A’s view is identical
to its view in a real attack game and therefore A must satisfy |Pr[b = b′] −
1/2| ≥ Advtbe-stag-cca

TBE ,A (k). On the other hand, when w is uniform in G then

Pr[b = b′] = 1/2. Therefore Advdlin
G,B(k) ≥

∣∣∣(1
2 ± Advtbe-stag-cca

TBE ,A (k)
)
− 1

2

∣∣∣ =

Advtbe-stag-cca
TBE ,A (k). This proves Equation (1) and concludes the proof.

Separating Sources for Encryption and Secret
Sharing

Yevgeniy Dodis1,�, Krzysztof Pietrzak2,��, and Bartosz Przydatek2

1 Department of Computer Science, New York University
New York, NY, USA
dodis@cs.nyu.edu

2 Department of Computer Science, ETH Zurich,
8092 Zurich, Switzerland

{pietrzak, przydatek}@inf.ethz.ch

Abstract. Most cryptographic primitives such as encryption, authen-
tication or secret sharing require randomness. Usually one assumes that
perfect randomness is available, but those primitives might also be re-
alized under weaker assumptions. In this work we continue the study of
building secure cryptographic primitives from imperfect random sources
initiated by Dodis and Spencer (FOCS’02). Their main result shows
that there exists a (high-entropy) source of randomness allowing for per-
fect encryption of a bit, and yet from which one cannot extract even a
single weakly random bit, separating encryption from extraction. Our
main result separates encryption from 2-out-2 secret sharing (both in
the information-theoretic and in the computational settings): any source
which can be used to achieve one-bit encryption also can be used for
2-out-2 secret sharing of one bit, but the converse is false, even for high-
entropy sources. Therefore, possibility of extraction strictly implies en-
cryption, which in turn strictly implies 2-out-2 secret sharing.

1 Introduction

For many important tasks, such as cryptography, randomness is indispensable.
Usually one assumes that all parties have access to a perfect random source, but
this assumption is at least debatable, and the question what kind of imperfect ran-
dom sources can be used in various applications has attracted a lot of attention.

Extraction. The easiest such class of sources consists of extractable sources
for which one can deterministically extract nearly perfect randomness, and then
use it in any application. Although examples of such non-trivial sources are
known [vN51, Eli72, Blu86, LLS89, CGH+85, BBR88, AL93, CDH+00, DSS01,
KZ03, TV00], most natural sources such as the so called entropy sources1 [SV86,
� Supported in part by NSF career award CCR-0133806 and NSF grant CCR-0311095.

�� Supported by the Swiss National Science Foundation, project No. 200020-103847/1.
1 Informally, entropy sources guarantees that every distribution in the family has a

non-trivial amount of entropy (and possibly more restrictions), but do not assume
independence between different symbols of the source. In this sense they are the
most general sources one would wish to tolerate.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 601–616, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

602 Y. Dodis, K. Pietrzak, and B. Przydatek

CG88, Zuc96] are easily seen to be non-extractable. One can then ask a natural
question whether perfect randomness is indeed needed for the considered appli-
cation. Clearly, the answer depends on the application. In particular, the natural
fundamental question is to understand the extent to which a given application
can be based on imperfect randomness, and also to compare the randomness
requirements for different applications.

Probabilistic Algorithms and Interactive Protocols. For example,
a series of celebrated results [VV85, SV86, CG88, Zuc96, ACRT99] showed
that entropy sources are necessary and sufficient for simulating probabilistic
polynomial-time algorithms — namely, problems which do not inherently need
randomness, but which could potentially be sped up using randomization. Thus,
extremely weak imperfect sources can still be tolerated for this application do-
main. This result was recently extended to interactive protocols by Dodis et al.
[DOPS04].

Encryption. On the other hand, McInnes and Pinkas [MP90] showed that un-
conditionally secure symmetric encryption cannot be based on entropy sources,
even if one is restricted to encrypting a single bit. This result was recently
strengthened by Dodis et al. [DOPS04], who showed that entropy sources are not
sufficient even for computationally secure encryption (as well as essentially any
other task involving “privacy”). On the opposite side, Dodis and Spencer [DS02]
showed that randomness extraction is not necessary for the existence of secure
encryption (at least when restricted to a single bit). Specifically, they show that
there are sources which can be used to perfectly encrypt a bit but cannot be used
to extract a single bit. This even holds if one additionally requires all the dis-
tributions in the imperfect source to have high min-entropy. Thus, good sources
for encryption lie strictly in between extractable and entropy sources.

Authentication. In the usual non-interactive (i.e., one-message) setting, Mau-
rer and Wolf [MW97] show that for sufficiently high entropy rate (specifically,
more than 1/2), even general entropy sources are sufficient for unconditional one-
time authentication, while Dodis and Spencer [DS02] showed that smaller rate
entropy sources are indeed insufficient to authenticate even a single bit. On the
other hand, [DS02] also show that for all entropy levels (in particular, below 1/2)
there exist “severely non-extractable” imperfect sources which are sufficient for
non-trivial authentication. Thus good sources for authentication once again lie
strictly in between extractable and entropy sources. The relation to encryption
sources is currently open (see Section 5). On a related note, [DOPS04] considered
the existence of computationally secure digital signature (and thus also message
authentication) schemes, and show that the latter seem to be possible even with
general entropy sources, at least under very strong but seemingly reasonable
computational assumptions. In the interactive setting, Renner and Wolf [RW03]
show (indeed, highly interactive) information-theoretic authentication protocols
capable of tolerating any constant-fraction entropy rate.

Separating Sources for Encryption and Secret Sharing 603

Secret Sharing? In this work we consider for the first time another crypto-
graphic primitive which inherently requires randomness: secret sharing. In par-
ticular, we concentrate on the simplest case of 2-out-2 (denoted simply 2-2)
secret sharing: one wants to split a message m into shares S1 and S2 so that
neither share leaks any information about m, and yet m can be reconstructed
from both shares. We first observe that (either information-theoretic or compu-
tational) encryption implies the existence of a corresponding 2-2 secret sharing:
one simply sets S1 to be the decryption key, and S2 to be the encryption of
the message M under this key. Our main technical result is to show that the
converse of this statement is false, at least when restricting to one-bit message.
Namely, there exist imperfect sources sufficient for perfect secret sharing of a
bit, but for which any bit encryption scheme can be insecure with constant dis-
tinguishing probability (on a positive note, we show that one cannot push this
probability too close to 1). Additionally, just like in the case of separation be-
tween encryption and extraction [DS02], our separation can be extended to hold
even if one additionally requires all the distributions in the imperfect source to
have high min-entropy.2 Moreover, our information-theoretic separation above
can be extended even to the computational setting. This means that there exist
high-entropy sources for which one can build efficient 2-out-2 secret sharing, but
any (efficient) encryption scheme can be broken by an efficient distinguisher on
an efficiently-samplable distribution from our source.3

To summarize (see Figure 1), extraction strictly implies encryption [DS02]
which in turn, as we show, strictly implies 2-2 secret sharing.

Extraction Encryption 2-2 Secret Sharing

enc(k, m) = extract(k) ⊕ m share2,2(k, m) = {k, enc(k, m)} (Thm. 1)

Proposition 2 Theorem 2

Fig. 1. The solid arrows indicate the implication and the separation we will prove

Comparing Cryptographic Primitives. As we see, our work continues the
approach initiated by Dodis and Spencer [DS02] to compare different crypto-
graphic tasks according to how they utilize randomness. Namely, given a block
length n of our randomness source, and the (min-)entropy threshold m ≤ n, we
say that primitive A implies primitive B if whenever an imperfect source S of
length n and (min-)entropy m is sufficient to implement A, then one could also
2 In particular, we construct sources with min-entropy only a constant away from the

maximal entropy (cf. Lemma 3 and Theorem 2).
3 In fact, even the process of finding such an efficiently-samplable distribution can be

done efficiently (with exponentially high probability), given only the oracle access
to the encryption oracle.

604 Y. Dodis, K. Pietrzak, and B. Przydatek

implement B with S . When m = n, we get back to the case of perfect random-
ness, where primitive A implies B if and only if the smallest number of truly
random bits needed to implement A is at least as large as the smallest number
of truly random bits to implement B. As was shown by [DS02, DOPS04] and
continued here, many implications true in the perfect case simply stop being true
the moment we allow for slightly imperfect random sources (i.e., allow m < n).
In other words, these implications inherently rely on perfect randomness. On
the other hand, some implications continue to hold (at least to some extent)
even with imperfect randomness, implying they have more to do with the cryp-
tographic aspect of the problem rather than the availability of true randomness.
We believe that such comparison between cryptographic primitives sheds more
light on how they utilize randomness, and also serves as a stepping stone toward
classifying imperfect sources sufficient for different cryptographic tasks.

Organization. We give the preliminary definitions of our primitives in Section 2.
Our main technical result comparing sources for (information-theoretic) encryp-
tion and 2-2 secret sharing is given in Section 3. In Section 4 we extend our results
to the computational setting. Finally, in Section 5 we take a brief look at authen-
tication and discuss some open problems considering imperfect sources sources
sufficient for various cryptographic applications.

2 Notation and Definitions

We use calligraphic letters like X to denote sets. The corresponding large letter
X usually denotes a random variable over X and the small letter x an element
from X . We use H(X) to denote the Shannon entropy of random variable X .

X ∈Ω X means that X is a random variable whose distribution is Ω and
x ∈Ω X means that x is a value sampled from X with distribution Ω. UX denotes
the uniform distribution over X . We write Un to denote U{0,1}n , the uniform
distribution over n-bit strings. A source S over X is a set of distributions over X .

Definition 1. A distribution Ω over K has min-entropy d if no element has
probability more than 2−d, i.e. maxk∈K Pr(k = k′|k′ ∈Ω K) ≤ 2−d. The largest
such d is denoted H∞(Ω). A source S over K has min-entropy d if it only
contains distributions with min-entropy at least d. The d-weak source over K
is the source which contains all distributions over K with min-entropy at least d.

Definition 2. A random variable B over {0, 1} is ε-fair if

min{Pr(B = 0),Pr(B = 1)} ≥ ε

(so a uniform random bit is 1/2-fair and a constant bit is 0-fair). A source S
over K is ε-fair if there exists a one-bit extractor (which is simply a function
extract : K → {0, 1}) such that extract(K), where K ∈Ω K, is ε-fair for all
Ω ∈ S .

Separating Sources for Encryption and Secret Sharing 605

Definition 3. An encryption scheme is a pair of algorithms enc : K×M → C
and dec : K × C → M which for all keys k ∈ K and messages m ∈ M satisfies

dec(k, enc(k,m)) = m (1)

A source S over K allows for perfect encryption of M if there is an en-
cryption scheme such that for all distributions Ω ∈ S the ciphertexts leak no
information about the encrypted message M , i.e. for any random variable M

∀Ω ∈ S : H(M | enc(K,M)) = H(M) where K ∈Ω K (2)

A source S over K allows for δ-encryption if there is an encryption scheme
such that for all distributions Ω ∈ S the statistical distance of the encryption
of any two distinct messages m1 and m2 is at most δ, i.e.

max
Ω∈S ,m1 �=m2

1
2

∑
c∈C

|Prk∈ΩK(enc(k,m1) = c) − Prk∈ΩK(enc(k,m2) = c)| ≤ δ (3)

Note that perfect encryption is 0-encryption and sending the plaintext is 1-
encryption.

Definition 4. For t, n ∈ Z, t ≤ n a t-n secret sharing is a pair of algorithms
sharet,n : K ×M → Xn and reconstructt,n : X t → M which for all keys k ∈ K
and all m ∈ M satisfies

∀T ⊆ sharet,n(k,m) where |T | = t we have reconstructt,n(T) = m (4)

A source S over K allows for perfect t-n secret sharing of M if any set of
less than t shares does not reveal any information about the shared M , i.e. for
all Ω ∈ S and all 1 ≤ i1 < i2 < . . . < it−1 ≤ n we have for distributions M

H(M |Si1 , Si2 , ..., Sit−1) = H(M) where K∈Ω K, {S1, ..., Sn} ← sharet,n(K,M)
(5)

Note that (4) means that from any t shares one can reconstruct m. In terms
of perfect randomness, the uniform distribution over {0, 1}n is necessary and
sufficient to perfectly encrypt M = {0, 1}n (i.e. n-bit strings) for example by
using the key k as a one time pad:

enc(k,m) = k ⊕m dec(k, c) = c⊕m

where ⊕ denotes the bitwise XOR. Un is also necessary and sufficient (as the
dealer’s randomness) to construct a perfect 2-2 secret sharing of {0, 1}n, for
example as:

share2,2(k,m) = {k, k ⊕m} reconstruct2,2(s1, s2) = s1 ⊕ s2

In the next section we will show that in terms of non-perfect randomness these
two tasks are no longer equivalent. The sources which allow for perfect encryption
also allow for 2-2 secret sharing (of the same message space) but not vice-versa.
More precisely, we show that every source which allows for perfect 2-2 secret
sharing of one bit allows for 1/2-encryption of one bit, but in general not for
δ-encryption of one bit for δ < 1/3. This even holds if we require the source to
have high min-entropy.

606 Y. Dodis, K. Pietrzak, and B. Przydatek

3 Separating Encryption from Secret Sharing

We can now formally state the results of [MP90] and [DS02].

Proposition 1 ([MP90]). The (n−2)-weak source over {0, 1}n does not allow
for δ-encryption of even 1 bit for any δ �= 0.

So for every one-bit encryption scheme with key-space {0, 1}n there exists a
distribution for the keys with min-entropy n− 2 such that the ciphertext always
completely reveals the message.

Proposition 2 ([DS02]). There is a source over {0, 1}n which allows for per-
fect encryption of one bit, but which is not 2−n/2-fair.

This separation holds even if we require the source to have high min-entropy:
for any ε > 2−n/2+1 there is a source S over {0, 1}n with min-entropy n −
log(1/ε) − O(1) which allows for perfect encryption of one bit but which is not
ε-fair.

3.1 Encryption → 2-2 Secret Sharing

Theorem 1. Any source S over K which allows for perfect encryption of M
allows for perfect 2-2 secret sharing of M.

Proof: For enc, dec which satisfy properties (1) and (2) we define for all k ∈
K,m ∈ M

share2,2(k,m) = (k, enc(k,m)) and reconstruct2,2(s1, s2) = dec(s1, s2).

Property (1) implies immediately that this scheme satisfies (4). It also satisfies
property (5) as for any random variables M and Ω ∈ S ,K ∈Ω K we have that
H(M | K) = H(M) as K is independent of M and H(M | enc(K,M)) = H(M)
follows from (2). �

In the following section we show that for M = {0, 1}, the converse is not true.

3.2 2-2 Secret Sharing �→ Encryption

In this section we will prove our main technical result (Theorem 2 below), namely
that sources which allow for 2-2 secret sharing do not allow for encryption in
general. We split the proof of the theorem into the following three lemmas.

Lemma 1. There is a source which allows for perfect 2-2 secret sharing of a bit
but does not allow for δ-encryption of a bit for any δ < 1/3.

This separation is in some sense not so strong as the separation for encryption
from extraction where a source was shown which allows perfect encryption but
not even a weak form of extraction. The question arises if we can get something
as δ ≤ 1− o(1) (and not just δ < 1/3) here too. The answer is no, since already
δ ≤ 1/2 is not achievable as shown in the next lemma.

Separating Sources for Encryption and Secret Sharing 607

Lemma 2. Any source which allows for perfect 2-2 secret sharing of a bit allows
for 1/2-encryption of a bit.

We prove Lemma 1 by showing a concrete source which contains only four distri-
butions over a domain of size six. Here the question arises whether this separation
only works for such toy examples and possibly breaks down when we require the
source to have high min-entropy. This is not the case: we show how one can turn
such a toy-example into a high min-entropy source with the same parameters.

Lemma 3. For any t ∈ N there is a source as in Lemma 1, where the distribu-
tions in the source have range of size 6t and the min-entropy of each distribution
is at least log(6t) − log(192).

Combining Lemma 2 and Lemma 3 we get the following theorem.

Theorem 2. There are sources over any K with min-entropy log |K|−11 which
allow for perfect 2-2 secret sharing but do not allow for δ-encryption of one bit
for any δ < 1/3.

From the positive side, any source which allows for perfect 2-2 secret sharing
of a bit allows for 1/2-encryption of one bit.

Theorem 2 is stated for sources over any K and not just for sets of size 6t as
in Lemma 3. This is compensated for by an additional factor of log(6) in the
min-entropy gap (i.e. we have a gap of 11 > log(192) + log(6)).

Proof of Lemma 1. Let S be a source over K = {k1, . . . , k6} which contains
4 distributions Ω1, . . . , Ω4 where each Ωi is the uniform distribution over Si ⊂
K with S1 = {k1, k2},S2 = {k3, k4},S3 = {k1, k3, k5} and S4 = {k1, k4, k6}
respectively. Lemma 1 follows from the two claims below.

Claim 1. S allows for perfect 2-2 secret sharing of one bit.

Proof: We define the sharing share2,2 : K × {0, 1} → A × B, where A =
{a1, a2, a3, a4} and B = {b1, b2, b3, b4} as shown in Figure 2. A key ki is rep-
resented by a pair of directed edges, where the edge from A to B corresponds
to the shares of 0, and the edge from B to A to the shares of 1. For example
share2,2(k1, 0) = (a3, b2) and share2,2(k1, 1) = (a1, b2).

k1 k 2 k3

b

b

b3

2

1 b

b

b3

2

1 b

b

b3

2

1 b

b

b3

2

1

k4

b

b

b3

2

1

b3a3

ba4 4 ba4 4 ba4 4 ba4 4 ba4 4 ba4 4

a

a

a

1

2

3

a

a

a

1

2

3

a

a

a

1

2

3

k

a

a

a

1

2

3

k5 6

1

0

a

a

1

2

a

a

a

1

2

3

b

b2

1

Fig. 2. The mapping share2,2 from the proof of Lemma 1

608 Y. Dodis, K. Pietrzak, and B. Przydatek

For any (ai, bj) there is at most one possible m ∈ {0, 1} such that (ai, bj) =
share2,2(k,m) for some k ∈ K. Thus for any random variable M it always holds
that H(M | share2,2(k,M)) = 0.

Note that for any i, 1 ≤ i ≤ 4, Ωi is the uniform distribution over some subset
of K whose corresponding directed edges (as shown in Figure 2) form a directed
cycle, where the edges alternate between A and B (e.g. for Ω1 we have the cycle
a3 → b2 → a1 → b4 → a3). So the distribution on A is the same no matter
if we choose a random edge from A to B (a sharing of the secret 0) or from
B to A (a sharing of the secret 1) on this cycle. This proves that the random
variable A defined as (A,B) = share2,2(k ∈Ωi K,M) is independent of M and
H(M | A) = H(M) (and similarly for H(M | B) = H(M)). �
Claim 2. S does not allow for δ-encryption of a bit for any δ < 1/3.

Proof: Consider any mapping enc : K × {0, 1} → C. We will prove that for
our source S this enc cannot satisfy Definition 3 with δ < 1/3. Recall that S
contains the distributions Ωi, 1 ≤ i ≤ 4, where Ωi is uniform over Si. Consider
the graphs Gi, with V (Gi) = C, E(Gi) = {(enc(k, 0), enc(k, 1))|k ∈ Si}, where
each edge is labeled with the corresponding k ∈ K. We will show that E(Gi)
does not form a directed cycle for at least one i, 1 ≤ i ≤ 4.

Suppose this is not the case, then E(G1) forms a cycle of length 2, say k1 =
(c1, c2), k2 = (c2, c1). And similarly for E(G2), say k3 = (c3, c4), k4 = (c4, c3). If
E(G3) forms a cycle then (because of the above) either c1 = c4 or c2 = c3 but
not both must hold (e.g. if c1 = c4 then we can set k5 = (c2, c3)). Similarly if
E(G4) is a cycle then either c1 = c3 or c2 = c4 but not both must hold. We can
write this two conditions as (c1 = c4 ⊕ c2 = c3) ∧ (c1 = c3 ⊕ c2 = c4) = true,
which cannot be satisfied and we have a contradiction.

For an i where E(Gi) does not form a directed cycle (such an i exists
as we just proved) there are vertices c′, c′′ ∈ V (Gi) such that indegree(c′) >
outdegree(c′) and outdegree(c′′) > indegree(c′′), which using |E(Gi)| = |Si| ≤ 3
gives

1
2

∑
c∈C

|Prk∈Ωi
K(enc(k, 0) = c) − Prk∈Ωi

K(enc(k, 1) = c)| ≥ 1/3.

So because of this Ωi property (3) cannot be satisfied with δ < 1/3. �
�

Proof of Lemma 3.We will now show how to make a high min-entropy source
out of a toy example like the one from Lemma 1. Let K and S1, . . . ,S4 ⊂ K
be as in the proof of Lemma 1. For t ≥ 2 and for each i, 1 ≤ i ≤ t let Ki =
{ki,1, . . . , ki,6} be a copy of K, and let Si,j = {ki,x : kx ∈ Sj} denote the
corresponding subsets. The key-space K̃ of our source is

K̃ = K1 ∪ K2 ∪ . . . ∪Kt . (6)

For a set I ⊆ {1, . . . , t} and a mapping σ : {1, . . . , t} → {1, . . . , 4} we define

TI,σ =
⋃
i∈I

Si,σ(i).

Separating Sources for Encryption and Secret Sharing 609

Our source S contains all uniform distributions over the sets TI,σ with |I| ≥
$t/64�. That is, our source contains all the uniform distributions over sets which
are constructed by taking the union of subsets Si,j ⊂ Ki from at least a 1/64’th
fraction of the Ki’s. Since each distribution is uniform over a set of size at least
2t/64, S has min-entropy at least log(t/32) = log(6t) − log(192).

The source S allows for perfect 2-2 secret sharing of one bit: On input a key
ki,j ∈ Ki the dealer can compute the shares as he would for the key kj ∈ K in
Claim 1 in the proof of Lemma 1. One can assume (but this is not necessary)
that the dealer also publishes i, then we have the same situation as in Claim 1
and it follows from (the proof of) Claim 1 that this is indeed a perfect 2-2 secret
sharing.

It only remains to show that S does not allow for δ-encryption of one bit
with δ < 1/3. For this consider any mapping enc : K̃ × {0, 1} → C. As shown in
the proof of Lemma 1, for each i, 1 ≤ i ≤ t, there is a distribution Ωi which is
uniform over the set Si,j for some j, 1 ≤ j ≤ 4, satisfying

1
2

∑
c∈C

|Prk∈Ωi
K(enc(k, 0) = c) − Prk∈Ωi

K(enc(k, 1) = c)| ≥ 1/3. (7)

Let Xi denote such a Si,j . Consider a random mapping φ : C → {−1, 1}. We
say that Xi is good if

∀c ∈ C : 0 ≤ φ(c)·(|{k ∈ Xi : enc(k, 0) = c}| − |{k ∈ Xi : enc(k, 1) = c}|) . (8)

As |Xi| ≤ 3 the rhs of eq. (8) can be nonzero for at most 6 different c ∈ C and
thus Xi is good with probability at least 2−6. This shows (as a simple application
of the probabilistic method) that there is a φ for which at least $t2−6� of the
Xi’s are good. Fix such a φ and let X be the union of good sets. The uniform
distribution over X , ΩX , is in S , but it does not allow for δ-encryption with
δ < 1/3: Let γi be the event that k ∈ Xi (below all not explicitly labeled
probabilities are over k ∈ΩX K̃).
1
2

∑
c∈C

|Pr(enc(k, 0) = c) − Pr(enc(k, 1) = c)|

(8)
=

1
2

∑
c∈C

φ(c)(Pr(enc(k, 0) = c) − Pr(enc(k, 1) = c))

=
1
2

∑
c∈C

t∑
i=1

φ(c)(Pr(γi)Pr(enc(k, 0) = c|γi) − Pr(γi)Pr(enc(k, 1) = c|γi))

(8)
=

t∑
i=1

Pr(γi)
1
2

∑
c∈C

|(Pr(enc(k, 0) = c|γi) − Pr(enc(k, 1) = c|γi)|

=
t∑

i=1

Pr(γi)
1
2

∑
c∈C

|Prk∈Ωi
K(enc(k, 0) = c) − Prk∈Ωi

K(enc(k, 1) = c)|

(7)
≥

t∑
i=1

Pr(γi)
1
3

=
1
3

�

610 Y. Dodis, K. Pietrzak, and B. Przydatek

Proof of Lemma 2. Let S be a source with distributions over K which allows
for perfect 2-2 secret sharing and share2,2 : K×{0, 1} → A×B be an appropriate
sharing (we can wlog. assume that A∩B = ∅). To prove the lemma we first define
a mapping enc : K × {0, 1} → C (where C = A ∪ B), and then prove that it is a
1/2-encryption (i.e. satisfies eq. (3) with δ = 1/2).

For k ∈ K and m ∈ {0, 1} let (am,k, bm,k) = share2,2(k,m), we set

enc(k,m) = am,k if a0,k �= a1,k and bm,k otherwise

We cannot have a0,k = a1,k and b0,k = b1,k simultaneously as otherwise the
share (a0,k, b0,k) could be a share of either 0 or 1 which is impossible when the
secret sharing is perfect. So we always have enc(k, 0) �= enc(k, 1) and decryption
is always possible. We will now prove that this enc satisfies eq.(3) with δ ≤ 1/2
(as our plaintext-domain is only one bit we can set m1 = 0 and m2 = 1 in
(3) wlog.). For any Ω ∈ S we have (all probabilities are over k ∈Ω K) using
C = A ∪ B,A∩ B = ∅

1
2

∑
c∈C

|Pr(enc(k, 0) = c) − Pr(enc(k, 1) = c)| (9)

=
1
2

∑
a∈A

|Pr(enc(k, 0) = a) − Pr(enc(k, 1) = a)| (10)

+
1
2

∑
b∈B

|Pr(enc(k, 0) = b) − Pr(enc(k, 1) = b)| (11)

We will show that the term (9) is ≤ 1/2 (which is exactly the statement of
the Lemma) by showing that (10) is equal to 0 and (11) is ≤ 1/2. Let the
random variables Am, Bm be defined as (Am, Bm) = share2,2(k ∈Ω K,m), and
let K �= = {k ∈ K|a0,k �= a1,k}. From (5) we see that in a perfect 2-2 secret sharing
the distribution of the share of each player is independent of the shared secret.
This is used in the first step below (again all probabilities are over k ∈Ω K)

0 =
1
2

∑
a∈A

|Pr(A0 = a) − Pr(A1 = a)| (12)

=
1
2

∑
a∈A

|Pr(k ∈ K �=)
(
Pr(A0 = a|k ∈ K �=) − Pr(A1 = a|k ∈ K �=)

)
(13)

+Pr(k /∈ K �=)
(
Pr(A0 = a|k /∈ K �=) − Pr(A1 = a|k /∈ K �=)

)︸ ︷︷ ︸
= 0 by the definition of K �=

| (14)

=
1
2

∑
a∈A

|Pr(k ∈ K �=)
(
Pr(A0 = a|k ∈ K �=) − Pr(A1 = a|k ∈ K �=)

)
| (15)

Here (15) is exactly (10) so (10) is 0. We now show that (11) is ≤ 1/2:

Pr(enc(k, 0) = b) = Pr(B0 = b ∧ k /∈ K �=) ≤ Pr(B0 = b)

Separating Sources for Encryption and Secret Sharing 611

Pr(enc(k, 1) = b) = Pr(B1 = b ∧ k /∈ K �=) ≤ Pr(B1 = b)

Perfect secret sharing implies Pr(B0 = b) = Pr(B1 = b) and as the difference of
two positive values cannot be larger than any those values we get

1
2

∑
b∈B

|Pr(enc(k, 0) = b) − Pr(enc(k, 1) = b)| ≤ 1
2

∑
b∈B

Pr(B0 = b) =
1
2
.

�

4 Some Computational Aspects

Until now we have only considered an information theoretic setting. In particu-
lar, we did not care about whether the primitives, the attacks or the sampling
considered can be efficiently realized. In this section, which we keep rather in-
formal, we examine some computational aspects of the results from the previous
section.

4.1 Computational Version of Theorem 1

The proof of Theorem 1, which states that any source which can be used for
encryption can also be used for secret sharing, easily translates in the computa-
tional setting.

Proposition 3 (Computational version of Theorem 1). (informal) Any
source S over K which allows “computationally secure” encryption of M allows
for “computationally secure” 2-2 secret sharing of M.

In the above proposition we left open what “computationally secure” exactly
means. A direct translation from the information theoretic setting would advise
the following security notion for encryption: the adversary can choose two mes-
sages m0 and m1 and then, given the encryption of mb for a random b, should
not be able to guess b (much better than with prob. 1/2).4 Then the security
achieved for secret sharing is the following: First the adversary can choose two
messagesm0 and m1. Then, given one share ofmb for random b he cannot guess b
(i.e. which message was shared). A stronger notion for encryption (e.g. semantic
security) will result in a stronger security guarantee for secret sharing.

4.2 Computational Version of Theorem 2

We now take a look at Theorem 2 which follows from the Lemma 2 and Lemma
3. The proof of Lemma 2 translates into the computational setting.

Proposition 4 (Computational version of Lemma 2). (informal) Any
source which allows for “computationally secure” 2-2 secret sharing of a bit al-
lows for “computationally secure” 1/2-encryption of a bit.
4 This notion is weaker than the notion of semantic security, where the adversary can

additionally ask for encryptions of his choice except for m0 and m1.

612 Y. Dodis, K. Pietrzak, and B. Przydatek

As before, “computationally secure” can have several meanings (and a stronger
notion for secret sharing implies a stronger notion for 1/2-encryption). Also the
concept of δ-encryption has a natural meaning in the computational setting,
where it means that the distinguishing advantage of any efficient adversary for
the ciphertexts of two messages m0 and m1 is at most negligibly larger than
1/2 + δ/2.

Lemma 3 states that there is a source with high min-entropy which allows
for 2-2 secret sharing but not for δ-encryption of one bit with δ < 1/3. We can
strengthen this lemma in several ways by considering computational aspects. In
particular, we can require the following properties:

i. The secret sharing is efficient.
ii. For every encryption scheme the source contains an efficiently samplable

distribution, for which the encryption-scheme is not 1/3-secure.
iii. There exists an efficient algorithm which breaks the 1/3-security of the en-

cryption scheme under the efficiently samplable distribution from (ii).
iv. One can efficiently find the distribution from (ii).

We can achieve all four points simultaneously. However, to satisfy properties (ii)
and (iv) we must be able to efficiently compute encryptions (either by getting a
polynomial-size circuit or access to an oracle which computes encryptions given
a key and a message). We now describe how one can adapt the proof of Lemma 3
(which we assume the reader is familiar with) to achieve these additional prop-
erties.

We can encode the key-space (see eq. (6)) as pairs of integers, i.e. K̃ ≡
[1, . . . , t]× [1, . . . , 6]. With this encoding property (i) (efficient secret sharing) is
achieved: recall that the shares of m ∈ {0, 1} under key (i, j) are share2,2(kj ,m)
with share2,2(·, ·) as defined in the proof of Lemma 1, which can be computed in
constant time.

We now describe how to efficiently sample a distribution from our source
which breaks the 1/3-security of enc. The distribution from the lemma is not
efficiently samplable as the φ used to define it cannot be computed efficiently; We
have only shown that a suitable φ exists — where suitable means that at least
$t2−6� of the Xi’s are good — using the probabilistic method. The argument
used there was that a random φ satisfies (8) with probability at least 2−6, as the
rhs of (8) is nonzero for at most 6 different c ∈ C. Fortunately for this argument
we don’t need a random φ — in fact, 6-wise independence is enough. Therefore if
τ : W ×C → {−1, 1} is an (efficiently computable) 6-wise independent function,
then there is some key w ∈ W such that τ(w, ·) is good for $t2−6� of the Xi’s
(as t2−6 is a lower bound for the expected number of good Xi’s for a 6-wise
independent function).

With this efficient φ(·) = τ(w, ·), we can now efficiently sample a key (using
uniform randomness) according to the distribution of Lemma 3 (i.e. a random
key from the union of all good sets) as follows:

1. Choose an integer i, 1 ≤ i ≤ t uniformly at random.
2. Find a j, 1 ≤ j ≤ 4 (say the smallest) such that Ωi, the uniform distribution

over Xi = Si,j , satisfies (7).

Separating Sources for Encryption and Secret Sharing 613

3. Check if this Xi is good, i.e. satisfies (8). If it does not, return to step 1.
4. If |Xi| = 2 then return to step 1 with probability 1/3. (This is done to

equalize the proportional weights of the Xi’s of size 2 and 3.)
5. Output a key chosen uniformly at random from Xi.

Note that this sampling will terminate in expected polynomial time if we can
compute enc (in Step 2) and φ (in Step 3) efficiently.

We now describe an efficient breaking algorithm for enc, thus satisfying prop-
erty (iii). Equation (8) tells us that the encryption of 0 and 1 have statistical
distance at least 1/3, and from (7) we see that given a ciphertext c of a message
m, φ(c) is an optimal guess on m. So if φ(·) can be efficiently computed (which
is the case if we set it to τ(w, ·), as described before), then we can efficiently
break the 1/3 security of enc.

Finally we come to property (iv), which now can be stated as how to find a
key w for our 6-wise independent function τ , such that φ(·) = τ(w, ·) is good for a
1/64 fraction of the Xi’s. Unfortunately, for a given w one can’t efficiently check
if τ(w, ·) is good on a 1/64 fraction as for that we would have to go over all Xi for
i = 1, . . . , t, but t is exponential. But we can efficiently find a w such that τ(w, ·)
will be good on a slightly smaller subset, say a 1/66 fraction, with probability
exponentially close to 1 as follows. Choose a random w and approximate the
fraction on which τ(w, ·) is good by randomly sampling i ∈ [1, . . . , t] and checking
if it is good for Xi. Accept this w if it was good on, say at least a 1/65 fraction, of
the Xi’s. By the Chernoff bound, the probability we will accept a w which is not
good on at least a 1/66 fraction of all Xi’s is exponentially small in the number
of samples we have drawn for the approximation. Further, by the Markov bound
we are guaranteed that we pick a w which is good on at least a 1/65 fraction
after a constant number of tries.

5 Open Problems

There are many interesting open questions considering imperfect sources for var-
ious cryptographic applications. In our opinion the most dazzling one is whether
the reductions from Proposition 2 and Theorem 2 generalize to larger domains.
Already if we only extend the domain of the message space from two to three
we cannot even show a sub-constant bound for the fairness.

Open Problem 1. Is there an ε(n) ∈ o(1) such that there exist sources over
{0, 1}n which allow for the encryption (or 2-2 secret sharing) of a trit5 but cannot
be used to extract an ε(n)-fair bit (recall that for bits one can show ε(n) = 2−n/2).

Authentication. Another interesting primitive we did not consider so far is
authentication. Here, we will only consider the one-bit case, which already leaves
several interesting open questions.

5 A trit is like a bit but can take three and not just two values.

614 Y. Dodis, K. Pietrzak, and B. Przydatek

Definition 5. We say that a source S with distributions over some set K allows
for τ-authentication of one bit if there is a mapping auth : K × {0, 1} → A
such that for all distributions Ω ∈ S and k ∈Ω K we have mink H∞(auth(k, 0) |
auth(k, 1)) ≥ − log τ and mink H∞(auth(k, 1) | auth(k, 0)) ≥ − log τ .

Note that τ -authentication of a bit simply means that given the authenticator
auth(k, b) of a bit b ∈ {0, 1} the probability that one can guess auth(k, 1−b) (the
authenticator of the other bit) correctly is at most 2−τ . Authentication is very
undemanding in its randomness requirements, any source whose min-entropy is
large enough will do.

Proposition 5 ([MW97]). The (n + τ)-weak source over {0, 1}2n allows for
τ-authentication of one bit.

The authentication which achieves the above bound is extremely simple: use
the first and the last n bits to authenticate 0 and 1 respectively. Note that
any half has min-entropy at least τ even when given the other half as an n-bit
string has min-entropy of at most n. As such weak-sources are not enough for
encryption (see Proposition 1), this already shows that sources for authentication
do not allow for encryption, and one can easily show that they do not allow for
secret sharing and any other cryptographic primitive requiring privacy we could
think of.

But how about the other direction? Can sources which allow for encryption
or secret sharing always be used for authentication? Recall, in the case of perfect
randomness the result of [DS02] implies that 2n uniform bits are both necessary
and sufficient for achieving n-authentication of 1-bit (in particular, we need at
least 2 bits to do anything non-trivial at all), which means we can only hope
that encryption (or 2-2 secret sharing) of at least 2n-bits might (or might not)
imply n-authentication of even a single bit. More generally,

Open Problem 2. Find a lower bound for τ(n) and an upper bound for γ(n)
in the following statement (bounds for n = 1 only are already interesting):

A source (possibly with some guaranteed min-entropy) which allows for
the encryption (or 2-2 secret sharing) of 2n bits must always allow for
τ(n)-authentication of one bit, but in general not for γ(n)-authentication.

As we remarked, we know that n ≥ γ(n) ≥ τ(n). Interestingly, we observe
below that 3-3 secret sharing does imply authentication. (As a sanity check, in
case of perfect randomness both n-authentication of a bit and 3-3 secret sharing
of n bits need 2n perfectly random bits.)

Claim 3. Any source which allows for perfect 3-3 secret sharing of n bits allows
for n-authentication of a bit.

Proof: This reduction can be achieved as follows: first compute the sharing
(S1, S2, S3) for some constant message, say m = 0n. Now use S1 as the au-
thentication of 0 and S2 as the authentication of 1. We observe that the joint
distribution of shares S1 and S2 when m = 0n is the same as when m is uniform

Separating Sources for Encryption and Secret Sharing 615

over {0, 1}n as otherwise the shares S1 and S2 would leak information on which
is the case. So let M be uniform over {0, 1}n and K be chosen according to
a distribution from our source. With the above observation we now must only
prove that

H∞(S1|S2) ≥ n and H∞(S2|S1) ≥ n where (S1, S2, S3) = share3,3(K,M).

Here H∞(S1|S2) ≥ n means that H∞(S1|S2 = s) ≥ n for all s in the support
of S2 (and not as sometimes used that the expectation over S2 is at least n, i.e.
not

∑
s Pr(S2 = s)H∞(S1|S2 = s) ≥ n). Now by the definition of perfect secret

sharing we have

H∞(M |S2S3) = n and H∞(M |S1S2S3) = 0, (16)

which implies H∞(S1|S2S3) ≥ n. To see this assume that this was not true,
i.e. we have for some s1, s2, s3 that Pr(S1 = s1|S2 = s2, S3 = s3) > 2−n, but
then for m = reconstruct3,3(s1, s2, s3) also Pr(m|S2 = s2, S3 = s3) > 2−n which
contradicts H∞(M |S2S3) = n. The desired H∞(S1|S2) ≥ n now easily follows
from H∞(S1|S2S3) ≥ n, and H∞(S2|S1) ≥ n can be shown similarly. �

Now, as encryption implies 2-2 secret sharing and 3-3 secret sharing implies
authentication, a proof that 2-2 secret sharing implies some non-trivial 3-3 secret
sharing would immediately give a non-trivial bound for τ(n) from Open Prob-
lem 2. Moreover, we think that comparing 2-2 secret sharing of 2n bits with
3-3 secret sharing of n bits is interesting in its own right, since it would show
that different t-m secret sharing schemes have (or have not) different require-
ments on the way they utilize randomness, even if the same amount of perfect
randomness is required for them.

References

[ACRT99] Alexander Andreev, Andrea Clementi, Jose Rolim, and Luca Trevisan.
Dispersers, deterministic amplification, and weak random sources. SIAM
J. on Computing, 28(6):2103–2116, 1999.

[AL93] Miklós Ajtai and Nathal Linial. The influence of large coalitions. Combi-
natorica, 13(2):129–145, 1993.

[BBR88] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy am-
plification by public discussion. SIAM J. on Computing, 17(2):210–229,
1988.

[Blu86] Manuel Blum. Independent unbiased coin flips from a correlated biased
source — a finite state Markov chain. Combinatorica, 6(2):97–108, 1986.

[CDH+00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit
Sahai. Exposure-resilient functions and all-or-nothing transforms. In
Proc. EUROCRYPT’00, pages 453–469, 2000.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak
randomness and probabilistic communication complexity. SIAM J. on
Computing, 17(2):230–261, 1988.

[CGH+85] Benny Chor, Oded Goldreich, Johan H̊astad, Joel Friedman, Steven
Rudich, and Roman Smolensky. The bit extraction problem of t-resilient
functions. In Proc. 26th IEEE FOCS, pages 396–407, 1985.

616 Y. Dodis, K. Pietrzak, and B. Przydatek

[DOPS04] Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai.
On the (im)possibility of cryptography with imperfect randomness. In
Proc. 45th IEEE FOCS, pages 196–205, 2004.

[DS02] Yevgeniy Dodis and Joel Spencer. On the (non-)universality of the one-
time pad. In Proc. 43rd IEEE FOCS, pages 376–388, 2002.

[DSS01] Yevgeniy Dodis, Amit Sahai, and Adam Smith. On perfect and adaptive
security in exposure-resilient cryptography. In Proc. EUROCRYPT’01,
pages 301–324, 2001.

[Eli72] Peter Elias. The efficient construction of an unbiased random sequence.
Ann. Math. Stat., 43(2):865–870, 1972.

[KZ03] Jess Kamp and David Zuckerman. Deterministic extractors for bit-fixing
sources and exposure-resilient cryptography. In Proc. 44th IEEE FOCS,
pages 92–101, 2003.

[LLS89] David Lichtenstein, Nathan Linial, and Michael Saks. Some extremal prob-
lems arising from discrete control processes. Combinatorica, 9(3):269–287,
1989.

[MP90] James L. McInnes and Benny Pinkas. On the impossibility of private
key cryptography with weakly random keys. In Proc. CRYPTO’90, pages
421–436, 1990.

[MW97] Ueli Maurer and Stefan Wolf. Privacy amplification secure against active
adversaries. In Proc. CRYPTO’97, pages 307–321, 1997.

[RW03] Renato Renner and Stefan Wolf. Unconditional authenticity and privacy
from an arbitrary weak secret. In Proc. CRYPTO’03, pages 78–95, 2003.

[SV86] Miklos Santha and Umesh V. Vazirani. Generating quasi-random se-
quences from semi-random sources. JCSS, 33(1):75–87, 1986.

[TV00] Luca Trevisan and Salil Vadhan. Extracting randomness from samplable
distributions. In Proc. 41st IEEE FOCS, pages 32–42, 2000.

[vN51] John von Neumann. Various techniques used in connection with random
digits. National Bureau of Standards, Applied Mathematics Series, 12:36–
38, 1951.

[VV85] Umesh V. Vazirani and Vijay V. Vazirani. Random polynomial time is
equal to slightly-random polynomial time. In Proc. 26th IEEE FOCS,
pages 417–428, 1985.

[Zuc96] David Zuckerman. Simulating BPP using a general weak random source.
Algorithmica, 16(4/5):367–391, 1996.

Author Index

Beerliová-Trub́ıniová, Zuzana 305
Beimel, Amos 482
Bender, Adam 60

Canetti, Ran 380
Catalano, Dario 120

Damg̊ard, Ivan 41, 285
Datta, Anupam 360
Derek, Ante 360
Di Crescenzo, Giovanni 225
Dodis, Yevgeniy 120, 184, 542, 601
Dwork, Cynthia 265
Dziembowski, Stefan 207

Fazio, Nelly 41
Fitzi, Matthias 285, 329

Garay, Juan 329, 404
Gollakota, Shyamnath 329

Herzog, Jonathan 380
Hirt, Martin 305
Holenstein, Thomas 443

Indyk, Piotr 245

Jutla, Charanjit S. 561

Katz, Jonathan 60
Kiltz, Eike 285, 581
Kolesnikov, Vladimir 100
Koo, Chiu-Yuen 502

Lipton, Richard 225
Livne, Noam 482
Lu, Chi-Jen 462

MacKenzie, Philip 404
Malkin, Tal 343
McSherry, Frank 265
Micciancio, Daniele 1
Mitchell, John C. 360

Moriarty, Ryan 343
Morselli, Ruggero 60

Nicolosi, Antonio 41
Nielsen, Jesper Buus 285
Nissim, Kobbi 265, 522

Okamoto, Tatsuaki 80
Ong, Shien Jin 1

Peikert, Chris 145, 167
Pietrzak, Krzysztof 601
Prabhakaran, Manoj 404
Przydatek, Bartosz 601
Puniya, Prashant 184

Rackoff, Charles 100
Ramanathan, Ajith 360
Rangan, C. Pandu 329
Rosen, Alon 145

Sahai, Amit 1
Scedrov, Andre 360
Smith, Adam 265
Srinathan, Kannan 329

Toft, Tomas 285

Vadhan, Salil 1
Visconti, Ivan 120

Walfish, Shabsi 225
Wee, Hoeteck 429
Weinreb, Enav 522
Woodruff, David 245

Yakovenko, Nikolai 343
Yampolskiy, Aleksandr 542
Yang, Ke 404
Yung, Moti 21, 542

Zhao, Yunlei 21

	Frontmatter
	Zero-Knowledge
	Concurrent Zero Knowledge Without Complexity Assumptions
	Interactive Zero-Knowledge with Restricted Random Oracles
	Non-interactive Zero-Knowledge from Homomorphic Encryption

	Primitives
	Ring Signatures: Stronger Definitions, and Constructions Without Random Oracles
	Efficient Blind and Partially Blind Signatures Without Random Oracles
	Key Exchange Using Passwords and Long Keys
	Mercurial Commitments: Minimal Assumptions and Efficient Constructions

	Assumptions and Models
	Efficient Collision-Resistant Hashing from Worst-Case Assumptions on Cyclic Lattices
	On Error Correction in the Exponent
	On the Relation Between the Ideal Cipher and the Random Oracle Models

	The Bounded-Retrieval Model
	Intrusion-Resilience Via the Bounded-Storage Model
	Perfectly Secure Password Protocols in the Bounded Retrieval Model

	Privacy
	Polylogarithmic Private Approximations and Efficient Matching
	Calibrating Noise to Sensitivity in Private Data Analysis

	Secret Sharing and Multi-party Computation (I)
	Unconditionally Secure Constant-Rounds Multi-party Computation for Equality, Comparison, Bits and Exponentiation
	Efficient Multi-party Computation with Dispute Control
	Round-Optimal and Efficient Verifiable Secret Sharing

	Universally-Composible Security
	Generalized Environmental Security from Number Theoretic Assumptions
	Games and the Impossibility of Realizable Ideal Functionality
	Universally Composable Symbolic Analysis of Mutual Authentication and Key-Exchange Protocols
	Resource Fairness and Composability of Cryptographic Protocols

	One-Way Functions and Friends
	Finding Pessiland
	Pseudorandom Generators from One-Way Functions: A Simple Construction for Any Hardness
	On the Complexity of Parallel Hardness Amplification for One-Way Functions

	Secret Sharing and Multi-party Computation (II)
	On Matroids and Non-ideal Secret Sharing
	Secure Computation with Partial Message Loss
	Communication Efficient Secure Linear Algebra
	Threshold and Proactive Pseudo-Random Permutations

	Pseudo-Random Functions and Encryption
	PRF Domain Extension Using DAGs
	Chosen-Ciphertext Security from Tag-Based Encryption
	Separating Sources for Encryption and Secret Sharing

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

